Look What I Can Do: Acquisition of Programming
Skills in the Context of Living Labs

Mazyar Seraj'-? Cornelia S. GroBe!

Serge Autexier? Rolf Drechsler!-?

Hnstitute of Computer Science, University of Bremen, Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
{seraj, cornelia.grosse, drechsler}@uni-bremen.de
{mazyar.seraj, serge.autexier, rolf.drechsler} @dfki.de

Abstract—There is scientific knowledge about how to teach
software programming, and the necessity to foster young learn-
ers’ interest in computer science is broadly addressed. However,
there is a lack of research on how to teach programming skills in a
way that increases the learners’ interest in the topic. We present
a training session for young students, in order to support the
acquisition of programming skills and, at the same time, a positive
view towards computer science. The programming environment
is based on a visual block-based application within a living lab.
Thus, the abstract concept of software programming is presented
within a real context and tightly connected to real experiences.
In this training, the learners were introduced to a living lab
and to programming concepts in order to acquire basics of pro-
gramming. Two user studies with 44 7t" and 8'" grade students
were conducted, specifically, the students’ interest in computer
science and their acquisition of programming skills were assessed.
Two instructional interventions to support knowledge acquisition,
namely worked examples and instructional procedures, were
compared. The results did not strongly support one of these
instructional interventions, thus, both seem to be appropriate in
order to help learners to acquire basic programming skills. In
sum, the results show that the tight connection of the training
session to a real-world scenario can foster programming skills.
This paper contributes by showing the potential of using visual
block-based programming in the context of living labs in order
to enable students to begin with programming activities.

Index Terms—smart living lab, visual block-based program-
ming, acquisition of programming skills, training sessions, soft-
ware programming activities, K-12 education

I. INTRODUCTION

Computer science and software programming are becoming
more and more important in K-12 (Kindergarten (K) and
1%t through 12th grade) education [1], [2]. Several studies
aimed to introduce programming to young students in order
to integrate computer science in K-12 education [1], [3]-
[5]. These studies investigated how different programming
environments affect K-12 students’ computational thinking
towards problem solving [1], [3], [6]. According to the K-
12 Computer Science Framework [7], programming is one of
the computer science core concepts [7] and core practices [5].
Thereby, programming is more than just coding [1], [3], but
involves computer science concepts such as abstraction and
debugging to solve problems [3], [7]. During programming,
students are exposed to computational thinking aspects such
as creativity, critical thinking and problem solving [3], [7],

[8].

This work was partially funded by the German Federal Ministry for
Education and Research (BMBF) within the project SMILE under grant
number 01FP1613. The authors would like to thank for this support.

Acknowledging that the main goal of programming training
for K-12 students is to minimize the distractions of “thinking
at multiple abstractions” [3], [7], motivating students through
software programming activities helps them to understand how
computer science influences their daily life [9]. Thinking at
multiple abstractions (e.g., students are enabled to find a piece
of code that could be more efficiently implemented as a loop)
and software programming activities can be considered to be
fundamental for K-12 students in order to reduce complexity
and increase efficiency of training [1], [3], [10]. In this way,
one of the challenges that computer science research still
faces is the lack of studies investigating empirical evidence
in software engineering education and training among young
learners [3], [7].

Young learners typically have difficulties to understand the
requirements of designing, executing and debugging software
programs [1], [11]. Likewise, they do not have experience in
procedural and modular programming to solve programming
issues. Thus, in the first place, training them to acquire pro-
gramming skills seems to be difficult for school teachers and
educators [1], [9], [12]. Furthermore, learning and recalling
code syntax as well as assembling and manipulating code
structures are error prone as they require a high level of
concentration [13], [14]. Kalelioglu [2] tried a new way
of teaching programming skills to K-12 students in order to
investigate the effect of teaching programming on reflective
thinking skills towards problem solving. It was shown clearly
that students learned computer science and programming con-
cepts in the code.org platform which is based on Scratch
while playing in an enjoyable way. In this respect, many
block-based programming frameworks such as Scratch [15],
Alice [16], Snap! [17] and Google Blockly [18] have
been evolved in today’s advancing technology and applications
[3], [7] in order to reduce the complexity of programming.
These frameworks use a visual programming language, where
they represent a vision in which K-12 students engage in
the concept of computer science and programming [7],
[19]. Visual block-based programming is designed to allow
the students to program without the obstacles of syntax and
manipulation of code structure errors [7], [13], [14]. Young
learners can learn programming through drag and snap blocks
together in order to generate code syntax [3], [7]. They can
take advantage of visual block-based programming in order to
facilitate the design, the execution and the debugging process
of programming, and thus, they are able to solve programming
problems more easily.

We conducted two user studies in order to examine the
acceptance of computational thinking through problem solving
among 7' and 8'" grade students (12 to 15 years old). We
claim that it is possible to introduce new technologies which
provide possibilities to connect computer science to reality
and cover basic programming skills in one-day programming
training sessions in order to enable students making programs
and seeing their impacts in real-world environment. To this
end, a visual block-based programming application is used in
order to reduce the complexity of programming and facilitate
it for the students in the context of a smart living lab. The main
goal of the smart living lab is to provide exposure to software
programming activities in the programming training sessions.
An empirical evaluation of the programming training sessions
with respect to the interest in computer science and the
acquisition of programing skills was conducted. Specifically,
based on instructional methods presented in [20]-[23], it
was assessed whether the acquisition of programming skills
in order to solve programming problems is better supported
by worked examples or by instructional explanations.

Our training sessions were conducted in Germany, where the
number of female graduates in the field of computer science is
considerably lower than the number of male graduates [24],
[25]. Thus, introducing software programming to our target
users has two aspects. On the one hand, the acquisition of
programming skills among inexperienced students and novices
was measured in the context of a smart living lab using a visual
programming paradigm. On the other hand, the acceptance of
computer science and programming among young learners,
especially girls, was assessed. It was a special feature of
our training sessions that students were able to program a
real-world environment. Collecting and analyzing data in this
environment extended and refined prior results [1], [24] taken
from different non-traditional education environments where
students were able to produce and deploy pieces of code that
can be applied to smart living labs.

This paper seeks to contribute to software engineering
education through the development, implementation, and eval-
uation of a programming training session, with the goal to
teach basic programming skills and principles to inexperienced
students and novices, and with the goal to arouse their interest
in computer science and programming.

The paper is structured as follows: In section II, background
and related work are described. Our training sessions are de-
scribed in section III. Section IV presents two user studies, the
first one with 8" grade students without prior programming
experiences, the second one with 7¢" grade students with little
prior programming experience. The results are discussed in
section V; the paper closes with conclusions in section VI.

II. BACKGROUND AND RELATED WORK

Over the past few years, several block-based programming
tools have emerged to provide visual environments [3], [26]-
[28]. The environments aim to help K-12 students getting
started with programming activities [13], [29]. These initia-
tives focus on promoting computational thinking among K-12
students [8], [30]. However, there have been very few studies
with a special focus on promoting real-world environment pro-
gramming activities among K-12 learners — both female and

male — with different levels of prior programming experience
[91.

