SAT-based Exact Synthesis of Ternary Reversible
Circuits using a Functionally Complete Gate Library

Abhoy Kole *, Kamalika Datta?, Indranil Sengupta *' Rolf Drechsler 3
*Department of Computer Science and Engineering, JIS University, India
TDepartment of Computer Science and Engineering, Indian Institute of Technology Kharagpur, India
fGerman Research Centre for Artificial Intelligence (DFKI), Bremen, Germany
SInstitute of Computer Science, University of Bremen, Bremen, Germany
Email: abhoy.kole @jisuniversity.ac.in, kamalika.datta@dfki.de, indranil.sengupta@jisuniversity.ac.in, drechsler@uni-bremen.de

Abstract—The problem of synthesis and optimization of re-
versible and quantum circuits have drawn the attention of
researchers for the last two decades due to increasing interest
in quantum computing. Although lot of works have been done
on the synthesis of binary reversible circuits, very less works
have been reported on the synthesis of ternary reversible circuits.
Ternary circuits have lower cost of implementation as compared
to their binary counterparts. However, the synthesis approaches
that exist for ternary reversible circuits either use too many
circuit lines (qutrits) or too many gates. Only one prior work
has discussed the problem of generating cost-optimal ternary
reversible circuits, but for a very restrictive gate library, which
limits the approach to a specific subset of ternary reversible
functions and often the solution becomes sub-optimal due to
the imposed restrictions. The present paper overcomes that
restriction, and uses multiple control ternary Toffoli gates with all
possible ternary target operations as the gate library. This gate
library is functionally complete and can be used to synthesize any
arbitrary function. The proposed SAT-based synthesis approach
provides low cost solutions in terms of the number of gates for
any arbitrary ternary reversible function. Experimental results
on various randomly generated permutations as well as standard
ternary benchmarks establish this claim. The results can be used
as template for other synthesis approaches by observing how far
they deviate from the optimal solutions.

Index Terms—Ternary reversible circuit, SAT, exact synthesis

I. INTRODUCTION

Over the last few decades there has been an increase in
interest towards quantum computing research, more so with
the emergence of prototype quantum computing machines [1].
As possible alternatives to classical CMOS, technologies like
quantum-dot cellular automata (QCA) has also been explored
for designing low-power high-speed digital circuits [2]. The
availability of quantum computers is expected to solve cer-
tain computationally hard problems in polynomial time like
integer factorization [3], database search [4], etc. With such
motivations researchers have explored the problem of quantum
circuit synthesis from different perspectives. A quantum circuit
essentially consists of a number of elementary gate operations
that are applied on quantum bits or qubits in sequence. In
binary quantum circuits, a qubit can exist in two basis states,
say |0) and |1), and also in states that are superposition of
the basis states. In ternary quantum circuits, the basic unit

of information is called a qutrit, which has three basis states
|0), |1) and |2) respectively, and can also exist in a state of
superposition. The information content per qutrit is more than
that of a qubit, and the realization of logic functions requires
63% less number of qutrits as compared to qubits [5].

The synthesis of Boolean functions using binary reversible
logic has been a well-studied topic. However, synthesis using
ternary reversible logic has received much less attention in the
literature. Recently, a few reversible synthesis methods have
been proposed to obtain the ternary circuit realization for a
given function [6]-[15]. However, most of these approaches
produce sub-optimal quantum circuit realizations, and as such
it is difficult to assess the quality of the solutions. Exact syn-
thesis approaches are important in this regard that guarantee
optimal solutions, and provide a benchmark against which
other synthesis approaches can be compared. They can also be
used for template-based or local optimizations for a given gate
netlist of large functions. However, such approaches come with
the overhead of exploring the entire search space, very time
consuming and therefore can be applied only to very small
functions. Only one prior work exists for the exact synthesis of
ternary reversible logic that uses a restrictive gate library [11].
Due to the restriction, the gate library cannot be used to realize
all ternary functions.

Various exact synthesis approaches have been proposed in
the literature for binary reversible logic [16]-[19]. Many of
these works model the problem of synthesis as a Boolean
satisfiability (SAT) problem, and use a SAT solver to generate
the solution. The main idea of SAT is to determine whether
there exists some assignment of variables that satisfies a given
Boolean formula. In [11], Kole et al. for the first time presented
two exact synthesis methods for ternary reversible functions,
using a level-constrained A* heuristic search and a SAT-based
method, respectively. In the first approach, heuristic search is
used to find a solution, where the circuit depth is increased
progressively. In the SAT-based approach, the authors use a
SAT formulation that realizes a given function F, using d
number of Ternary Multiple Control Toffoli (TMCT) gates.
To obtain minimal gate realization, the search starts with the
initial value of d = 1, and d is incremented by one at every

step until the specification becomes satisfiable. However, this
method is restrictive in the sense that a gate library with only
ternary +1 shift operation as the target has been used, which
is not functionally complete and cannot realize any arbitrary
function. However, if we also incorporate the other four target
operations +2, 01, 02, and 12, the method will become more
general and any ternary function can be realized. This is the
specific objective of the present paper.

In this paper, we present a synthesis approach for ternary
reversible functions, with the following contributions.

a) An exact algorithm for the synthesis of ternary re-
versible functions has been presented, which generates
minimum-gate realizations.

b) The target gate library consists of TMCT gates with
all five possible target operations, which is functionally
complete.

c¢) The synthesis problem has been mathematically ex-
pressed as a Boolean satisfiability problem, and the
solution obtained using a SAT solver.

