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Abstract—As digital circuits have become more complicated
than ever, abstract description languages such as SystemC have
been introduced, allowing designers to work on more abstract
levels during the design process. Design metrics such as per-
formance and energy consumption are a central concern for
designers at all levels of abstraction. Approximate computing is
a promising way to optimize these criteria, sacrificing accuracy.
Defining which parts of a design can be approximated (and to
what degree) is a crucial and non-trivial design decision, which
is usually connected to a larger programming effort, especially
when exploring the design space manually.

In this paper, we propose an automated approach based on
machine learning techniques in order to detect the resilience
of a given SystemC design’s modules. This is used to identify
components of the design that can be approximated. The ef-
fectiveness of the proposed method is evaluated using several
SystemC benchmarks from various domains.

I. INTRODUCTION

The ever-increasing complexity of System-on-Chips (SoCs)
and tight time-to-market constraints shifts the designers’ focus
to abstract levels in order to rapidly implement working
results. System design at the Electronic System Level [1]
(ESL) is one way to work on these more abstract layers,
allowing designers to implement executable mixed hardware-
software systems in high-level programming languages. The
system-level language SystemC [2] has become the de-facto
standard [3] to specify Virtual Prototype (VP) models at the
ESL, enabling designers to rapidly prototype and consecu-
tively simulate complex systems. Performance, cost (i.e. size)
and energy consumption of the systems have always been and
remain central concerns during the development of electronic
systems [4]. As the cost of applying significant structural
changes to a given design increases with the stage of devel-
opment, these optimizations should be incorporated into the
model as early as possible – i.e. at the ESL, if possible.

Approximate computing is one promising solution [5], [6]
to improve the performance or reduce the required area and
energy consumption of embedded systems – at the cost of
output accuracy. Based on the idea that designs often include
some specific parts that contribute less to the quality of output
than others, modifying these parts of the model with respect to
the quality of its output can lead to enhanced design metrics
such as energy consumption and performance. The output
quality is measured using its premise boundary that is specified
as a Quality of Service (QoS) range. A part of the design is
considered as resilient or approximable if its modification has
a low impact on the output’s QoS.

Specifying which parts of a given ESL design are approx-
imable is the critical starting point of approximate computing

techniques as the incorrect detection of critical parts as approx-
imation candidates can be expensive in terms of the output
quality of the system. For a given ESL design answering
the following questions can help the designer to make better
decision on design optimization.

1) Which modules of the design may be approximated?
2) What is the degree of approximation (i.e. the error rate

that a module can accept w.r.t the reference QoS of the
design) for an approximable module?

3) How much improvement on design metrics (e.g. perfor-
mance) can be achieved by approximating a module?

4) How many modules of the design can be approximated
at the same time?

According to [5], a solution that locates the error-resilience
portion of a design (which identifies the most promising
approximation candidates) should be as automated as possi-
ble. Existing solution are mostly based on developing new
programming languages to provide designers with frameworks
to manually specify approximable data [7] or source code
annotations to determine whether or not a part of the code
is resilient [8], [9]. Moreover, the methods focus on either
algorithmic level [10], [4] or lower levels of abstraction, that
is the Register Transfer Level (RTL) [11] and below [12], [13].

In this paper, a statistical analysis is proposed on the
simulation behavior of a given ESL design in order to detect
which parts of the model are candidates for approximation.
The main contributions of the paper are
• proposing an automated resilience portion detection

method using machine learning techniques to identify
approximable components of a given ESL design,

• translating the simulation behavior of an ESL design into
sets of observation to be used as the input of learning
algorithms,

• performing a significance analysis on the potentially ap-
proximable components by ranking their inputs according
to their contribution to the quality of their outputs, and

• applying the proposed method to several ESL benchmarks
in various domains to evaluate its effectiveness.

II. RELATED WORK

Approximate computing has been applied to the design
of hardware domain modeled at RTL and below such as
arithmetic units [14], data paths [15] or voltage scaling [16].
The leverage of machine learning algorithms to improve the
energy consumption has been introduced in [17], [18] where
the computational parts of the design are replaced with hard-
ware neural networks. However, their application are limited to
some particular designs. Furthermore, the impact of applying
such techniques in order to achieve the desired improvement
is significant at higher levels of abstraction.978-1-5386-7557-1/18/$31.00 c©2018 IEEE
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Fig. 1: The architecture of proposed method.