Visual programming environments were designed in a va-
riety of approaches (e.g., [2], [6], [12], [26]) for introducing
K-12 students to general programming features and principles.
The literature reports that programming is more accessible to
young learners and novices using these environments [3], and
results show that young learners are able to learn programming
in visual block-based programming scenarios. In addition, ac-
cording to [4], [9], researchers are interested in the “robot pro-
gramming” approach in end-user programming tools. Huang et
al. [26] took advantage of Google Blockly to develop a rapid
block-based programming tool called ”CustomPrograms” for
end users. Paramasivam et al. [9] used this tool to design an
end-user application which enables K-12 students to program
Clearpath Turtlebot, capable of delivering items, interacting
with people and autonomously navigating its environment.
With this regard, twelfth-grade high-school students with
disabilities (e.g., deafness, low vision or blindness, Aspergers
Syndrome) attended a robot programming workshop. The
results obtained from this experience are encouraging, as the
authors were successful to establish the confidence that robot
programming is both accessible and interesting. However, no
information was provided whether this procedure also inspired
interest in computer science in general.

The literature also reports block-based programming tools
used for stimulating interest in computer science among K-12
learners [3], [4], [9], [12], [27]. In terms of teaching program-
ming, two of the preferred block-based visual programming
frameworks are Scratch and Google Blockly. For instance,
Scratch — one of the most successful visual programming
frameworks — is used to present MOOC (Massive Open Online
Courses) [27] programming courses in which researchers
teach elementary programming concepts to inexperienced high
[4] and elementary [12] school students. The results showed
that the majority of the participants had a positive attitude
towards programming and stated that they plan to continue
programming in the future. Nevertheless, teaching elementary
programming features to inexperienced young learners and
novices in the context of smart environments using visual
programming tools is still an active area of research.

However, the use of visual block-based programming frame-
works (e.g., Scratch or Google Blockly) alone may not be
sufficient for K-12 learners to gain a deep understanding of
computer science concepts and programming skills. Although
these frameworks are able to reduce the complexity of pro-
gramming for young learners, they may not enable the learners
to develop a well-grounded connection between computer
science and its impacts in their daily life. Granting access to
a smart living lab may be particularly useful in order to show
the learners how a real-world environment can react to their
program when it is following the programming principles and
structures. To this end, we designed and implemented one-day
programming training sessions to provide learning opportuni-
ties for young learners in order to program a smart living lab in
the German Research Center for Artificial intelligence (DFKI).
Thus, learners can participate and experience new technologies
which are adapted to technical equipments in order to help
elderlies and people with disabilities. In other words, by using

the smart living lab and letting learners to program it, we
aim to motivate them to learn programming and to understand
influences of computer science in their daily life.

III. TRAINING SESSIONS

Training sessions were held in premises of the University
of Bremen. All used equipments and the smart environment —
computers and the smart living lab — which were used were
provided by the DFKI. Three instructors were involved in each
session. The participants were introduced to the living lab by
one instructor. The other two instructors were in charge of
the teaching sessions. One instructor was female and all of
them had a computer science background with experience in
working with K-12 students. The goal of the training was to
enable inexperienced students and novices to acquire primary
programming skills and to use these skills in the context of a
smart living lab.

At the beginning of each session, the students received a
pre-questionnaire. Likewise, at the end of each session a post-
questionnaire was given to them in order to assess the learners’
view on computer science and programming. Apart from this,
each session was divided into three parts: (1) introduction
to the smart living lab, (2) introduction to programming
structures and principles with the block-based programming
application, and (3) performing two programming tasks. The
questionnaires and the three parts of the training sessions are
described in the following.

A. Questionnaires

The questionnaires were designed in order to evaluate the
learners’ view on computer science and programming. The
learners were asked to indicate their prior programming expe-
rience in a pre-questionnaire at the beginning of each session.
In addition to demographical questions (e.g., age, gender),
students were asked to indicate their view on computer science
and on programming, specifically with respect to the block-
based programming application, in a post-questionnaire at the
end of the sessions.

B. Introduction to the Smart Living Lab

Our smart environment is an approximately 60 m? smart
ambient assisted living lab includes different smart appli-
ances such as a sink adjusting automatically to a person’s
height and an intelligent wardrobe suggesting outfits (see
Fig. 1). Furthermore, the living lab contains various actuators
(e.g., dimmable lamps, doors, and lights) and sensors (e.g.,
lighting, temperature, and heating sensors). Two RGB lamps
are available with an HTTP interface for color setting. The
smart ambient assisted living lab’s main educational use in
the programming application is allowing students to program
different appliances in different conditions. For instance, in
the bedroom, students can turn certain lights on and change
the color of an RGB light every 10 seconds for the duration
of 3 minutes, as soon as the bedroom door is open.

During each session, the students were divided into two
groups in order to enable an introduction to the living lab
in smaller groups. All objects and their functionalities in the
smart living lab were explained to each group in order to
(1) enable students to understand how computer science can

Fig. 1: A view of the smart ambient assisted living lab.

influence real-world environments, and (2) identify different
smart items which are used in the living lab.

C. Introduction to Programming Structures and Principles

In this paper, a web-based programming application was
used to enable inexperienced students and novices to make
programs in the context of a smart living lab (see Fig. 2).
This application is based on BEESM [28] which is primarily
designed for inexperienced learners and novices to learn and
write programs. BEESM takes advantage of Google Blockly
[18] to design a visual block-based tool being applicable for
smart objects and environments. Furthermore, different kinds
of behaviors of smart objects are encapsulated in different
functions and libraries [28]. In that respect, apart from pre-
defined functions and libraries, different programming lan-
guage features like variables, data types, conditionals, loops,
functions and operators are included in this tool. Likewise,
we followed the BEESM user interface (see Fig. 2) to enable
learners using four different panels to have a full vision of the
blocks (Block panel), code syntax (Code panel), output of the
code (Output panel), and a 2D view of the smart living lab
(2D Graphical panel).

All students were introduced to programming and how to
use the programming application. They learned general aspects
of using the application, (1) how to identify the blocks relevant
to solve the programming tasks, and (2) how to recognize the
main elements and panels of the programming application.

The main computational thinking concept which was taught
is ”Programming Structures and Principles”, exemplified
through visual block-based programming samples. With this
regard, programming features such as variables, data types,
conditional statements, loops, and logical operators, as well
as pre-defined functions were taught. Programming concepts
were also introduced using simple block-based programs that
include variables, iterative logics and conditional statements,
and later through more complex examples that add loops,
logical operators and pre-defined functions in order to make
different applications in the smart living lab. Students are
encouraged to load pre-defined examples and execute them
in order to recognize which block corresponds to a particular
action.