The rest of the paper is organized as follows. Section II
presents a review of ternary reversible circuits and the Boolean
satisfiability problem. Section III discusses the proposed ex-
act synthesis approach, the SAT formulation along with all
the constraints, and also the overall algorithm for synthesis.
Section IV discusses the experimental results on some ternary
benchmark circuits, and section V concludes the paper.

II. PRELIMINARIES

In this section, we briefly discuss ternary reversible gates,
the various inversion operations that can be used in the target,
and also explain the Boolean satisfiability problem. We also
discuss various existing ternary reversible synthesis works.

A. Ternary Reversible Operations

The basic unit of information in three-valued or ternary
quantum system is called a qutrit. The information content
per qutrit is more than that of a qubit in conventional binary
quantum system, and the realization of logic functions requires
63% less number of qutrits as compared to qubits [5]. An n-
input ternary reversible logic gate realizes an n X n bijective
function, and generates a unique n-digit output vector for every
unique n-digit input vector.

A ternary reversible operator whenever acts on a qutrit,
the state of the qutrit gets modified according to one of the
six ternary inversion operations that are depicted in Table I
Here the notation Z(t) is used to indicate a ternary reversible
operation Z acting on a qutrit ¢. The operation Z is classified
into three categories, I, +x and xy where [represents the
identity operation; +z (for x = 1 and x = 2) performs
modulo-3 addition of x with the current state of the circuit
line; and zy (for z,y € {0,1,2} and x # y) changes the state
of the circuit line from x to y, or from y to x. The inversion
operation is defined in the following way.

TABLE I: Ternary Z inversion operations

Z(t)
t [T F1 F2 12 01 02
0 0 1 2 0 1 2
1 1 2 0 2 0 1
212 0o 1 1 2 o0

Definition 1. A ternary inversion operation Z(t)s on a qutrit
t performs the following state transformations

Z(t)r = (t+0)mod3
Z(t)41 = (t+1)mod3
Z(t)y2 = (t+2)mod3
Z(t)12 = (2t+0) mod3
ZWo = (2t+1)mod3
Z(t)o2 = (2t+2) mod 3. (1)

where § € {I,+1,+42,12,01,02}.

B. Ternary Reversible Gates

Ternary reversible circuits consists of a cascade of ternary
reversible gates. In a ternary reversible circuit, every circuit
line can exist in one of three states, 0, 1 or 2. For synthesizing
any arbitrary ternary function, various ternary reversible gates
like NOT, Feynman, Toffoli, Fredkin, etc. have been used by
researchers [20]-[23].

o A Ternary Toffoli gate, denoted as T'(c1,c2;t), has one
target line ¢ and two control lines ¢; and co. When both ¢q
and ¢, are in state 2, the target line changes to t' = Z(t);
otherwise, ¢’ = t. The states of the control lines ¢; and
co do not change.

o A Ternary Controlled-Z(t) gate, denoted as T : (¢;t),
has one target line ¢ and one control line c. When control
line ¢ is in state 2, the target line changes to t' = Z(¢t);
otherwise, t' = t. The state of the control lines ¢ does
not change.

o A Ternary Z(t) gate, is a single-qutrit gate T : (¢), which
always changes the state of the target to t' = Z(¢).

Depending on the type of inversion operation considered
for a ternary reversible gate, the state transformation of target
qutrit also varies. In graphical representation of these gates,
the inversion type is specified inside a rectangular box to in-
dicate the applied inversion operation. The following example
illustrate one of such ternary reversible gate operation with
corresponding graphical representation.

Example 1. Fig. I shows the schematic diagram and truth
table of a 2-control ternary Toffoli gate T, ({11, I2}; I3) that
performs the +1 inversion operation on I3 when both 1, and
I are in state 2.

In the context of the present work, for synthesis we consider
ternary multiple control Toffoli (TMCT) gates, i.e. Toffoli
gates with arbitrary number of inputs, with the target capable
of carrying out one of the six Z operations when activated.
A TMCT gate with no control line, one control line, and

I I 13101 Oy O3

_ 00 X|0 0 X

Iy O1=1 01 X|0o 1 X
02 X0 2 X

I> ? Oz = I 10X[1 0 X
11 X1 1 X

Ig{—l—l%Og,where 1 2 X|1 2 X
2 0 X2 0 X

O3 =(I3+1)mod3, 2 1X[2 1 X
ifl, =1, =2 2202 2 1
2 2 1|2 2 2

2 2 202 2 0

(a)

~
=
=

Fig. 1: Ternary Toffoli gate: (a) Schematic diagram, (b) Truth table
where X € {0,1,2}.

two control lines (i.e. |C| = 0,1 and 2) respectively are
also referred to as ternary NOT, ternary Feynman and ternary
Toffoli gate, respectively.

C. Boolean Satisfiability Problem

Let f(x1,x2,...,2,) denote an n-variable Boolean func-
tion. The Boolean satisfiability problem (SAT problem) is to
determine whether there exists an assignment to the variables
T1,%2,...,Ty, such that f evaluates to true, or to prove that
such an assignment does not exists. The given function is
often represented in conjunctive normal form (CNF). A CNF
is a conjunction of a set of disjunctions or clauses where
each clause is a set of literals. The literals in the clauses
can be either Boolean variables or their negations. The CNF
expression is satisfiable (true) if and only if every clause is
satisfiable.