Several approaches [12], [19], [20] have been introduced
related to classifying program code (or its underlying struc-
tures) as either critical or resilient. They mostly analyze the
sensitivity (the degree of an output’s volatility in relation to
distortions in each variable in a program) based on statistical
techniques [10], [4] in order to specify the approximable
variables at the algorithmic level.

In [10] a statistics-based method is presented to automat-
ically locate approximable structures in a program. First the
variables of the program and the range of values are extracted.
Then, during the “error injecting phase” the value of each
variable is perturbed to measure the effect of the modification
on the output. If the new output lies within the specified
QoS threshold, the variable is marked as approximable. In [4]
the same technique is used to analyze the sensitivity of each
variable in a program. The difference is that it does not
perform a range analysis of variables as it take advantages of
memory bit flips for its error injection phase. Moreover, the
number of program executions in the presence of perturbations
to perform sensitivity analysis is selected using probabilistic
computations while in [10] it is set manually.

However, these methods cannot be applied to hardware
systems easily as they disregard any timing and architectural
information. Moreover, the performance of all methods that
identify local data as the resilient portion of a program
is related to the number of variables and the number of
samples (which corresponds to the required program execu-
tions). Therefore, execution time increases with the amount
of variables, leading to significant issues with larger programs
that rely on local data.

As ESL systems are usually structured using modules that
communicate via signals, analyzing each of these modules
separately with regard to their inputs and outputs should
reduce the overall complexity of the process significantly while
at the same time providing an approximation solution early in
the design process. However, no existing solution supports a
sensitivity analysis on ESL designs in order to detect their
approximable components.

III. PROPOSED METHODOLOGY

As illustrated in Fig. 1, the process of finding resilient parts
of a given ESL design is divided into four phases:

1) data retrieval and storage of the extracted information,
2) training data setup (using the extracted data as the input

of learning phase),
3) predictive model creation for each module of the design

and

4) a data significance analysis on input signals of each mod-
ule which was marked as approximable in the previous
phase.

A. Data Retrieval and Mapping
In order to analyze the simulation behavior of a given Sys-

temC model, the run-time information needs to be extracted.
It includes both static (describing the model’s structure) and
dynamic information (describing its behavior). The former
refers (among other information) to the modules’ names and
the corresponding member functions and attributes (including
input and output variables) while the latter refers to the values
of each module’s variables during simulation time.

The data extraction process is performed by running the
design in debug mode under control of the GNU debugger
(GDB). The execution is controlled by programming GDB to
automatically extract the run-time information of the design.
From the execution trace, a log file is generated including the
design’s structure and simulation behavior. As the piece of
information related to each variable of a module scatters in
the log file, this information is extracted from it and specified
by following definition.

Definition 1: each SystemC design D = {Mi : 1 ≤ i ≤
nm}, where module Mi is a tuple (I, Sin, Sout) and nm is
the number of modules. I is the instance name of the module.
Sin = {sini

|sini
= (ini, Vini

) : 1 ≤ i ≤ nin; Vini
=

vinj |1 ≤ j ≤ k} is a set of input variables, where nin is the
number of inputs and Vini

is a set of values that is assigned
to input variable ini during execution. Sout = {souti |souti =
(outi, Vouti) : 1 ≤ i ≤ nout; Vouti = voutj |1 ≤ j ≤ k} is a
set of output variables, where nout is the number of outputs
and Vouti is a set of values that is assigned to output variable
outi during execution. k is a positive integer indicating the
size of Vini and Vouti .

For a given ESL design we consider two assumptions. First,
the execution trace for each output out of a module can be
defined as a function f : Rn → R that calculates a scalar
output out ∈ R by evaluating out = f(Sin). This assumption
allows it to solve the module’s behavior approximation with
machine learning algorithms that require such a dependency
between the input and output of a system.

Second, the test vectors for each design should provide a
high code (i.e. statement) coverage for all modules of the
design. We believe this assumption is fair as it is common
practice to keep a design’s code coverage monitored and high
to ensure that it works as intended. Thus a design mostly
contains a test bench with a high code coverage provided by
designers either manually or by employing an automated test
generator. Note that a higher coverage of the input signals
generally results in an improved estimation of the modules’
behavior.