D. Programming Tasks

During each session and before each task, the students
were introduced to the protocols of the programming tasks,
specifically (1) that they have only 20 minutes to finish each
task, and (2) that they need to use their own supplementary
document which comes along with each computer. During the
sessions, each computer comes with one of the two types
of supplementary documents — namely worked examples and

Variable

Conditionals
=2 set (ELCEM to | get Name
|'¥ Operators < it T 3
Arithmetic GRS vame = - M fooriamp 12
Comparison
Logic
s setRGB name |
Program Control red | random integer from
¥ Smart Home |
Connection ', random integer from
Status I .
N ' random integer from
Design
File Name: Save Blocks Select File: Choose File Exampl...—xmi (EGEIRSIICI
Output
Name: floorlamp
Value Red: 252
Value Green: 93
Value Blue: 96
Name: floorlamp
Value Red: 84
Value Green: 161
Value Blue: 93

Code Modifier X AutoCode Generator

PHP Code Modifier
Sobjects = connect server();
foreach ($objects as $item) {
Sname = get name ($item);
if ($name == 'floorlamp') {
for (Scount 0; S$count < 3; S$Scount++) {
set RGB ($name, random number (0,255),
random number (0,255),
random number (0, 255)) ;

sleep(5);

‘Smart Home
01234567 891011121314151617 18 192021222324 2526272829 30313233 34 3536 37 383940414243444546

®No s wN O

Fig. 2: A sample execution of the programming application.

instructional procedures — in order to enable students to solve
the programming tasks. A worked example for each task was
attached to half of the computers in paper form. The document
contained a visual block-based representation (blocks are
snapped together) of the task, along with an explanation of
each block and of the code which is generated by the blocks.
To the other half of the computers, an instructional procedure
for each task was attached in paper form. This document
contained a visual block-based representation (blocks are not
snapped together) of the task, along with an explanation of
each block. The output of the task was also included in both
documents. In the first programming task, one of the blocks
was used incorrectly in the documents which was highlighted
by a different color. The students needed to identify the
incorrect block and to replace it by the correct one in order to
correctly perform the task. In the second programming task,
one whole loop was used in an incorrect format which was
also highlighted by a different color. The students needed
to identify the incorrect set of blocks and replace them by
the correct blocks in order to correctly perform the task.
Furthermore, they were encouraged to perform the task using
a simple example as an introduction to the particular task. The
two programming tasks were:

(1) Showing the name and status of each object in the living
lab. The task helps students to learn variables and iterative
logics. Students are required to connect to the living lab’s
server, iterate through the list of objects (foreach loop),
and fetch the name and status of each object. Then, they
assign object name and status to two variables and show
them in the Output panel.

Changing the status of an RGB light. The task helps
students to learn differences between operators as well as
working with loops (for loops) and conditional statements
(if statements). Students are required to connect to the

2

server, iterate through the list of objects and find the
corresponding RGB light. Then, they change the status
of the light using random integers for 3 times, with 5
seconds delay between the changes.

In this respect, the computational thinking concepts are
extended by introducing these tasks to the students. We require
students to use the supplementary documents in order to
identify the issue and where the change should be made,
remove extra blocks and add new blocks, integrate them with
the rest of the program, and finally test the program.

IV. USER STUDIES

Two user studies were conducted in order to understand
the impact of visual block-based programming on young
learners’ programming skills in the context of smart living
labs. The training sessions were conducted with students
without prior programming experience (Experiment 1) and
with novices who already had minor experiences in visual
and text-based programming (Experiment 2). Specifically, we
wanted to understand whether the students could assimilate
and use supplementary documents — namely worked examples
and instructional procedures — including an issue in order
to perform programming tasks. In that respect, the students
were divided into two groups which were supported either
with worked examples (Example Group) or with instructional
procedures (Instruction Group). Concretely, the user studies
addressed the following research questions:

1) When learning how to program with a visual block-
based programming environment embedded in a smart
living lab, is it more effective to present learners worked
examples compared to instructional procedures? Does this
effect depend on gender?

2) When learning how to program with a visual block-based
programming environment embedded in a smart living

lab, is interest in computer science and programming fos-
tered more when learners are presented worked examples
compared to instructional procedures? Does this effect
depend on gender?

In both studies, data with respect to the acquisition of
programming skills and with respect to interest in computer
science and programming were collected.

In the following, we describe the sample, the training
session, the collected data, and the results for both studies.

A. Experiment 1

Sample and Design. A total of 22 8" grade students of a

German secondary school (12 girls, 10 boys, age: M = 13.80,
SD = 0.56) participated in the study. The students were
randomly assigned to two experimental groups, 6 girls and
4 boys to the Example Group (they revived a worked example
for each task), and 6 girls and 6 boys to the Instruction
Group (they received an instructional procedure for each task),
respectively.

Procedure of the Training Session. The duration of training
for each student was 3 hours, with a 15 minutes break. Stu-
dents were randomly assigned to the two experimental groups
at the beginning of the session. The Example Group students
were asked to answer the questions of a pre-questionnaire,
while the Instruction Group was introduced to the smart living
lab; afterwards, the Example Group was introduced to the
smart living lab, while the Instruction Group answered the pre-
questionnaire (see Fig. 3). All objects and their functionalities
in the smart living lab were explained for 20 minutes per
group. Then, as gender effects were considered, pairs of two
students (2 boys or 2 girls) were assigned to one computer.
Each computer showed a real-time full vision of the smart liv-
ing lab during the session using three IP cameras. All students
were introduced together to programming features, structures
and principles as well as how to use the programming applica-
tion for one hour. Before working on each task, students were
presented a program introducing the corresponding task. The
two programs respectively were (1) demonstrating the name of
all available objects in the smart living lab, and (2) changing
the status of a dimmable light for one time. At the end of the
second task, each group of students went to the living lab to
see the changes in reality. All students were asked to complete
a post-questionnaire at the end of the session.

Example ﬁ Introduction to Post
Group Pre- Introduction ||[*{Programming with
(10 students)|| |[Questionnaire '{ to Living Lab f the Application Questionnaire
Instruction Introduction Pre- - K
Group '{ to Living Lab Questionnaire Working on 2. Prog_rammmg
(12 students) Tasks in Pairs

(2 Experimental Conditions)

Fig. 3: Procedure of the first experiment.

Acquisition of Programming Skills. It was assessed
whether the students were able to perform the tasks or not.
Each task consisted of several steps. The performance was
operationalized by the rate of steps made without errors. In
this respect, at the end of each training session, the generated
blocks were checked in each computer. Each block was labeled
with a value and the whole program was rated based on the
blocks which were correctly used and placed. Furthermore,

the number of errors were counted and the type of errors
was categorized as major or minor errors based on students’
difficulties in introductory programming which are discussed
in [11]. Minor errors are related to the students’ syntactic
knowledge; for example, missing variable names or typing
errors. In contrast, major errors are mostly related to the
students’ conceptual and strategic knowledge; for example,
using an if statement to check objects conditions outside of a
for loop.