Example 2. Consider a Boolean function in CNF representa-
tion as f = (x1 + x3)(T2 + x3 + T4)(x2 + T3). There are 7
literals and 3 clauses in the CNF (corresponding to the three
product terms). One possible assignment of the variables that
results in f to be true is x1 =1, xo =1, and x4 = 0.

SAT is one of the first-known NP-complete problems [24].
However, a number of very efficient SAT solvers exist that
are capable of handling large number of variables subject to
various constraints. This also make use of Boolean constraint
propagation and efficient learning approaches to speed up
the inference process [25]. In addition to traditional theorem
proving, SAT solvers have been used by researchers in vari-
ous applications like classical and reversible logic synthesis,
automatic test pattern generation, etc.

Typically, SAT solvers operate on the CNF representation of
a given function. The solver produces the output as satisfiable
or unsatisfiable depending on the input function. If the CNF
expression is satisfiable, then it also produces a satisfying
assignment to the variables.

Example 3. Consider the pair of CNF expressions fi =
(x1+x2)(T1+T2) and fo = (x1)(T1). If we run the SAT solver
by passing the function f1 as input, it will produce a satisfiable
assignment, either x1 = 1,20 = 0, or x1 = 0,20 = 1.

However, for the function fs, the solver will declare the
function as unsatisfiable.

Some research has been carried out on ternary reversible
logic synthesis in recent years [26], [27]. Synthesis of ternary
reversible functions to elementary quantum gate libraries are
typically carried out in two steps, ternary reversible synthesis
followed by elementary quantum gate decomposition. Various
approaches exist to synthesize ternary reversible logic circuits,
viz. group theory based approach [6], [13], exact synthesis
approach [11], ternary max-min projection approach [28],
ternary Galois field sum-of-products expression (TGFSOP)
approach [5], transformation based approach [21], [29], and
other kind of approaches [14], [15]. From the generated
netlist of ternary reversible gates, each gate is decomposed
into ternary elementary gates like Muthukrishnan-Stroud (M-
S) Gate and Ternary Shift Gate, which can be realized using
technologies like ion-trap [30].

In [6] Rani et al. showed how to synthesize any Boolean
functions into cascade of ternary reversible gates. They have
generated 3-cycles from the permutations and then synthesized
each of these cycles into ternary reversible gates. Some
group theoretic based approaches like [6], [13] have used
various rules to synthesize 3-cycles and 2-cycles into cascade
of ternary reversible gates. Although these methods seems
straightforward to implement but results in huge number of
gates in the final netlist. In [14] Monfared et al. proposed a
Quantum Ternary Multiplication Gate (QTMG), and showed
the design of 1-qutrit and 2-qutrit multiplier circuits. Peres
type Ternary Toffoli gate is introduced in [15], where after
synthesis they used Barenco-like decomposition for various
cases. In [29] Miller et al. used transformation based synthesis
for 3-valued reversible functions. They have synthesized a
given function using two methods, one in descending order and
another in ascending with respect to the inputs. Although this
method provides a way to synthesize any arbitrary Boolean
function but the solutions generated might not be close to
optimal.

In this paper we focus on a exact SAT-based ternary re-
versible logic synthesis approach considering multiple control
ternary Toffoli gates with all possible ternary target operations.

III. SAT BASED EXACT SYNTHESIS OF TERNARY
REVERSIBLE CIRCUITS

There exists some earlier works where SAT-based tech-
niques have been used for the exact synthesis and test pattern
generation of binary reversible circuits [17], [31]. In this paper,
we present a functionally complete SAT-based approach for
the exact synthesis of ternary reversible circuits. We consider
TMCT gates as the technology library with all the five possible
Z inversion operations +1, +2, 01, 02 and 12 as listed in
Table I. Since the identity operation I does not change the
state of the target line, we do not consider it in the formulation.

The synthesis problem concerns the identification of the
set of d TMCT gates that realizes a given ternary function
f, where d denotes the depth of the circuit. The process is

iterative, where we start with d = 1 and progressively increase
the value of d by 1. We stop when either a solution is obtained,
some maximum value of d is reached, or the time budget
runs out. The SAT formulation for the synthesis problem is
discussed in the following subsections.

A. SAT Formulation

For a ternary reversible function f, we construct the SAT
formulation in terms of a Boolean function Sy that is sat-
isfiable iff there exists a TMCT gate sequence of size d
that realizes f. We discuss the various constraints in the
formulation below.

1) Representing the chosen TMCT gate: Let n denote the
number of lines in the ternary circuit, and d the number of
TMCT gates (numbered O to d — 1). The chosen TMCT gate
at depth k, where 0 < k < d — 1, can be expressed as:

tk = (tlFlog2 n] "7 tlf)? (2)
= ey). 3)

For n lines, the position of the target is specified by the bit-
vector t* of size [log,n] bits. Control connections can exist
in any of the remaining n—1 lines, as specified by the (n—1)-
bit vector c. If ([t*]y + 1) mod n is a control line, we set
cf = 1; otherwise, we set cf =0.

Example 4. Fig. 2 shows the representation of a TMCT gate,
To01({0,1},3) at depth k for a 4-qutrit ternary reversible
circuit. The bit-vector for target of the TMCT gate on qutrit 3
will be t* = (11). Similarly, the controls can be represented
by a bit-vector c* = (011), since ([tk]a+1) mod n forl = 1,2
and n = 4 indicate control qutrits 0((3 + 1) mod 4) and 1
respectively.

qo —e—
q1r —e— ; k_
q2 —— Ck"

Fig. 2: An example gate representation.