B. Training Data Set Creation
The core idea is to use the data that is retrieved from

a simulation run as a training set for a machine learning
algorithm to build a new (estimated) model of each module
present in the design. In order to do this, the first step is to
filter and transfer the required information (from Section III-A)
of each module into a valid training data set. The training
data set includes two elements which are a) one or more
inputs (the predictors) and b) the corresponding output (the
response). Each pair of predictors and response is considered



one observation. The set of input variables of each module
Sin is defined as a set of predictors while each output of
the module (outi, Vouti) from the output variables set Sout

is specified as a response. Formally, the definition w.r.t the
definition 1 is:

Definition2: for each module M a set of training data set

T = {ti | ti = {Sin, (outi, Vouti)} ; 1 ≤ i ≤ nout}
where each training data set t is an (nin + 1)-dimensional
vector and the size of T is equal to the number of output
variables nout.

The learning algorithm accuracy is related to two main
factors: the dimension of the training data set and the features
of each predictor (i.e. the inputs) within the training data
set. While more information is generally beneficial for the
correctness of machine learning results, irrelevant information
may also impact the learning process negatively. This is
especially true for controlling signals if the machine learning
algorithm maps the data to continuous functions. E.g. boolean
inputs or clocks (which can be distinguished from numbers
in high level system designs using their type information) are
often used as controlling signals (such as reset, request, grant,
valid, etc.). They often change the semantics behind the output,
messing up learning methods such as linear regression that rely
on a continuous mapping from inputs to outputs. One example
would be a module with three inputs a, b ∈ R and c ∈ {0, 1}
and the result of the module r being

r =

{
a+ b if c = 1
a · b otherwise (1)

For these cases, the data needs to be split with regard to
c before being processed in order to enable the learning
algorithm to quickly determine the correct relation. Therefore,
Boolean variables are eliminated from the training data set
prior to the learning phase.

For a training data set with more than one predictor (es-
pecially for predictors with very little variance), classifying
the training data set (i.e. splitting it into subsets) based on
this predictor (instead of using it as an input for a regression
analysis) may return more precise results. This predictor
is denoted as a classifier where the number of features is
equal to the number of unique values within its data set. A
predictor’s value is considered as a feature if the amount of
its appearances in the predictor value set is at least equal to
L. L is defined as the minimum amount of observations that a
subset of the training data set must contain after classification
to keep the accuracy of the learning model. Finding the optimal
value of L is challenging as it directly affects how the training
data set is partitioned into subsets and thus contributes to the
overall accuracy of the learning model.

According to [21], this optimal value is usually defined
by some clustering algorithms such as k-means clustering
(clustering observations set in multiple subsets such that
observations within the same subset are as similar as possible
and k is the number of subsets). To determine the optimal value
of L, an adaptation of the elbow method for k-means clustering
is used. The proposed method defines different values for L
from a high value (e.g. 50% of the training data set size) to
a low value (e.g. 5% of the training data set size) to create
different subsets of the training data set. In the next step,
a particular value of L is selected if decreasing more than
this value has no or negligible improvement on the learning

Algorithm 1: Classification
Data: Training data set T and constant L← [50%size(T ) to 5%size(T )]
Result: classifying T based on classifier predictor P

1 foreach predictor P in T do
2 SP ← ∅;
3 foreach value l in L do
4 Sl ← classify(P, T );
5 Stemp ← ∅;
6 foreach subset S in Sl do
7 if length(S) ≤ l then
8 merge(Stemp, S);
9 remove(Sl, S);

10 add(Sl, Stemp);
11 add(SP , Sl);

12 add(St, SP );

model’s accuracy. The original training data set is thus divided
into several subsets (denoted as training subsets), where each
subset is defined by a unique feature of the classifier predictor.
Note that in case that designers have some pre-knowledge
about the design the parameter L can be also set manually
allowing them to control the behavior of the algorithm.