Interest in Computer Science and Programming. The
subjective data regarding interest in computer science and
programming was collected using a questionnaire. The stu-
dents were asked to rate the items (1) is it easy to program
with blocks?”, (2) ”do blocks help you to understand program
better?”, and (3) “do you think that it is helpful to be able to
see directly in reality whether the program works as desired?”
using a 5 point Likert scale (with 1 being no, and 5 being yes).
Furthermore, the students were asked about their preference
of programming with blocks or directly with code using a 5
point Likert scale (with 1 being definitely with code, and 5
being definitely with blocks).

Finally, the students were asked before each session started
in the pre-questionnaire and at the end of each session in the
post-questionnaire to rate (1) ’do you think computer science
is difficult to understand?”, and (2) "would you like to learn
how to program?” on a 5 point Likert scale (with 1 “no”, and
5 7yes”).

Results. At the beginning of the training session, the
students were asked to indicate whether they had program-
ming experience. Only four students answered that they had
programmed before: two boys and one girl in the Example
Group, and one boy in the Instruction Group. Nevertheless, all
four students indicated ”low” or “no” prior experience, thus,
the level of prior knowledge was not included in the further
analyses.

The following analyses were computed as two-factorial
analyses of variance, with the factors example vs. instruction
and gender, respectively. For the questionnaire items, “no”
was coded with 1, and “’yes” was coded with 5, respectively.
With respect to finding programming easy with blocks, on
average, the students indicated a medium level (see Table I);
no significant main or interaction effects occurred, all F' < 1.
The students indicated that blocks are helpful in order to
understand programs (see Table I); no significant main or
interaction effects occurred, all F' < 1.

With respect to the helpfulness of seeing the impacts of
their program in a real-world environment, neither the main
effect gender nor the interaction effect reached the level of
significance, both F' < 1. The students in the Instruction
Group rated the question higher in comparison to the students
in the Example Group (see Table I); however, the main effect
example vs. instruction was not significant, F'(1,18) = 1.16,
p = 0.30.

Concerning the preference for programming with blocks or
with code, “code” was coded with 1 and “blocks” were coded
with 5. The students in both groups indicated an indecisive
stance (see Table I), however, the Instruction Group indicated
a slightly higher preference towards blocks compared to the
Example Group, and the girls indicated a higher tendency

towards blocks compared to the boys. However, both main
effects just barely missed the level of significance, both
F(1,17) = 3.15, p = 0.09, partial n* = 0.16. The interaction
effect was also not significant, F'(1,17) = 1.14, p = 0.30.

With respect to the question whether they would like to learn
how to program (see Table II), before the training session the
boys showed broad approval, while the girls were undecided.
Accordingly, the main effect gender yielded a significant
result, F'(1,18) = 8.89, p = 0.008, partial n* = 0.33.
However, neither the main effect example vs. instruction
nor the interaction effect reached the level of significance,
F(1,18) = 1.38, p = 0.26, and F' < 1, respectively. After
the training session, the boys still indicated that they would
like to learn how to program significantly more than the girls,
F(1,18) = 7.46, p = 0.01, partial n?> = 0.29. Concerning the
main effect example vs. instruction and the interaction effect,
no significant results occurred, both F' < 1. Descriptively,
the boys and the girls indicated a higher level for liking to
learn how to program before the training session compared to
after the training session. In order to determine whether this
decrease was significant, a regression analysis was performed.
For the girls, the regression slope from the after-session score
to the pre-session score was not significant, B = 0.26,
p = 0.59 (constant: B = 1.67, p = 0.30). For the boys, the
regression slope from the after-session score to the pre-session
score was also not significant, B = —0.28, p = 0.43 (constant:
B = 5.24, p = 0.01). Thus, the decrease with respect to liking
to learn how to program was not significant, neither for the
girls, nor for the boys.

With respect to computer science being difficult to un-
derstand, on average, the students indicated a medium level
before the training session (see Table II); no significant main
or interaction effects occurred, all F' < 1. After the training
session, the boys indicated a medium level of difficulty for
computer science, while the girls opted more in the direction
of “difficult”. However, the effect gender was not significant,
F(1,18) = 2.97, p = 0.10. Neither the effect example vs.
instruction nor the interaction effect were significant, both
F <1

After the introduction to programming with the application,
the students were asked to perform two programming tasks.
Due to technical problems, the results of one group (two girls)
in the Example Group were not saved, and thus, cannot be
included in the following analyses. On account of the small
sample size (n = 10 dyads), we decided not to perform
analyses of variance with respect to these two tasks. Overall,
the students performed 56% of task 1 and 49% of task 2
without errors (see Table III). Concerning both tasks, the
students in the Instruction Group performed better than the
students in the Example Group. As the students worked in
dyads either girls with girls, or boys with boys, but not in
mixed-gender groups, we were able to analyze the percentages
of tasks solved correctly dependent on gender. In both tasks,
the girls performed considerably better compared to the boys.

For both tasks, errors were categorized into “major” and
“minor” errors. In order to take into account the different
number of students in the two experimental groups, the number
of errors was divided by the number of dyads: 2 girl dyads
and 2 boy dyads in Example Group; 3 girl dyads and 3 boy

dyads in Instruction Group (see Table III). Overall, in the first
task, the number of major errors was higher than the number
of minor errors. The students in the Example Group made
more major errors than the students in the Instruction Group.
Likewise, the students in the Example Group made more minor
errors compared to the Instruction Group. In the second task,
the number of major errors was higher than the number of
minor errors. The students in the Instruction Group made more
major errors and less minor errors than the students in the
Example Group. Major errors occurred more often than minor
errors, and both types of major and minor errors occurred more
often among boys than among girls.

Across both tasks, the most common mistakes were setting
different values to the same variable (minor error), using loops
in an incorrect place (major error); for example, using a for
loop to iterate through a list while the list is not defined yet,
and placing blocks outside of loops and conditional statements
where they should be placed within (major error).

B. Experiment 2

Sample and Design. A total of 22 7" grade students
of a German advanced secondary school (6 girls, 16 boys,
age: M = 12.45, SD = 0.60) participated in the study.
The students were randomly assigned to two experimental
groups, 3 girls and 8 boys to each the Example Group and
the Instruction Group, respectively.

Procedure of the Training Session. The duration of the
training session for each student was 3 hours, with a 15
minutes break. At the beginning of the session, students
were randomly assigned to one of two groups (11 students
per group) which were trained separately one after another.
In the first training group, 6 students (3 girls and 3 boys)
received a worked example for each task (Example Group),
and 5 students (3 girls and 2 boys) received an instructional
procedure for each task (Instruction Group). In the second
training group, 6 students (all boys) received an instructional
procedure for each task (Instruction Group), and 5 students
(all boys) received a worked example for each task (Example
Group). The first training group was asked to answer the
questions of a pre-questionnaire, while the other group was
introduced to the smart living lab; afterwards, students in the
second training group were introduced to the smart living
lab, while the first group answered the pre-questionnaire (see
Fig. 4). All objects and their functionalities in the smart living
lab were explained for 20 minutes per group. Then, each
student was assigned to one computer. Each computer showed
a real-time full vision of the smart living lab during each
session using three IP cameras. All students were introduced
together to programming features, structures and principles as
well as how to use the programming application for one hour.
Before working on each task, students were presented a pro-
gram introducing the corresponding task. The two programs
respectively were (1) demonstrating the name of all available
objects in the smart living lab, and (2) changing the status of
a dimmable light for one time. At the end of the second task,
students went to the living lab to see the changes in reality.
All students were asked to complete a post-questionnaire at
the end of the session.

