
Versatile and Flexible Modelling of the RISC-V
Instruction Set Architecture⋆

Sören Tempel1[0000−0002−3076−893X], Tobias Brandt3[0000−0002−7041−4319], and
Christoph Lüth1,2[0000−0002−1121−398X]

1 University of Bremen, 28359 Bremen, Germany tempel@uni-bremen.de
2 Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), 28359 Bremen,

Germany christoph.lueth@dfki.de
3 tobbra91@gmail.com

Abstract. Formal languages are commonly used to model the seman-
tics of instruction set architectures (e.g. ARM). The majority of prior
work on these formal languages focuses on concrete instruction execu-
tion and validation tasks. We present a novel Haskell-based modelling
approach which allows the creation of flexible and versatile architecture
models based on free monads and a custom expression language. Con-
trary to existing work, our approach does not make any assumptions
regarding the representation of memory and register values. This way,
we can implement non-concrete software analysis techniques (e.g. sym-
bolic execution where values are SMT expressions) on top of our model
as interpreters for this model. In contrast to prior work, our modelling
approach is therefore explicitly focused on the creation of custom ISA in-
terpreters. We employ our outlined approach to create an abstract model
and a concrete interpreter for the RISC-V base instruction set. Based on
this model, we demonstrate that custom interpreters can be implemented
with minimal effort using dynamic information flow tracking as a case
study.

1 Introduction and Motivation

An instruction set architecture (ISA) describes the instructions of a processor,
its state (number and types of registers), its memory, and more. It is the central
interface between hard- and software, and as such of crucial importance; once
fixed, it cannot be easily changed anymore. Traditionally, ISAs were specified in
natural language, but that has been found lacking in exactness and completeness.
Therefore, modelling an ISA, in particular a novel one, with formal languages
has become de rigeur. Functional languages can be put to good use here: because
of their declarative nature, we can formulate the behaviour at an abstract level
which at the same time is executable.

Recently, the RISC-V ISA [15,16] has emerged has an attractive alternative
to the prevailing industry standards, such as the Intel x86 or ARM architecture.
⋆ Research supported by the German Federal Ministry of Education and Research

(BMBF) under grant no. 01IW22002 (ECXL) and grant no. 16ME0127 (Scale4Edge).

2 Sören Tempel, Tobias Brandt, and Christoph Lüth

It is open source, patent-free, and designed to be scalable from embedded devices
to servers. Its open nature has sparked a lot of research activity, in particular
many formal models of the ISA, including some in Haskell [3,12,17], or in custom
domain-specific languages (DSLs) such as SAIL [1]. An executable model of the
ISA is a simulator, i.e. software which simulates the behaviour of programs as
faithful to the hardware as possible. As such, an ISA simulator is essentially an
interpreter for machine code (i.e. software in binary form).

Our contribution as presented here is a highly flexible and versatile model of
the RISC-V ISA in Haskell. As opposed to existing models, the interpretation
of the ISA can be varied. To this end, we define an embedded domain-specific
language (EDSL) via a free monad construction. The idea is that the free monad
models the computation given by a sequence of operations from the ISA, where
the model of computation (i.e. the interpretation) can be varied, from simple
state transitions which simulate the ISA faithfully, to sophisticated analyses
such as symbolic execution [2] or dynamic information flow tracking [21]. While
prior work on formal ISA models focuses largely on validation tasks, our model
is specifically centered around the implementation of custom interpreters. To
the best of our knowledge, our approach is therefore the first which enables the
creation of software analysis tools (e.g. symbolic execution) as interpreters for the
formal ISA model. By building these tools on top of an abstract model, we can
(1) easily extend the analysis to additional instructions,4 (2) analyse software
written in any programming language that compiles to machine-code for the
modelled ISA, and (3) potentially ease proofing the correctness of these analyses
tools by leveraging existing proof-assistant definitions for ISA semantics. Our
work is motivated by our experience with riscv-vp [7], an existing RISC-V
simulator written in C++ using SystemC TLM [23]. After having to modify
riscv-vp repeatedly to allow such analyses [13,25,26], we were looking for a
more systematic and structured way to achieve this flexibility. The case study
we have conducted with an exemplary implementation of dynamic information
flow tracking for RISC-V machine code illustrates the feasibility of our approach
for this purpose. Furthermore, performed experiments indicate that interpreters
based on our formal model are able to compete with riscv-vp in terms of
simulation speed.