Algorithm 1 shows the classification algorithm on the train-
ing data set T with the constant parameter L which is defined
as the minimum number of observations for each member of
St. All subsets that have less members than L are merged
into a new set Stemp. Note that increasing the number of
classifiers (by decreasing the size limitation L more that %5 of
the training data set) can reduce the number of observations for
each subset. This may decrease the accuracy of the prediction
function for each subset of the training data set, as subsets
with fewer members may provide unreliable information for
the learning algorithm.

Algorithm 2: Finding Predictive Model
Data: Training data set t, constant ng
Result: Predictive model PM and QoSth

1 Function FPM(t) is
2 LPM ← ∅;
3 LQoS ← ∅;
4 toutlier = outlier(t);
5 foreach formula f ∈ [linear, interactions, quadratic] do
6 PMf ← Linear(t, f);
7 PM.add(PMf )← PMf .predictorFnc();
8 LQoS .add(PMf )← PMf .QoS

9 if (length(t) ≤ ng) then
10 foreach Gaussian kernel Gk ∈ [RQ, SqExp, M5, Exp] do
11 PMGk

← Gaussian(t, Gk);
12 PM.add(PMGk

)← PMGk
.predictorFnc();

13 LQoS .add(PMGk
)← PMGk

.QoS

14 else
15 PMtree ← tree(t);
16 PM.add(PMtree)← PMtree.predictorFnc();
17 LQoS .add(PMtree)← PMtree.QoS

18 QoSth ← min(LQoS);
19 PM ← LPM (index(QoSth));
20 return PM,QoSth;

C. Predictive Model Creation
A predictive model is created by determining relations be-

tween one or more predictors and the corresponding response
in the training data set. The core question is whether or not a
predictive model can be found to approximate the behavior of
a module with respect to the QoS of the design. The problem
for a given module is formulated as follows: for each member
ti of the training data set T (based on definition 2), a function



fi : Sin → (outi, Vouti) where 1 ≤ i ≤ nout and the
distribution of the predictors Sin and the function f are both
unknown. The task is then to find a predictive model PM
that describes the underlying data with PMi(Sin) ≈ fi for all
observations in ti with respect to the pre-defined QoS of the
design.

Regression analysis [22] is one possible solution to extract
a predictive model from a set of observations. The PM can
be created with different regression methods depending on the
observation’s properties and the requirements of the resulting
model. Since the distribution of predictors and response is
unknown, two assumptions are possible.
• Either the relation follows a known function and only a

finite set of parameters needs to be estimated, allowing
the predictive function to be estimated using a parametric
regression model such as linear regression,

• or the relation follows an arbitrary function that can be
estimated using a non-parametric regression model such
as a Gaussian Process (GP) or tree regression (decision
tree).

In order to increase the chance of locating a proper model,
the training data set is modified by excluding outliers from
it. An outlier is an observation point in the training data set
that is very different from other observations. The outlier is
often calculated using the distance metric on the value of
response variable [23]. An observation in the training data
set is considered as an outlier if the value of its response
variable is more than K interquartile ranges below the lower
quartile ql or above the upper quartile qu of its response value
set. Therefore, all values vouti out of range [ql −K(qu − ql),
qu + K(qu − ql)] are outlier. We consider the default value
K = 1.5, which can be considered a standard value [23].
The experiment (discussed in section IV) also shows that the
aforementioned value is the most fitting one to calculate the
percentage of outliers in the considered domain.

Algorithm 2 illustrates the method that creates the predictive
model using the training data set t with constant parameter ng
(which is defined as the maximum number of observations for
the GP analysis). It consists of two main steps, first applying
multiple linear and later a GP or tree regression analysis.
The linear regression analysis (Algorithm 2 – Lines 5 to
8) is performed using three different underlying functions:
linear, interactive (which assumes that inputs may not be
completely independent) and quadratic (which consists of
linear, interactive and quadratic terms in the predictors). The
underlying function of quadratic including all aforementioned
terms is f(Sin) = α+ Σnin

i=1βisini + Σnin−1
i=1,j=i+1βijsinisinj +

Σnin
i=1β

′

is
2
ini

where α represents the intercept and β, β′ coef-
ficients. nin is the number of predictors in t. The goal of
learning process is to estimate the intercept and coefficients
of each term in order to minimize the root-mean-square error
(RMSE) between the predicted and true model.