Acquisition of Programming Skills. It was assessed
whether the students were able to perform the tasks or not.

TABLE I: Subjective Data on the Ease of Use

Example Group Instruction Group
All Users Female Male All Users Female Male
Questions M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)
Is it easy to program with blocks? 3.10 (1.52) | 3.00 (1.67) | 3.25 (1.50) | 3.42 (1.24) | 3.33 (1.03) | 3.50 (1.52)
Do blocks help you to easily understand programs? 3.90 (0.99) | 3.83 (0.98) | 4.00 (1.15) | 4.27 (0.90) | 4.20 (1.10) | 4.33 (0.82)
Do you think that it is helpful to be able to see directly in realit;
wheor tho program ot sy y Y| 370 (1.06) | 3.50 (1.05) | 4.00 (1.15) | 4.33 (1.30) | 4.33 (1.63) | 4.33 (1.03)
Do you prefer to program with block or directly with code syntax? | 2.90 (0.74) | 3.00 (0.89) | 2.75 (0.50) | 3.45(0.93) | 4.00 (1.00) | 3.00 (0.63)
M: Mean SD: Standard Deviation
TABLE II: Subjective Data on Students’ Interest
Pre-Questionnaire
Example Group Instruction Group
All Users Female Male All Users Female Male
Questions M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)
Do you think computer science is difficult to understand? | 3.30 (0.67) | 3.33 (0.52) | 3.25 (0.95) | 3.58 (0.90) | 3.67 (0.82) | 3.50 (1.04)
Would you like to learn how to program? 4.00 (0.94) | 3.50 (0.84) | 4.75 (0.50) | 3.58 (1.44) | 2.83 (0.75) | 4.33 (1.63)
Post-Questionnaire
Example Group Instruction Group
All Users Female Male All Users Female Male
Questions M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)
Do you think computer science is difficult to understand? | 3.50 (0.97) | 3.83 (0.98) | 3.00 (0.82) | 3.33 (1.07) | 3.67 (1.03) | 3.00 (1.09)
Would you like to learn how to program? 3.20 (1.32) | 2.50 (1.05) | 4.25 (0.96) | 3.17 (1.59) | 2.50 (1.52) | 3.83 (1.47)
M: Mean SD: Standard Deviation
TABLE III: Students’ Performance
Example Group Instruction Group
All Users Female Male All Users Female Male
Tasks (per dyad) | (per dyad) | (per dyad) | (per dyad) | (per dyad) | (per dyad)
Task 1 | Number of Major errors 8 (2.00) 4 (2.00) 4 (2.00) 11 (1.83) 4 (1.33) 7 (2.33)
Number of Minor errors 7 (1.75) 5 (2.50) 2 (1.00) 2 (0.33) 0 (0.00) 2 (0.67)
Rate of task completed without errors | 50% 50% 50% 60% 75% 44%
Task 2 | Number of Major errors 9 (2.25) 4 (2.00) 5 (2.50) 16 (2.67) 5 (1.67) 11 (3.67)
Number of Minor errors 5 (1.25) 1 (0.50) 4 (2.00) 6 (1.00) 3 (1.00) 3 (1.00)
Rate of task completed without errors | 45% 59% 31% 51% 67% 36%

G 1 Introduction to P
(11 Sl'fuudpents)_ Plre- . Introduction Programming with
Questionnaire to Living Lab the Application
Group 2 Introduction Pre- . K
(11 students)- ’{ to Living Lab Questionnaire Working on 2 f’r.ogrammlng
Tasks Individually

(2 Experimental Conditions)

Fig. 4: Procedure of the second experiment.

The students’ performance on the programming tasks were
evaluated in the same way as in Experiment 1.

Interest in Computer Science and Programming. The
subjective data regarding interest in computer science and
programming was collected and analyzed in the same way
as in Experiment 1.

Results. At the beginning of the training session, the stu-
dents were asked to indicate whether they had programming
experience. All but one (in the Example Group in the first
training group) had already programmed before, and on a scale
from 1 to 5 they indicated a medium level of prior program-
ming experience (M = 2.64, SD = 0.79). With respect to this
score, the students in the Instruction Group indicated a higher
level of prior knowledge compared to the Example Group
(Instruction Group: M = 2.82, SD = 0.87, Example Group:
M =245, SD = 0.69). A two-factorial analysis of variance
with the factors example vs. instruction and gender revealed
no significant main effect for gender, F' < 1; however, the
main effect example vs. instruction and the interaction effect

just barely missed the level of significance, for both effects
F(1,18) = 3.35, p = 0.08, partial n* = 1.57, respectively.
Thus, for the following analyses, this score was included as a
covariate.

With respect to finding programming easy with blocks, nei-
ther the main effect example vs. instruction nor the interaction
effect reached the level of significance, both F' < 1 (see
Table IV). However, the main effect gender was significant,
F(1,17) = 4.75, p = 0.04, partial n* = 0.22. Boys indicated
a higher level towards easiness of programming with blocks
compared to the girls. The effect of prior programming skills
was not significant, F' < 1. Likewise, students indicated
that blocks are helpful in order to understand programs (see
Table IV); no significant main or interaction effect occurred,
main effect example vs. instruction: F' < 1, main effect
gender: F(1,17) = 2.46, p = 0.14, interaction effect: F' < 1.
The effect of prior programming skills was also not significant,
F <1

With respect to the helpfulness of seeing the impacts of their
program in real-world environment (see Table IV), neither the
main effect gender nor the main effect example vs. instruction
reached the level of significance, both F' < 1. The interaction
effect and the effect of prior programming skills were also not
significant, F'(1,17) = 1.16, p = 0.30 and F(1,17) = 2.12,
p = 0.16, respectively.

Concerning the preference for programming with blocks or
with code, code was coded with 1 and blocks were coded
with 5. On average, the students indicated an opinion strongly

towards blocks (see Table IV). The students in the Instruction
Group indicated a higher preference for programming with
blocks compared to the Example Group. Girls opted more for
blocks compared to the boys. However, no significant main
or interaction effects were obtained, main effect example vs.
instruction: F' < 1, main effect gender: F(1,17) = 1.33,
p = 0.26, interaction effect: F'(1,17) = 1.06, p = 0.32. The
effect of prior programming skills was also not significant,
F <1

With respect to the question whether they would like to
learn how to program (see Table V), no significant main or
interaction effects occurred before the training session, all
F < 1. However, the effect of prior programming skills
yielded a significant result, F'(1,17) = 6.30, p = 0.02, partial
n? = 0.27. After the training session, no significant main
or interaction effects were obtained, main effect example vs.
instruction: F' < 1, main effect gender: F(1,17) = 1.38,
p = 0.26, interaction effect: F' < 1. The effect of prior
programming skills was also not significant, F'(1,17) = 2.65,
p = 0.12. Descriptively, the boys indicated a slightly higher
level for liking to learn how to program before training session
compared to after the training session. The girls showed a
strong opinion for liking to learn how to program before the
training session which remained the same after the training
session.