The remainder of article is structured as follows: we first provide background
information on instruction set architectures and the free monad abstraction. We
then demonstrate how to model a very simple ISA to motivate our model of
the real RISC-V ISA which we present in Sect. 4 and leverage to implement
a custom interpreter as a case study. In Sect. 5 we evaluate the performance
(i.e. simulation speed) of our implementation, and in Sect. 6 we compare our
approach to related work. Lastly, we discuss opportunities for future work and
provide a conclusion.

4 This is paramount for modular ISAs (like RISC-V) where different instruction set
extensions can be combined, thereby, requiring the analysis tool to support them.

Versatile and Flexible Modelling of the RISC-V Instruction Set Architecture 3

Fig. 1. Relation of the ISA to other software and hardware abstraction layers

2 Preliminaries

In the following, we provide background information on instruction set architec-
tures and the free monad abstraction as a prerequisite for the following sections.

2.1 Instruction Set Architectures

As illustrated in Fig. 1, the ISA is the central interface between the hard- and
software and conceptually forms the boundary between the two. In order to allow
the software to interact with the hardware, the ISA specifies the instruction
encoding for binary code and the semantics of said instructions. Software in
high-level programming languages (such as C++ or Haskell) is translated by a
compiler to binary code which then uses the instructions of a specific ISA (e.g.
x86, ARM, or RISC-V). These instructions are then implemented in hardware
by the CPU. As software is commonly loaded into memory, the CPU must fetch
the next instruction from memory and decode it before executing it. This process
is commonly referred to as the fetch-decode-execute cycle [20, Sect. 14.3].

Different instruction set architectures exist. In this paper we are generally
focusing on load-store architectures where operands to instructions are registers.
That is, operations on memory values can only be performed by first loading
them into registers, performing an operation on them, and then storing them
in memory again [20, Sect. 14.6]. Load-store data processing is widely used by
so-called reduced instruction set computer (RISC) architectures (e.g. RISC-V)
which are focused on simplicity of standardized instructions [20, Sect. 15.4].

An ISA is in essence a low-level imperative programming language with pre-
defined bit-vector data types (words of given length). In order to execute or
analyse software in binary form (e.g. in a simulator or a dynamic binary soft-
ware analysis tool), one needs to implement an interpreter for the ISA. Ideally,
such an implementation should be flexible in the sense that it can be re-used
for different execution and analysis tasks without having to re-implement the
entirety of the ISA each time. Prior work on imperative programs has leveraged
monadic abstractions for this purpose; more about this in the following section.

4 Sören Tempel, Tobias Brandt, and Christoph Lüth

2.2 Free Monads

The semantics of imperative programs has many aspects (stateful computations,
continuations, exception) each of which can be modelled in Haskell using mon-
ads; combining these monads is a notoriously tricky exercise. Early work on
interpreting imperative programs used monad transformers for this effect [11],
but more recent work uses free monads for better performance and extensibility
(see Subsect. 6.2 for a detailed comparison); we sketch the basic concepts here.

A free monad for a type constructor f is essentially the closure of f under
application (it contains arbitrarily many applications of f); the appeal is that
we can define the monad separately for each constructor of f, allowing to write
EDSLs in a modular way. The category-theoretic construction of free monads was
given by Kelly [8], and first described in the context of functional programming
by Swierstra [22]. In its simplest form, the free monad is given as:
data Free f a = Pure a | Free (f (Free f a))

In our implementation, we use an enhanced version of this concept. Further
details on the exact implementation are provided in the appendix (Sect. A).