In the second phase, the GP (Algorithm 2 – Lines 9 to 13) or
tree regression analysis (Lines 14 to 17) is performed in case
that the predictors and response are inferred from an unknown
distribution. The GP regression is often able to estimate such a
relationship even with low number of observations. It creates
a predictive model of response based on the idea that for an
arbitrary point c, the observation o with a similar value X
of (vin1i , vin2i , ..., vinni

) in the predictors space Sin have a
high impact on the predictive model f(c). The similarity is

measured using the co-variance distance metric in predictor
space which is defined as K(X, c). The co-variance function
can be calculated using different underlying functions known
as Rational Quadratic (RQ), Squared Exponential (SqExp),
Matern5 and Exponential (Exp) [22]. As the number of
observations increases, the GP analysis becomes slower due
to its computational complexity. Therefore, the method is only
applied to the training data sets that contain less than ng
observations. In this paper we consider ng = 100.

For a training data set that has a large number of observa-
tions, the tree regression analysis is used instead of the GP,
as it comes with a worst case linear complexity. It follows
the decisions on predictors values in the tree from the root
node down to a leaf node. The leaf nodes present the response
values.

The result of the FPM function is the predictive model
that has the best QoS over all regression analyses. In case
of identical QoS results, the simplest model is selected to
replace the computational part of the design. As illustrated
in Fig. 1, (during phase 3) the extracted PM is automatically
translated to a SystemC source code fragment that is used to
replace the computational part of the module. Linear models
are translated to the corresponding equation. Decision trees
are chained if − else if statements. In case of GP models,
for each value of predictors the estimated response is replaced
in if − else if statements. It means that the GP model is
not transferred itself to the design but its responses for the
training data are embedded instead. This allows designers to
anticipate the impact of an approximation and run repeated
runs with the given data, but it cannot be applied to inputs it
was not trained on. If the PM for each module satisfies the
reference QoS (QoSref ) of the design, the module is marked
as approximable and its RMSE is defined as the threshold QoS
(QoSthreshold). It means that the computational part of the
module can be approximated without affecting the QoSref if
the approximated model satisfies its QoSthreshold. Like prior
works [10], [4] we assume that the error estimation module
as well as the QoSref are provided by user.

Algorithm 3: Significance Analysis
Data: Training data set t and predicted model PM
Result: Ranking the significance of each predictor in t

1 foreach predictor P in t do
2 tl ← lower_bound (P, t);
3 tu ← upper_bound (P, t);
4 tl.response← PM (tl);
5 tu.response← PM (tu);
6 RMSEl ← rmse (tl.response, t.response);
7 RMSEu ← rmse (tu.response, t.response);
8 RMSEmean ← mean (RMSEl, RMSEu);
9 Significance_Listt.add (P,RMSEmean);

10 sort(Significance_Listt);

D. Data Significance Analysis
After finding a predictive model that approximates the

behavior of a module, it is important to know which of the
module’s input signals have the largest impact on its output
signals. This can be defined as the significance of each input
signal. Therefore, the goal of this last phase is to specify the
significance of predictors in a module’s training data set.

For predicted models that are based on linear regression
analysis, the coefficients of predictors in the underlying for-
mula of the model are used to rank their significance. A
predictor with greater absolute coefficient values is interpreted
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outliers for each design) on the predictive model’s accuracy.

as having a more significant impact on the response. This way,
the contribution of each input signal on each of its module’s
outputs is calculated.

If the predicted model is instead based on GP or deci-
sion tree regression, the contribution of each predictor is
determined by measuring the RMSE between the response of
the predicted model with and without injecting an error to
the predictor’s values while other predictors stay untouched.
Greater RMSEs indicate a more significant impact on the
response. The error injection step is performed using an
adaptation of the bitflip error model (which is used by several
prior works [12], [9], [10] for sensitivity analysis). The error
for each predictor is calculated based on 5% of the lower
(Algorithm 3 – Lines 2, 4 and 6) and upper (Lines 3, 5 and
7) bound of its original values. This computation is shown in
Algorithm 3.