(11)
(011)

2) Encoding of target operation: The set of five possible
target operations (except the identity mapping I) and their
binary encoding used in the formulation are shown in Table II.
Three bits are required to encode one of the five target
operations.

The bit-vector for the target operation of a gate at depth k,
where 0 < k < d — 1 is defined as

o = (okokok).

“4)

Example 5. Consider again the TMCT gate, Ty1({0,1},3)
shown in Fig. 2. According to the binary encoding presented
in Table II, the target operation 01 is expressed by the bit-
vector of = (010).

TABLE II: Encoding of target operations

Operation Binary Code Decimal Equivalent
+1 000 0
+2 001 1
01 010 2
02 011 3
12 100 4

3) Exclusion constraints for target operation: The exclu-
sion constraint ensures that an illegal target operation at depth
k(0 < k < d—1) must not be assigned to o¥. Since there are
only five basic operations, the constraint can be written as:

d—1

/\ [Ok}g < 5.

k=0

(&)

Example 6. During synthesis, an assignment like o* = (110)
for k-th gate operation should not be considered, since the
operation [110]2 = 6 violets the constraint (5).

4) Input-output constraints: The input-output constraints
set the input and output pairs of each line of the truth table as
specified by the reversible function f. For specifying these
constraints, we first state how the ternary logic values on
the circuit lines are encoded in binary. Each ternary state is
encoded in two bits (x,y) as shown in Table III.

TABLE III: Encoding of ternary states

Ternary | Binary Encoding
State T Y
0 0 0
1 0 1
2 1 0

The input/output constraints for an n-input ternary refersible
function can be written as:

3"—1n-1

AN

i=0 j=0

x; = iljlmss Ayg; = iljlLse A

ol = @) [ilmss Ayl = F(@)[ilLss. (6)

where ; (y3;) is assigned to 0 or 1 according to the MSB
(LSB) of the i" row and ;" column of the ternary truth table
. d d . . .

input, whereas x7; (y;;) is assigned to 0 or 1 according to the
it" row and j*" column of the ternary truth table output.

Example 7. The encoding for a 2-input ternary function
(n = 2) is illustrated in Table IV. The ternary truth table is
shown in Table IV(a), and the corresponding binary encoding
obtained after Boolean transformation in Table 1V(b). For
circuit depth d = 3 and truth-table row i = 5, the input/output
constraint (7) is added.

(230 =0A Y9 =1) A (28 =1Ayg, =0)

0
L5
A3 =1Nyh =0) A (23, =0Ay3, =0). @)

TABLE IV: Example encoding of ternary reversible function f: (a)
Ternary truth table, (b) Binary encoding.

(a) Ternary Function f

7 7j=0 4=1]|453=0 j5=1
0 0 0 1 0
1 0 1 2 1
2 0 2 1 1
3 1 0 2 2
4 1 1 0 1
5 1 2 2 0
6 2 0 0 0
7 2 1 0 1
8 2 2 0 2
(b) Function f After Encoding
1|l g=0 g57=115=0 j5=1
r ylxz ylle ylx y
0Offo0 0|0 OO0 1|0 O
110 0|0 1 1 010 1
2110 01 OO0 1]0 1
3440 1]0 Off1 Of1 O
410 1]0 10 00 1
50 11 Off1 0|0 O
6(1 0|0 OO0 O|O0O O
711 0|0 1|0 0|0 1
8|1 01 OO0 O]1 O

5) Functional constraints: The functional constraints spec-
ify the way the line values are updated across levels as a result
of the gate computations Atdepth k£ (0 < k < d), for input

line states (z¥, yl %) and gate operation T'(c¥, t*, o*), the output
k+1

lines (x;"", yl) are computed as (see Fig. 3).
3"—1d—1
AN [l =T b i, ob)]
i=0 k=0
A [yt = Ty(af, uf, e 85,05 (8)

where the functions 77, () and Ty () together realize the opera-
tion of a ternary reversible gate T(c*,t*, o").

_ 1.1 - 2 2 __
_ 0.0 ' ! TooYoo' "' TooYoo!' "' 3 3 _
00 = zgoYgo T ; - [ZooYoo = 01

| |
I ! I | I !
I ! 2k yl I ! z y2 I !

_ 0,0 ' ToaYo1 1 XoiYoi. ' 3 3 _
00 = zo1yo1 [[1 Zo1Yo1 = 00
0.0 ‘jf‘ 35109%0‘ ! 95101/%0‘ ' 3 .3
00 = zioyio T T T xToYio = 10
| [| [| |
| | T yl | | T y2 | |
_ .0 .0 ! 11Y11 1 o L11Y11 0 '3 3
01 = zy1y11 i T 1 211y = 01
L adodor s ot
_,0.0 80Ys80 80Ys0 233 —
10 = zgoYso X i T T8oYso = 00

| |
I ! I | I !
I ! 1,11 ! 2 2 !
_ 0,0 ' Tg1Ysir v Tg1Ysir ' 3
10 = zg1ys81 1 ! 5581981 =10

Fig. 3: Symbolic conventions during gate computations.

Example 8. Consider the TMCT gate T(c*,t*, 0) as shown
in Fig. 4a operates at depth k with control lmes ck = (011),
target line t* = (11) and operation o* = (010). The
functions Ty (x¥, yF, c* t* o), and T,(zF,yF, ¥ t*, oF) add
the constraint (9) for each truth table entry i to implement
the state change of the target qutrit as shown in Fig. 4b when
control lines 0 and 1 are assigned to 2.