With respect to computer science being difficult to under-
stand, on average, the students indicated a medium level before
the training session (see Table IV); no significant main or
interaction effects occurred, all F' < 1. The effect of prior
programming skills was also not significant, F' < 1. After
the training session, the students indicated a lower level of
difficulty for computer science. Neither significant main nor
interaction effects occurred, all F' < 1. The effect of prior
programming skills was also not significant, F' < 1.

After the introduction to programming with the application,
the students were asked to perform two programming tasks.
Due to technical issues, the results of two students (one girl
in the Example Group and one boy in the Instruction Group)
were not saved, and thus, cannot be included in the following
analyses. Overall, the students performed 76% of task 1 and
58% of task 2 without errors (see Table VI). Concerning both
tasks, the students in the Example Group performed better
than the students in the Instruction Group. In task 1, the girls
performed slightly better compared to the boys. In contrast, the
boys performed slightly better in task 2 compared to the girls.
Overall, in the first task, no significant main or interaction
effects occurred, all F' < 1. The effect of prior programming
skills was also not significant, F'(1,15) = 1.11, p = 0.31.
In the second task, no significant main or interaction effects
were obtained, main effect example vs. instruction: F' < 1,
main effect gender: F'(1,15) = 1.10, p = 0.31, interaction
effect: I < 1. The effect of prior programming skills was
also not significant, F'(1,15) = 3.11, p = 0.10.

For both tasks, errors were categorized into “major” and
“minor” errors. In order to take into account the different
number of boys and girls in the two experimental groups, the
number of errors was divided by the number of them in each
group: 2 girls and 8 boys in Example Group; 3 girls and 7
boys in Instruction Group (see Table VI). Overall, major errors

occurred more often than minor errors. There were no large
differences between girls and boys, neither with respect to the
number of major errors, nor with respect to the number of
minor errors. In the first task, the students in the Instruction
Group made more major errors than the students in the
Example Group. Neither the main effects gender and example
vs. instruction nor the interaction effect were significant, all
F' < 1. The influence of prior programming experience was
also not significant, F'(1,15) = 1.44, p = 0.25. No minor
errors occurred in task 1.

In the second task, the number of major errors was slightly
higher than the number of minor errors (see Table VI). The
students in the Instruction Group made more major errors and
more minor errors compared to the students in the Example
Group. With respect to major errors, no significant group
differences were obtained, main effect example vs. instruction
and interaction effect: F' < 1, main effect gender: F(1,15) =
1.70, p = 0.21. The influence of prior programming expe-
rience was also not significant, F'(1,15) = 2.55, p = 0.13.
With respect to minor errors, no significant group differences
were obtained, main effect example vs. instruction, main effect
gender and interaction effect: all ' < 1. The influence
of prior programming experience was also not significant,
F(1,15) =1.97, p = 0.18.

Across both tasks, the most common mistakes were typing
errors (minor error) and placing blocks outside of loops and
conditional statements where they should be placed within
(major error).

V. DISCUSSION

The results presented in the previous section are now
discussed. In this respect, we begin with our findings based
on the research questions presented in Section IV; followed
by implications and future work.

A. Findings

Our findings are discussed in order to answer the research
questions stated in Section IV.

1) When learning how to program with a visual block-
based programming environment embedded in a smart living
lab, is it more effective to present learners worked examples
compared to instructional procedures? Does this effect depend
on gender?

In general, both boys and girls showed a high tendency
toward using visual block-based programming environments.
The results in both experiments showed that girls preferred to
program with blocks — compared to traditional code syntax —
more than boys. Novice boys rated the easiness of program-
ming with blocks significantly higher than novice girls.

With respect to the two programming tasks for the in-
experienced learners in Experiment 1, the learners in the
Instruction Group performed better than those in the Example
Group in both programming tasks. Matching this result, the
learners in the Instruction Group indicated that they found
computer science less difficult at the end of the session
compared to the students in the Example Group. In Experiment
1, concerning both programming tasks, the girls performed
better, but still the boys indicated that they would like to learn
how to program more than the girls, and the girls indicated
(descriptively) higher values with respect to finding computer

TABLE IV: Subjective Data on the Ease of Use

Example Group Instruction Group
All Users Female Male All Users Female Male
Questions M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)
Is it easy to program with blocks? 4.18 (1.08) | 3.67 (1.15) | 4.38 (1.06) | 3.82 (0.75) | 3.00 (0.00) | 4.13 (0.64)
Do blocks help you to easily understand programs? 4.91 (0.30) | 4.67 (0.58) | 5.00 (0.00) | 4.82 (0.40) | 4.67 (0.58) | 4.88 (0.35)
Do you think that it is helpful to be able to see directly in reality
whether the program works as desired? 4.73 (0.47) | 4.33 (0.58) | 4.88 (0.35) | 4.73 (0.65) | 5.00 (0.00) | 4.63 (0.74)
Do you prefer to program with block or directly with code syntax? | 4.27 (1.10) | 5.00 (0.00) | 4.63 (0.74) | 4.73 (0.47) | 4.67 (0.58) | 4.75 (0.46)
M: Mean SD: Standard Deviation
TABLE V: Subjective Data on Students’ Interest
Pre-Questionnaire
Example Group Instruction Group
All Users Female Male All Users Female Male
Questions M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)
Do you think computer science is difficult to understand? | 3.10 (0.94) | 3.00 (1.00) | 3.13 (0.99) | 3.10 (0.94) | 3.00 (1.00) | 3.13 (0.99)
Would you like to learn how to Program? 473 (0.47) | 4.67 (0.58) | 4.75 (0.46) | 4.73 (0.65) | 5.00 (0.00) | 4.63 (0.74)
Post-Questionnaire
Example Group Instruction Group
All Users Female Male All Users Female Male
Questions M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)
Do you think computer science is difficult to understand? | 2.91 (1.14) | 3.00 (1.00) | 2.88 (1.25) | 3.00 (0.63) | 2.67 (0.58) | 3.13 (0.64)
Would you like to learn how to Program? 4.45 (0.52) | 4.67 (0.58) | 4.37 (0.52) | 4.73 (0.65) | 5.00 (0.00) | 4.63 (0.74)
M: Mean SD: Standard Deviation
TABLE VI: Students’ Performance
Example Group Instruction Group
All Users Female Male All Users Female Male
Tasks (per student) | (per student) | (per student) | (per student) | (per student) | (per student)
Task 1 | Number of Major errors 12 (1.20) 1 (0.50) 11 (1.38) 15 (1.50) 5 (1.67) 10 (1.43)
Number of Minor errors 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
Rate of task completed without errors | 78% 94% 74% 73% 71% 74%
Task 2 | Number of Major errors 20 (2.00) 5 (2.50) 15 (1.87) 21 (2.10) 7 (2.33) 14 (2.00)
Number of Minor errors 15 (1.50) 3 (1.50) 12 (1.50) 19 (1.90) 5 (1.67) 14 (2.00)
Rate of task completed without errors | 60% 53% 61% 56% 54% 56%

science difficult. Thus, the self-perception of the girls does not
seem to match the objective achievement.