IV. EXPERIMENTAL EVALUATION

The method is applied to several standard ESL benchmarks
provided by [24] and OSCI [25]. For each benchmark, the
simulation behavior is extracted by AIBA [26] from its run-
time behavior and stored in a log file. The extracted infor-
mation is then automatically translated to a structured model.
This information is parsed to automatically generate a set of
Matlab code fragments (one for each module of the model)
that include three phases; the creation of the training data set,
the creation of predictive models and the significance analysis
on the training data set. Both programs (for parsing the AIBA
output and generating Matlab code) were written in python.
The experimental evaluation is described in two parts. First,
two case studies from image processing domain are illustrated
in detail in Section IV-A. Second, we give a brief discussion
on the obtained experimental results to evaluate the quality of
the proposed method in Section IV-B. To quantify the QoS loss
of each design due to approximation, we consider signal-to-
noise ratio (SNR) for the JPEG-encoder and Sobel designs and
RMSE for all other designs. All analyses have been performed
on a PC equipped with 8 GB RAM and an Intel core i7-
2760QM CPU running at 2.4 GHz.

A. Case Studies
The experimental results for different types of ESL bench-

marks are shown in Table I. The first two columns list the
names and types of the designs, respectively. Column LoC
and #M present the lines of code and the number of modules
in each design, respectively. Column #AM shows the number
of modules that have been detected as candidates to be approx-
imated by the proposed method. Column AMN and OutN list

the names of the approximable modules and their output sig-
nals for each design, respectively. Column PM presents which
type of regression analysis was used as learner algorithm to
evaluate the sensitivity of modules. Column #Obsv shows the
number of observations used in the regression analysis to
estimate the module’s behavior. The Outl column shows the
percentage of outliers in the observation data that was excluded
from the training data set. These values are obtained based
on the formula in Section III-C. To determine the optimal
percentage of outliers for each design, we studied the effect of
different values of K on the accuracy of the estimated model.
As illustrated in Fig. 2, for each design K = 1.5 provides the
most accurate estimate of its true behavior. The Clf column
presents the names of the input variables that are interpreted
as classifiers in the training data set. Column RMSE illustrates
the root-mean-square error between the estimated model and
the original behavior of the module. The PG column shows the
simulation performance gain for the entire design (in percent)
that is obtained by replacing the original computational part
of each module with the predicted model. The execution
duration of the proposed method is reported in columns Run-
time including the execution time for each phase (p1 to p4)
and the total execution time TE of the method. The time
reported in p3 covers all steps in phase 3 including outlier
exclusion, regression analysis and evaluating the replacement
of the original code of design by the predicted model. Column
CET shows the total time of each design’s compilation and
execution without any instrumentation.

In order to evaluate the quality of the proposed method, we
consider the JPEG-encoder and Sobel designs [24] which are
extensively used in image processing domain as compression
and edge detection algorithms, respectively in detail. The
degree of module resilience was evaluated for each design by
specifying two levels of approximation: Mild and Aggressive,
each realized by adjusting the QoS of each design.

1) JPEG-encoder: As shown in Table I, two out of five
modules of the JPEG-encoder design are candidates for
approximation where the behavior of both modules were
estimated by linear regression model. Due to the RMSE, the
quantization module with less RMSE has lower resilience for
approximation than the dct module. The performance gain in
case of approximating quantization is small in comparison to
the dct. This is because the complexity of the computational
part of the quantization is close to the predicted model – which
is linear. In contrast, approximating the dct module provides a
noticeable performance gain. Take e.g. the dct module of the
design. Fig. 3a shows the original image of the JPEG-encoder
design without any modification. Fig. 3b illustrates the Mild
approximation of the model that the computational part of the
dct module was replaced with the linear function

PM(Sin) = 0.1096 ∗ Sin − 14.11 (2)

where 3% of the observations were excluded from its train-
ing data set as outliers. The predicted model is presented
in Fig. 4 including all observations with no outliers being
excluded. For the Mild approximation, the dct_out values out
of range [−100, 100] were considered outliers. Note that for
the excluded observations, we keep the original computational
part of the module. In case of the Aggressive approximation,
the same PM in equation 2 was used, with all observations
including the outliers being estimated by the predicted model.
Fig. 3c shows the corresponding output image.