(11) (011) (010)
—
k+1 _ k k+1 _ K
(20 = 2%) A (vio Yio)
E+1 _ k k+1 k
A (e =ai) Ayt = i)
k+1 _ kK k+1 k
A (%‘2 = %2) A (.%2 = in)
k+1 _ k
A (st =)
k+1 _ Tk
A (yi3+ = f y13 A sz A yzO A le A yzl) (9)
k. k k+1 k41
TioY%io Y Tio Yo
k k k k| gkl k4l
ok - A b b [0
k+1 k41
meysz - x7,2+ yzz+ 0 1 0 0
1 0 1 0
k k k+1 k+1
Zi3Y;53 101r x5 "yg 1 1 X X
(a) To1 (b) z13y13 — z’f;rlyf;rl

Fig. 4: An example of gate computation.

6) Exclusion constraints for illegal assignments: These
constraints ensure that illegal assignments for target t* are
excluded, i.e. t* never exceeds the number of circuit lines 7,
and can be specified as:

d—1

/\ [tk]g <n.

k=0

(10)

Example 9. During synthesis of a reversible ternary circuit
comprising n =9 lines, the target line is represented by a 4-
bit vector; i.e. t* = (tytstot1). An assignment like t* = (1101)
leads to line [1101])y = 13 that does not refer to a valid circuit
line and must be excluded.

B. The Overall Algorithm

Based on the SAT formulation as discussed above, the
procedure for exact synthesis of a ternary reversible function
is presented as Algorithm 1. The inputs to the algorithm are
the truth table of the ternary reversible function f, and the
maximum depth of realization d,,,,,. As mentioned earlier, the
SAT solver is invoked several times, starting with the circuit
depth d initialized to 1, which is incremented by 1 at every
step. The process is repeated until a solution is found or the
maximum preset value of d,,q, is reached. Any satisfiable
solution to the given CNF for the smallest value of d gives the
circuit realization with minimum cost. The process terminates

if no solution is obtained within d,,,,, or the time budget
expires.

Algorithm 1: Exact Synthesis of Ternary Reversible Function

Input: a) Given ternary function f
b) Maximum depth of realization dpqx

QOutput: TMCT gate realization of f

begin
status = failure;
d=1;
while (status = failure and d < d;,q.) do
Sa = GenerateCNF (f, d);
status = SAT_Solver (Sq);
if (status = success) then
assign = ExtractAssignment();
G = GenerateNetlist (assign);
return (G);
else
d=d+1,
endif
end while
return (NULL);
end

/I Solution not found

In the algorithm, the function GenerateCNF (f, d) generates
the CNF corresponding to a given function f and specified
circuit depth d, which is fed to the SAT solver using the func-
tion SAT_Solver(). If the SAT solver is able to find a solution
within depth d, it returns the status success along with the
corresponding variable assignment; otherwise, it returns the
status failure. If the status returned is success, then the function
ExtractAssignment() is called to get the variable assignments
provided by the SAT solver, which is used by the function
GenerateNetlist() to obtain the final gate netlist. The value of
circuit depth d is initialized to 1, and is increased by 1 across
iterations. If the value of d exceeds some preset threshold
dmaz and no solution is found, the algorithm terminates by
returning a NULL netlist that indicates no solution has been
found.

The proposed SAT approach is better than the previously
devised SAT approach [11] in two ways. Firstly, the consider-
ation of +2, 12, 01 and 02 target operations in addition to +1
minimizes the number of gates in realized circuit for certain
ternary reversible functions as illustrated by the following
example.

Example 10. The realization of the permutation F =
(5,3,8,6,7,2,0,1,4) using SAT approach [11] requires 6 2-
qutrit gates, whereas it requires only 4 2-qutrit gates using
the proposed approach as shown in Fig 5.

Secondly, the proposed approach can also realize certain
permutations that are not synthesizable using earlier SAT
approach [11] as illustrated in the following example.

Example 11. For permutation F = (7,4,3,1,2,0,5,8,6), the
SAT based approach of [11] is unable to provide any solution,

1+2]

(a) (b)

Fig. 5: Realizing F' = (5,3,8,6,7,2,0,1,4) using (a) SAT ap-
proach presented in [11], (b) Proposed approach.

whereas the proposed approach gives the realization as shown

in Fig 6.

Fig. 6: Realizing F' = (7,4,3,1,2,0,5,8,6) using proposed ap-
proach.

A detail analysis of the proposed synthesis approach is
presented in the following section.

IV. EXPERIMENTAL RESULTS

The proposed synthesis approach has been implemented
in C++ and the experiments run on a core-i3 machine with
2.4GHz clock and 4GB memory. We have used the MiniSAT
SAT solver [25] for obtaining solutions to the SAT formulation
problem as discussed in the previous section. In order to
evaluate the effectiveness of the proposed approach, we have
conducted two sets of experiments where the algorithm is
executed by setting the threshold d,,,, = 100, and maximum
runtime of 32 hours.