With respect to the number of errors in the two program-
ming tasks for the inexperienced students (first experiment),
major errors occurred considerably more often than minor
errors, and boys made more major and minor errors than girls.
Thus, the better learning outcomes for girls are also reflected
in the lower number of errors. Furthermore, more major and
less minor errors occurred in the Instruction Group compared
to Example Group.

Concerning the type of errors, on the one hand, the students
in the Instruction Group had more issues with the structure
of the program, and it seemed that they did not follow the
instructions strictly. On the other hand, at least some students
in the Instruction Group were able to follow the instruction
and solved the programming issue with a minimum number
of errors and a maximum performance.

With respect to the two programming tasks for the learners
with some prior programming experience (second experiment),
the girls performed better in the first task, and they indicated
higher willingness to learn how to program compared to the
boys. In the second task the boys performed slightly better than
the girls, and the learners in the Example Group performed
better than the learners in the Instruction Group. Thus, the
novice girls with some prior experience in computer science
and programming had a better self-perception which matches
their objective achievements. Furthermore, the learners in the
Example Group performed better than the learners in the
Instruction Group across the two programming tasks.

With respect to the number of errors across the two
programming tasks, in Experiment 2, major errors occurred
considerably more often than minor errors. In the first task,
boys made more major errors than girls, and in the second task,
girls made more major errors than boys. Thus, the learning
outcome for girls in the first and second task is reflected by the
number of errors. Furthermore, more major and minor errors
occurred in the Instruction Group compared to the Example
Group. Concerning the type of errors, on the one hand, the
learners in the Instruction Group had more issues with the
placing of blocks in their corresponding loops, and it seems
that they did not strictly follow the instruction which was given
to them. On the other hand, the performance and the number
of errors fluctuated among the students in the Instruction
Group. One might argue that the students who participated
in Experiment 2 already attended a computer science course,
and thus, it is not clear why they still made errors related to
the program structure. However, they tried different ways to
solve the programming issue. Thus, it seems that they made
more errors while trying to solve the issue.

2) When learning how to program with a visual block-based
programming environment embedded in a smart living lab, is
interest in computer science and programming fostered more
when learners are presented worked examples compared to
instructional procedures? Does this effect depend on gender?

According to the analysis of our pre-questionnaire data,
overall there is a significant difference in learners’ willingness
to learn programming by gender. This result is important
as it is observed only among learners without programming

experience and repeated in the post-questionnaire where the
boys indicated that they would like to learn programming
significantly more than the girls. With respect to the students’
programming experience, an interesting result shows that the
students’ willingness to learn programming dropped among
inexperienced learners towards the end of the training session.
In contrast, the level of perceived difficulty for computer
science decreased among inexperienced learners towards the
end of the training session. Thus, it can be concluded that pro-
gramming experience has an important influence on students’
view on learning programming and on the perceived difficulty
of computer science. The type of supplementary documents
did not have a significant influence in this respect in both
experiments.

Even if the learners in Experiment 2 showed a positive
attitude toward working with a visual programming environ-
ment, a one-day programming workshop may have a negative
influence on both inexperienced boys and girls. The influence
of supplementary documents is not clear as they did not differ
significantly in terms of the interest in computer science,
student’s willingness to learn programming, and the perceived
difficulty for computer science. Furthermore, novices indicated
an opinion strongly towards using blocks and smart living labs
for programming purposes. The students found computer sci-
ence easier to understand after the training session. However,
this short programming workshop had also a negative influence
on their willingness to learn programming; thus, further studies
should assess effects in a long-term perspective.

B. Implications

The future needs computer scientists and programmers from
different gender. However, we are aware that getting young
students interested in computer science and programming,
especially female learners, is difficult. The results of our
training sessions show that students are able to start building
their own programs which can be applied to the smart living
lab. In this respect, visual programming environments as well
as supplementary documents can be helpful to simplify pro-
gramming for learners and to provide computational support
for them. Our main take-home message from these user studies
is that visual block-based programming within a smart envi-
ronment is suitable in order to improve self-confidence among
young learners to begin with software programming activities.
Furthermore, another advantage of beginning to expose young
learners to software programming activities is that learners can
realize that computer science can be presented in a way which
is not necessarily difficult to understand. The results obtained
from our experience are promising, as inexperienced girls were
able to perform successfully two programming tasks with the
provided programming environment. This is supporting the
results presented in [1] that no significant difference was
observed in software-based project scores by gender. However,
our studies showed that inexperienced students’ interest in
learning how to program can be decreased, especially among
female students. This result is in contrast to results from other
programs targeting young female learners in Germany like
[24] which showed that by providing opportunities for K-6
female students to have positive experiences in STEM fields,
we may have them in the future in STEM professions. While

it is not possible to trace our result back to specific features
of the training session, it might be possible that the short
duration of only one day had a negative influence. Thus, it
remains an open point for future research to assess effects of
the duration of trainings on attitudes towards computer science
and programming.

We would like to emphasize that our results might be
affected by the nature and number of programming tasks as
well as by the length of the training sessions. Follow-up studies
are required in order to understand how young learners react
to extracurricular programming workshops running for several
days in different contexts within smart living labs such as
programming robots and microcontrollers. There, we can find
out the sustainability of programming skills that they learned
in order to transfer them to other contexts. Another question
for future work is to ascertain when K-12 learners can move
from visual block-based programming environments to pure
programming Integrated Development Environments (IDEs)
using traditional text-based code syntax. Although our sample
included 44 7t* and 8" grade students, this sample size is
still too small to generalize the findings on a large scale.
Furthermore, studies in different countries and with learners
of different socio-economic status might as well shed light on
effects of visual block-based programming environments and
smart living labs on young learners’ knowledge acquisition
and interest in computer science and programming.

VI. CONCLUSIONS

This paper presents a training session developed for in-
experienced students and novices, in order to support the
acquisition of programming skills and in order to support a
positive view towards computer science and programming. The
programming environment is based on a visual block-based
programming application within a smart ambient assisted
living lab. Thus, the more abstract concept of programming
is presented within a real context and tightly connected to
real experiences for the learners.

The results show that students are able to build their
own programs which can be applied to the smart living lab.
Furthermore, the results indicate the importance of supporting
and strengthening the learners’ motivation in learning pro-
gramming and their interest in computer science over a longer
period.

Two prominent instructional interventions to support knowl-
edge acquisition, namely worked examples and instructional
procedures, were compared. As the results did not strongly
support one of them, it can be concluded that both are appro-
priate in order to help learners to acquire basic programming
skills.