TABLE I: Experimental Results of all Case Studies
ESL model Description LoC #M #AM AMN OutN PM #Obsv Outl% Clf RMSE PG% Run-time CET(s)

P1(m) P2(s) P3(s) P4(s) TE(m:s)

3-stages pipeline1 Floating point 511 5 3

stage1 sum linear 50

- -

0.01 -1.2

0.3 1.1

5.2 0.1

0:47.6 3.5
diff linear 0.01 -1.2 5.2 0.1

computation stage2 prod linear 50 0.9 -0.9 5.5 0.1
quot linear 1.1 -0.8 5.6 0.1

stage3 powr linear 50 3.14 -2 5.6 0.1

FIR1 Filter 834 4 2 fir result GP 100 2 - 0.6 3 0.3 1.3 6.3 0 0:34.6 4.2fir_data result GP 100 0.6 2.7 6.1 0.6
Interpolation2 4-Stages Filter 587 1 1 filter_interp odata GP 100 1 - 0.13 8.6 2 0.7 6.9 0.5 2:08.1 5.8

RISC-CPU1 Processor 1960 10 3

exec dout linear 250

-

opcode
(1-3)∗–> 0.01 -0.2∗∗

23 3.4

40.8† 0.1∗∗

27:24.9 12.5

(5-6)–> 1.1 0.4 26.2 0.1
(7-14)–> 0.1 -0.4 92.4 0.1

floating fdout linear 150 opcode (1-3)–> 0.01 -0.2 25.7 0.1
(4)–> 0.61 0.2 25.9 0.1

mmxu mmxdout linear 150 opcode (4-7)–> 0.8 0.3 48.4 0.1

Sobel2 Image processing 713 1 1 sobel output_row tree 131072 - - 3.15 23 25 5.4 8.8 0.3 25:14.5 3.3(edge detection) linear 31.65 16 7.2 0.1 25:12.7

JPEG-encoder2 Image processing 1422 5 2
quantization quantization_out linear 131072 1.5 - 0.33 4

35 6.3
19.2 0

35:57.1 17.6(compression) dct dct_out linear 131072 3 2.75 21 16.6 0
- 2.75 33 14.3 0

1OSCI and 2 [24] LoC: Lines of Code #M: number of Modules #AM: number of Approximable Modules AMN: Approximable Module Name OutN: Output Name #Obsv: number of Observations Clf: Classifier P1 to P4:
Phase 1 to Phase 4 TE: Total Execution CET: Compilation and Execution Time ∗opcode range 1 to 3 ∗∗The average value (for PG and P4) over the opcode range †Total run-time of P3 for all opcode in the range

As demonstrated in Table I, the performance gain of the
entire design in the Aggressive approximation is higher than
the Mild approximation as the whole computational part of the
module is replaced with a simple linear model. However, the
quality of the output image of the Aggressive model is lower
than the Mild model. The performance gain is 33%. The SNR
for the former model is 18.43 dB, for the latter 25.55 dB. As
the module only has one input variable, no sensitivity analysis
is performed.

2) Sobel: As illustrated in Table I, the sobel module was
approximated using two different regression models – tree
and linear. The best approximation was obtained using the
tree regression model. This model is considered the Mild
approximation as it keeps the quality of output image up
in comparison to its original result. The result of the tree
regression analysis is presented in Fig. 5b. The SNR (in
comparison to the original output image in Fig. 5a) is 14.8 dB.
Moreover, it improves the design’s performance by 23%.

The Aggressive approximation provides a lower quality of
the output image but requires a higher RMSE threshold for
the module. Fig. 5c illustrates the output image when it
is processed by a linear regression including quadratic and
interaction terms as follows
PM(Sin) = 196.45− 0.63765 ∗ sin1

+ 1.582 ∗ sin2
− 0.59222 ∗ sin3

+ 0.0054967 ∗ sin1 ∗ sin2 + 0.07435 ∗ sin1 ∗ sin3 + 0.040788 ∗ sin2∗

sin3
− 0.036598 ∗ s2in1

− 0.030124 ∗ s2in2
− 0.054513 ∗ s2in3

(3)

where PM(Sin) ≈ output_row and Sin representing the set
of input signals. The SNR – 10.3 dB in this case – shows that
30% of the output quality is lost in comparison to the Mild
approximation.

As the sobel module includes three inputs, we performed a
sensitivity analysis on the predicted model to measure their re-
spective impacts. Since the predicted model is estimated using
linear regression, the absolute value of variables’ coefficient
in the underlying formula is used to rank the inputs. Due to
its larger coefficient, the second input variable of the design
appears to be more important for determining the output’s
value.