A. Synthesis Results for Randomly Generated Benchmarks

In our first set of experiments we have generated a random
set of permutations, and run both the synthesis approaches
(viz. the approach presented in [11], and the proposed ap-
proach). The synthesis results are presented in Table V. In
the table, the first column shows the names of the random
permutations, and the second column gives the number of
qutrits (n) required to realize the permutations. In the next
three columns, the synthesis results in terms of the number
of TMCT gates ((G), Muthukrishnan-Stroud (M-S) gate count
(Cost) and run-time in seconds (7ime) respectively, obtained
using the approach [11] are given. The corresponding values
for the proposed approach are presented in the next three
columns. The final column shows the % improvement in Cost
that is achieved by the proposed approach over [11].

For all these permutations, the proposed approach is able
to generate the corresponding netlists, whereas the previous
approach [11] either provides solutions with more number of
gates or is unable to provide any solution.

B. Synthesis Results for Standard Benchmarks

For another set of ternary benchmarks, the synthesis results
are presented in Table VI. In the table, the names of the
benchmarks are shown in the first column, with the second

TABLE V: Comparative study of SAT-based approaches.

Approach [11] Proposed Approach || Improv.
Name n G [Cost [Time || G [Cost [Time (%)
p-2-3-1 | 2 [] 12 12 1.43 2 2 0.02 83.4
p-2-3-2 | 2 4 4 0.02 2 2 0.01 50.0
p-2-4-1 | 2 4 4 0.01 3 3 0.05 25.0
p-2-4-2 | 2 - - - 3 3 0.03 -
p-2-5-1 | 2 - - - 3 3 0.03 -
p-2-5-2 | 2 5 5 0.02 3 3 0.04 40.0
p-2-6-1 | 2 8 8 0.11 5 5 0.12 37.5
p-2-6-2 | 2 - - - 5 5 0.15 -
p-3-3-1 | 3 4 4 0.06 3 3 0.19 25.0
p-3-32 | 3 - - - 3 3 0.18 -
p-34-1 | 3 6 6 0.19 4 4 0.40 33.3
p-3-42 | 3 - - - 3 7 0.19 -
p-3-5-1 | 3 6 6 0.21 5 5 0.77 16.7
p-3-52 | 3 - - - 5 13 1.44 -
p-3-6-1 | 3 - - - 4 4 0.36 -
p-3-62 | 3 7 15 0.28 4 8 0.36 46.7
p-4-3-1 | 4 - - - 3 11 0.83 -
p-4-32 | 4 4 16 0.33 3 11 1.13 31.3
p-4-4-1 | 4 5 21 0.83 4 16 2.12 23.8
p-4-4-2 | 4 - - - 4 20 2.16 -
p-4-5-1 | 4 6 26 1.04 5 17 5.53 34.6
p-4-5-2 | 4 - - - 5 17 8.59 -
p-4-6-1 | 4 - - - 6 22 6.59 -
p-4-6-2 | 4 9 13 | 12.19 6 10 | 14.60 23.1

column showing the number of circuit lines (i.e. qutrits). The
next three columns show the number of M-S gates required
for realization using the approaches reported in [9], [32]
and our proposed SAT-based approach, respectively. The %
improvements of the proposed approach over the best known
existing approach are shown in the next column. The last
column gives the runtime of the proposed method in seconds.
In the best case, 62.5% reduction in M-S gate count has
been found. On an average, 37% improvement in M-S gate
count has been observed in the proposed synthesis approach
as compared to [9].

It may be noted that the proposed approach is guaranteed to
provide a minimum-gate solution with respect to the extended
ternary gate library, since we use a SAT-solver to look for a
solution by progressively increasing the value of circuit depth
d. The smallest value of d for which a solution is found
gives the optimal solution. Also, we are able to synthesize
any given ternary function within the specified time budget,
as the method uses a functionally complete gate library. The
execution time increases rapidly due to the increase in number
of qutrits and value of d. For example, the realization of 4-
qutrit benchmark Mul2 is obtained for d = 7 and M-S gate
count 11 as shown in Fig. 7, whereas the realization of 4-qutrit
benchmark sum4 has much higher run-time due to higher value
of d, i.e. d and M-S gate count both are 9 that can be verified
from Table VI.

V. CONCLUSION

In this paper, a SAT-based approach for the exact synthesis
of ternary reversible circuits has been presented. The method
uses a functionally complete gate library as compared to

v {722 G,
o) 1]

P: t +1 +—— garbage
Q: +2 12 »—— garbage

Fig. 7: Netlist realizing the benchmark Mul2.

TABLE VI: Comparative study for ternary benchmarks [33].

M-S Gate Count Reduction Time
Benchmark | n || [9] [[32] [SAT | (%) (sec.)
sum?2 2 4 5 3 25.00 0.13
sqsum?2 3 15 10 5 50.00 2.74
avg2 3 11 15 9 18.18 3.71
sum3 3 8 10 6 25.00 14.49
prod2 3 12 20 6 50.00 18.85
sqsum3 4 36 15 6 60.00 74.15
Mul2 4 13 25 11 15.38 255.74
tfadd 4 26 55 21 19.23 3089.20
sum4 4 12 15 9 25.00 34831.71
prod3 4 24 65 9 62.50 95923.70
avg3 4 38 40 17 55.26 | 115148.56

a previous SAT-based approach that used a restrictive gate
library, and is therefore capable of handling a much wider
range of functions. In this approach we have used ternary
multiple control Toffoli (TMCT) gates, with all five possible
Z inversion operations +1, +2, 01, 02 and 12. Results have
been reported for various random ternary permutations as well
as ternary benchmark functions. We have also compared the
results with two previous approaches available in the liter-
ature. The method generates optimal solution for the various
benchmarks, however, as expected it incurs large run times for
some of the benchmarks. This method can serve as a template
to assess the quality of solutions generated by other synthesis
methods, and also for local optimization methods (e.g. window
optimization).