Future work should investigate how long-term training
sessions affect the learners’ interest in computer science and
programming as well as acquisition of programming skills.
In addition, it should be investigated how to adapt training
sessions to individual prior knowledge and learning processes
in order to support motivation and knowledge acquisition
in an optimal way. This study shows the potential of using
visual block-based programming environments in the context
of smart living labs in order to foster young students’ pro-
gramming skills, and to enable them to begin with software
programming activities.

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

191

[10]

[11]

[12]

[13]
[14]

REFERENCES

F. J. Gutierrez, J. Simmonds, N. Hitschfeld, C. Casanova, C. Sotomayor, and V. Pefia-
Araya, “Assessing software development skills among k-6 learners in a project-based
workshop with scratch,” in Proc. of the 40th International Conference on Software
Engineering: Software Engineering Education and Training. ~ACM, 2018, pp. 98—
107.

F. Kalelioglu, “A new way of teaching programming skills to k-12 students: Code.
org,” Computers in Human Behavior, vol. 52, pp. 200-210, 2015.

S. Y. Lye and J. H. L. Koh, “Review on teaching and learning of computational
thinking through programming: What is next for k-127" Computers in Human
Behavior, vol. 41, pp. 51-61, 2014.

I. F. de Kereki and A. Manataki, “code yourself and a programar: a bilingual mooc
for teaching computer science to teenagers,” in Frontiers in Education Conference
(FIE), 2016 IEEE. 1EEE, 2016, pp. 1-9.

V. Barr and C. Stephenson, “Bringing computational thinking to k-12: what is
involved and what is the role of the computer science education community?” Acm
Inroads, vol. 2, no. 1, pp. 48-54, 2011.

L. P. Flannery, B. Silverman, E. R. Kazakoff, M. U. Bers, P. Bontd, and M. Resnick,
“Designing scratchjr: support for early childhood learning through computer pro-
gramming,” in Proc. of the 12th International Conference on Interaction Design and
Children. ACM, 2013, pp. 1-10.

C. S. E S. Committee, “K-12 computer science framework,” 2016, retrieved Septem-
ber 15, 2018 from http://www.k12cs.org.

Y. B. Kafai and Q. Burke, “The social turn in k-12 programming: moving from
computational thinking to computational participation,” in Proc. of the 44th ACM
technical symposium on computer science education. ACM, 2013, pp. 603-608.

V. Paramasivam, J. Huang, S. Elliott, and M. Cakmak, “Computer science outreach
with end-user robot-programming tools,” in Proc. of the 2017 ACM SIGCSE Techni-
cal Symposium on Computer Science Education. ACM, 2017, pp. 447-452.

J. W. Coftey, “A study of the use of a reflective activity to improve students’ software
design capabilities,” in Proc. of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education. ACM, 2017, pp. 129-134.

Y. Qian and J. Lehman, “Students misconceptions and other difficulties in introduc-
tory programming: a literature review,” ACM Transactions on Computing Education
(TOCE), vol. 18, no. 1, p. 1, 2017.

F. Hermans and E. Aivaloglou, “Teaching software engineering principles to k-12
students: a mooc on scratch,” in Proc. of the 39th International Conference on
Software Engineering: Software Engineering and Education Track. 1EEE Press,
2017, pp. 13-22.

D. Bau, “Droplet, a blocks-based editor for text code,” Journal of Computing Sciences
in Colleges, vol. 30, no. 6, pp. 138-144, 2015.

D. Bau, D. A. Bau, M. Dawson, and C. Pickens, “Pencil code: block code for a
text world,” in Proc. of the 14th International Conference on Interaction Design and
Children. ACM, 2015, pp. 445-448.

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

M. Resnick, J. Maloney, A. Monroy-Hernandez, N. Rusk, E. Eastmond, K. Brennan,
A. Millner, E. Rosenbaum, J. Silver, B. Silverman et al., “Scratch: programming for
all,” Communications of the ACM, vol. 52, no. 11, pp. 60-67, 2009.

S. Cooper, W. Dann, and R. Pausch, “Alice: a 3-d tool for introductory programming
concepts,” in Journal of Computing Sciences in Colleges, vol. 15,n0. 5. Consortium
for Computing Sciences in Colleges, 2000, pp. 107-116.

B. Harvey and J. Monig, “Bringing no ceiling to scratch: Can one language serve kids
and computer scientists,” Proc. Constructionism, pp. 1-10, 2010.

N. Fraser, “Google blockly-a visual programming
http://code.google.com/p/blockly. Accessed Sep, 2014, now
https://developers.google.com/blockly/; accessed 10-September-2018.

J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The scratch pro-
gramming language and environment,” ACM Transactions on Computing Education
(TOCE), vol. 10, no. 4, p. 16, 2010.

J. Wittwer and A. Renkl, “Why instructional explanations often do not work: A
framework for understanding the effectiveness of instructional explanations,” Edu-
cational Psychologist, vol. 43, no. 1, pp. 49-64, 2008.

A. Destrebecqz and A. Cleeremans, “Can sequence learning be implicit? new
evidence with the process dissociation procedure,” Psychonomic bulletin & review,
vol. &, no. 2, pp. 343-350, 2001.

R. K. Atkinson, S. J. Derry, A. Renkl, and D. Wortham, “Learning from examples:
Instructional principles from the worked examples research,” Review of educational
research, vol. 70, no. 2, pp. 181-214, 2000.

B. M. McLaren, T. van Gog, C. Ganoe, D. Yaron, and M. Karabinos, “Exploring
the assistance dilemma: Comparing instructional support in examples and problems,”
in International Conference on Intelligent Tutoring Systems. Springer, 2014, pp.
354-361.

B. Ertl, S. Luttenberger, and M. Paechter, “The impact of gender stereotypes on
the self-concept of female students in stem subjects with an under-representation of
females,” Frontiers in psychology, vol. 8, p. 703, 2017.

M. Corporation, “Why europe’s girls aren’t studying stem,” 2017, retrieved Septem-
ber 15, 2018 from http://hdl.voced.edu.au/10707/427011.

J. Huang, T. Lau, and M. Cakmak, “Design and evaluation of a rapid programming
system for service robots,” in The Eleventh ACM/IEEE International Conference on
Human Robot Interaction. 1EEE Press, 2016, pp. 295-302.

N. Spyropoulou, G. Demopoulou, C. Pierrakeas, I. Koutsonikos, and A. Kameas,
“Developing a computer programming mooc,” Procedia Computer Science, vol. 65,
pp. 182-191, 2015.

M. Seraj, S. Autexier, and J. Janssen, “Beesm, a block-based educational program-
ming tool for end users,” in Proc. of the 10th Nordic Conference on Human-Computer
Interaction. ACM, 2018.

MakeCode, “Makecode homepage,” 2018, accessed 03-September-2018. [Online].
Available: https://www.microsoft.com/en-us/makecode.

Y. B. Kafai, “From computational thinking to computational participation in k—12
education,” Communications of the ACM, vol. 59, no. 8, pp. 26-27, 2016.

editor,” URL:
available at