B. Integration and Discussion
To demonstrate the generality and scalability of the pro-

posed approach, various further benchmarks are provided in

(a) Original (b) Mild Approx. (c) Agressive Approx.

Fig. 3: Image (a) is the original output of JPEG-encoder
design. (b) and (c) are the output images of approximating the
dct module using a linear regression model with and without
excluding outliers, respectively.

Fig. 4: Predicted model of dct module using linear regression
model of equation 2.

the Table I. Unlike the traditional sensitivity analysis methods
(at the algorithmic level) that only specify the resilience por-
tion of a program, the proposed method provides the designer

(a) Original (b) Mild Approx. (c) Aggressive Approx.

Fig. 5: Image (a) is the original output of Sobel design. (b) and
(c) are the output images where the sobel module is estimated
using tree and linear regression model, respectively.



with more information by answering the questions listed in
Section I. Regarding the first question, the proposed method
can identify the number of modules that can be approximated.
In case of question 2, the RMSE threshold reported in Table I
provides an upper bound error rate for each output of the
design’s modules that are marked as approximable to meet
the QoS of the design. The performance gain presented in
Table I answers the third question of this paper. It provides the
designer with an early estimation on the potential performance
improvement that can be achieved by approximating modules
of a design. The negative performance gain reported in Table I
(e.g. 3-stage pipeline design) shows the complexity of the
estimated model may be higher than the original computational
part of the approximable module. In these cases, modules
can be approximated but the predicted model is not the best
choice. Note that the goal of this research is to evaluate the
resilience of modules of a given design and not to find the best
approximation alternative for the module. However in case that
the predictive model satisfy the reference QoS of the design
as well as potential other design criteria, the model can be
used as an approximation alternative for the module (e.g. sobel
module in the Mild approximation). With decreased simulation
run-time (i.e. gaining performance) for a high level design,
designers still get the valuable results how the design behaves
with an approximated module – allowing them to focus on this
relevant design to inspect for approximation at lower levels.

Experiments concerning the fourth question are not yet
working automatically, currently requiring the designer to
manually find the best combination of approximable modules
for a design to improve the design metrics. It can be considered
an optimization problem that is, however, left for future work.

The performance of the proposed method depends on two
phases: the time that is spent to (1) retrieve the run-time
information of a given ESL design (phase 1) and (2) perform
the regression analyses on the extracted information (phase 2
to 4). As illustrated in Table I the first phase is the major
part of the total execution time. Even for complex designs
such as the JPEG-encoder or the RISC-CPU it is within
reasonable boundaries in comparison with their compilation
and execution time though, allowing it to be used in common
development environments. The improvement in the first phase
has a direct positive effect on total execution time. The
complexity of the regression analysis mostly depends on the
creation of the predictive model, which comes with a (worst
case) quadratic computational complexity (for GP regression).
The fast run-time in phase 3 (order of second) is because
of two main reasons. First, we defined the granularity of
finding approximable portion of a given design by module
in comparison to the traditional sensitivity analysis where
the granularity is variables in a program. Second, we take
advantage of fast learning model of regression analysis that
the predicted model can be estimated in order of second. How-
ever using complex machine learning techniques (e.g. neural
network) may increase the ability of learning phase to find
more approximable module of a design, the time needs for
the training and analysis phases is significantly high. This can
reduce the applicability of the method.

Although our method has some limitations, we believe
this new promising line of research is helpful for making
approximate computing truly a cross-cutting activity in the
early stages of design process.
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VI. CONCLUSION

In this paper, we proposed the first method to automatically
detect the approximable components of ESL designs. The
method is based on statistical analysis on the simulation be-
havior of each design’s module by applying different machine
learning techniques to estimate the relationship between its
output and input signals. We mapped the simulation behavior
of each module onto a training data set and performed different
types of regression analysis on it. For the approximable
module, the QoS threshold provides the designer with an
estimation on output quality of the module in order to meet
the reference QoS of the design. Moreover, a data significance
analysis was performed to rank the importance of input signals
for each output of the module. Several ESL benchmarks were
run to evaluate the effectiveness of the proposed method.
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