REFERENCES

[1] IBM Q. https://www.research.ibm.com/ibm-q. [Accessed: 2019-03-20].

[2] G. Cocorullo, P. Corsonello, F. Frustaci, and S. Perri. Design of efficient
BCD adders in quantum-dot cellular automata. [EEE Transactions on
CAS-1I: Express Briefs, 64(5):575-579, 2017.

[3] L.K. Grover. A fast quantum mechanical algorithm for database search.
In Proc. ACM Symp. on Theory of Computing, pages 212-219, Jul 1996.

[4] P. W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In Proc. Symp. on Foundations of Computer Science,
pages 124—134, Nov 1994.

[5] M. H. A. Khan, M. A. Perkowski, M. R. Khan, and P. Kerntopf.
Ternary GFSOP minimization using Kronecker decision diagrams and
their synthesis with quantum cascades. Journal of Multi Valued Logic
and Soft Computing, 11:567-602, 2005.

[6] P. M. N. Rani, A. Kole, K. Datta, and A. Chakrabarty. Realization of
ternary reversible circuits using improved gate library. In Proc. Intl.
Conference on Advances in Computing & Communications, pages 153—
160, Cochin, India, September 2016.

[71 M. Khan and J. E. Rice. Ternary Max-Min algebra for representation
of reversible logic functions. In Proc. Intl. Symposium on Circuits and
Systems (ISCAS), pages 1670-1673, Montreal, Canada, May 2016.

[8] M. Haghparast, R. Wille, and A. T. Monfared. Towards quantum re-
versible ternary coded decimal adder. Quantum Information Processing,
16(11):284/1-25, November 2017.

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

S. Basu, S. B. Mandal, A. Chakrabarti, S. Sur-Kolay, and A. K.
Choudhury. An efficient synthesis method for ternary reversible logic.
In Proc. Intl. Symposium on Circuits and Systems (ISCAS), pages 2306—
2309, May 2016.

A. T. Monfared and M. Haghparast. Design of new quantum/reversible
ternary subtractor circuits. Journal of Circuits, Systems and Computers,
25(02):1650014:1-8, 2016.

A. Kole, P. M. N. Rani, K. Datta, I. Sengupta, and R. Drechsler. Exact
synthesis of ternary reversible functions using ternary toffoli gates. In
Proc. 47th Intl. Symposium on Multiple-Valued Logic (ISMVL), pages
179-184, Novi Sad, Serbia, May 2017.

P. M. N. Rani, A. Kole, and K. Datta. A ternary decision diagram
(TDD)-based synthesis approach for ternary logic circuits. Journal of
The Institution of Engineers (India), Series B, 100(4):295-307, 2019.
P. M. N. Rani and K. Datta. Improved ternary reversible logic synthesis
using group theoretic approach. Journal of Circuits, Systems and
Computers, 29(12):2050192:1-2050192:24, 2020.

A.T. Monfared and M. Haghparast. Quantum ternary multiplication
gate (QTMG): Toward quantum ternary multiplier and a new realization
for ternary Toffoli gate. Journal of Circuits, Systems and Computers,
29(5):2050071:1-2050071:22, 2020.

C. Moraga. Ternary Toffoli-type reversible gates: Control alternatives
and quantum models. In Proc. Intl. Symp. on Multiple-Valued Logic,
pages 101-106, May 2021.

R. Wille and D. GroBe. Fast exact Toffoli network synthesis of reversible
logic. In Proc. Intl. Conference on CAD (ICCAD), pages 60—64, San
Jose, California, November 2007.

D. Grofle, X. Chen, G. W. Dueck, and R. Drechsler. Exact SAT-based
Toffoli network synthesis. In Proc. 17th ACM Great Lakes Symposium
on VLSI, pages 96-101, Stresa-Lago Maggiore, Italy, March 2007.

R. Wille, D. Grofle, M. Soeken, and R. Drechsler. Using higher levels of
abstraction for solving optimization problems by boolean satisfiability.
In Proc. IEEE Computer Society Annual Symposium on VLSI, pages
411-416, Montpellier, France, April 2008.

D. Grofe, R. Wille, G. W. Dueck, and R. Drechsler. Exact synthesis
of elementary quantum gate circuits. Journal of Multiple-Valued Logic
and Soft Computing, 15(4):283-300, January 2009.

A. B. Khlopotine, M. A. Perkowski, and P. Kerntopf. Reversible logic
synthesis by iterative compositions. In IWLS, pages 261-266, 2002.

E. Curtis and M. Perkowski. A transformation based algorithm for
ternary reversible logic synthesis using universally controlled ternary
gates. Proc. IWLS, pages 2—4, 2004.

S. Kotiyal, H. Thapliyal, and N. Ranganathan.
barrel shifter using multiple-valued reversible logic.
Nanotechnology, pages 1104-1108, 2010.

X. Li, G. Yang, and D. Zheng. Logic synthesis of ternary quantum
circuits with minimal qutrits. Journal of Computers, 8(3):1941-1946,
December 2013.

S. A. Cook. The complexity of theorem-proving procedures. In Proc.
Symp. on Theory of Computing, page 151-158, 1971.

N. Eén and N. Soérensson. MiniSAT SAT solver. MiniSAT is available
at http://minisat.se.

M. H. A. Khan and M. A. Perkowski. Quantum ternary parallel
adder/subtractor with partially-look-ahead carry. Journal of Systems
Architecture, 53:453-464, 2007.

M. M. Khan, A. K. Biswas, S. Chowdhury, M. Hasan, and A. I. Khan.
Synthesis of GF(3) based reversible/quantum logic circuits without
garbage output. In Proc. Intl. Symp. on Multiple-Valued Logic, pages
98-102, 2009.

S. B. Mandal, A. Chakrabarti, and S. Sur-Kolay. Synthesis techniques
for ternary quantum logic. In Proc. Intl. Symp. on Multiple-Valued Logic,
pages 218-223, 2011.

D. M. Miller and G.W. Dueck. Descending order transformation-based
synthesis of MVL reversible circuits. In Proc. Intl. Symp. on Multiple-
Valued Logic, pages 107-112, May 2021.

A. Muthukrishnan and Jr C. R. Stroud. Multivalued logic gates for
quantum computation. Phys. Rev. A, 62(5):052309/1-8, 2000.

H. Zhang, R. Wille, and R. Drechsler. Sat-based atpg for reversible
circuits. In Proc. 5th Intl. Design and Test Workshop (IDT), pages 149—
154. IEEE, 2010.

M.H.A. Khan and M. Perkowski. Evolutionary algorithm based synthesis
of multi-output ternary functions using quantum cascade of generalized
ternary gates. International Journal on Multiple-Valued Logic and Soft
Computing, 2005.

Design of a ternary
In Conf. on

[33] M. H. A. Khan, M. A. Perkowski, and M. R. Khan. Ternary Galois

field expansions for reversible logic and kronecker decision diagrams
for ternary GFSOP minimization. In Proc. 34th Intl. Symposium on

Multiple-Valued Logic, pages 58-67, 2004.

APPENDIX: THE RANDOM PERMUTATIONS

The random permutations for which synthesis results have
been reported in Table V are given below.

Name Permutation

p-2-3-1 345018672

p-2-3-2 201534786

p-2-4-1 204538671

p-2-4-2 018347265

p-2-5-1 870213546

p-2-5-2 867012534

p-2-6-1 234857601

p-2-6-2 743120586

p-3-3-1 01834275691017 12131116 14 1521 222025232418 19 26

p-3-3-2 21222318192024252612131491011151617354021687

p-3-4-1 01534824252091014121317267 192318222621 111516

p-3-4-2 012345151626910111213 1467 81920 18 222321251724

p-3-5-1 91022121382624192321267520181701 113414151625

p-3-5-2 212223678012121351516179101134 142625241819 20

p-3-6-1 01153414871191021121326171620181962425523222

p-3-6-2 21221424251718191134236726012012132151659108

p-4-3-1 0174347767809 1065121368 1516 71 18 19 56 21 22 59 24
25622728230 315333483637 113940 14 42 43 17 45 46 20 48
4923 515226727329 7576327879 3563 64 38 66 67 41 69 70 44
54 55 47 57 58 50 53 61 60

p-4-3-2 01293432673591038 121341 151644 18 19 20 21 22 23 24
2526 27 28 56 30 31 59 33 34 62 36 37 65 39 40 68 42 43 71 45 46 50
48 49 53 51 52 4754552 575856061 86364116667 1469 70 17
7576 74 78 79 77 72 73 80

p-4-4-1 1819202122232526240123457356910111213 141644
15 45 46 47 48 49 50 52 53 51 27 28 29 30 31 32 34 62 33 36 37 38 39
40 41 43 71 427273 74 7576 77 79 80 78 54 55 56 57 58 59 61 8 60
63 64 65 66 67 68 70 17 69

p-4-4-2 0123456717910111213 1415168 18 19 26 21 22 20 24 2523
27 28 29 30 31 32 33 34 44 36 37 38 39 40 41 42 43 35 45 46 53 48 49
47 51 52 50 60 61 62 57 58 59 54 55 65 69 70 71 66 67 68 63 64 56 78
79 74 75 76 80 73 77 72

p-4-5-1 0123453334359 10 11 12 13 14 42 43 44 45 46 47 48 49 50 79
53 78 27 28 29 30 31 32 60 61 62 36 37 38 39 40 41 69 70 71 75 76 77
24 252673 80 72 57 58 59 6 7 8 54 55 56 66 67 68 15 16 17 63 64 65
18 19 20 21 22 23 52 74 51

p-4-5-2 01534867291014 121317 1516 1124257418 19 77 21 22 80
54 55 59 57 58 62 60 61 56 63 64 68 66 67 71 69 70 65 78 79 26 72 73
23 7576 20 27 28 32 30 31 35 33 34 29 36 37 41 39 40 44 42 43 38 51
52 47 45 46 50 48 49 53

p-4-6-1 0123456780910111213 14151671 18 1920 21 2223 2524
62 27 28 29 30 31 32 60 61 8 36 37 38 39 40 41 69 70 17 45 46 47 48
49 50 79 78 26 63 64 65 66 67 68 42 43 44 56 73 72 59 76 75 53 51 52
54 5574 57 58 77 33 34 35

p-4-6-2 1193714124053 312018462321491715432634260288
24 52 38 36 64 41 39 67 32 30 58 47 45 73 50 48 76 44 42 70 29 33 61
53 27 55355179 65 63 10 68 66 13 59 57 4 7472 19 77 75 22 71 69
16 56 60 7 80 54 1 62 78 25