3 Modelling an ISA

We motivate our approach and its advantages by applying it to a very simple
ISA. The ISA implements a 32-bit load-store architecture with five instructions;
each of these can be thought of as representing a class of similar instructions in
a real ISA:

1. LOADI imm reg: Load immediate into register reg.
2. ADD dst src1 src2 : Add two registers into dst.
3. LW dest addr : Load word from memory at addr into register dest.
4. SW addr src: Store word from register src into memory at addr.
5. BEQ reg1 reg2 off : Relative branch by off if registers reg1 and reg2 are equal.

The ISA supports 16 general-purpose registers, word-addressable memory, and
a program counter which points to the current instruction in memory. All reg-
isters and memory values are 32-bit wide and treated as signed values by all
instructions. Instruction fetching and decoding is not discussed. The instruction
set is modelled straightforward as a Haskell data type (where Word and Addr are
type synonyms for 32-bit integers):
newtype Reg = Reg { reg :: Int } deriving (Ord, Eq)
data INSTR

= LOADI Word Reg
| ADD Reg Reg Reg
| LW Reg Addr
| SW Addr Reg
| BEQ Reg Reg Word

Versatile and Flexible Modelling of the RISC-V Instruction Set Architecture 5

type System = (Registers
, Mem
, ProgramCounter)

execute :: INSTR → State System ()
execute i = modify $

λ(regs, mem, pc) → case i of
LOADI imm r → (insert r imm regs,

mem, nextInstr pc)
ADD rd rs1 rs2 → let

v1 = regs ! rs1
v2 = regs ! rs2

in (insert rd (v1+v2) regs,
mem, nextInstr pc)

LW r addr → let
w = mem ! addr

in (insert r w regs, mem,
nextInstr pc)

SW addr r → let
v = regs ! r

in (regs, insert addr v mem,
nextInstr pc)

BEQ r1 r2 off → let
v1 = regs ! r1
v2 = regs ! r2
br = if v1 == v2

then pc+off
else nextInstr pc

in (regs, mem, br)

Listing 1.1. Concrete Haskell model

type System’ = (Registers
, Mem
, ProgramCounter
, Int)

execute’ :: INSTR → State System’ ()
execute’ i = modify $

λ(regs, mem, pc, counter) → case i of
LOADI imm r → (insert r imm regs, mem,

nextInstr pc, counter)
ADD rd rs1 rs2 → let

v1 = regs ! rs1
v2 = regs ! rs2

in (insert rd (v1+v2) regs,
mem, nextInstr pc, counter)

LW r addr → let
w = mem ! addr

in (insert r w regs, mem,
nextInstr pc, succ counter)

SW addr r → let
v = regs ! r

in (regs, insert addr v mem,
nextInstr pc, succ counter)

BEQ r1 r2 off → let
v1 = regs ! r1
v2 = regs ! r2
br = if v1 == v2

then pc+off
else nextInstr pc

in (regs, mem, br, counter)

Listing 1.2. Memory accesses analysis

3.1 A First Model

The execution model formally describes how instructions are executed. It spec-
ifies the system state, and how instructions change the system state (including
the control flow).

Listing 1.1 provides a simple Haskell execution model for our exemplary
ISA. The architectural state System, upon which instructions are executed, is a
tuple consisting of two finite maps for the memory and register file as well as a
concrete program counter. Instruction execution itself is implemented as a pure
function which performs a pattern match on the instruction type and returns a
new system state, embedded into a state monad (State System α).

Unfortunately, this simple ISA model has several shortcomings. Consider a
simple software analysis task for which we want to extend our model to track
the number of memory accesses during program execution. For this, we merely
need to extend the system state with an access counter, and increment the
counter whenever memory access takes place (operations LW and SW). A possible
implementation of this modification is shown in Listing 1.2. Note how, even
though our extension to the previous solution did not modify the control flow of
the program in any way, we still had to restate the control flow for all supported
instructions of our ISA. For our small ISA this inconvenience seem feasible, but
considering that a real ISA has often more than 80 instructions, the task of
modifying the execution becomes cumbersome and error-prone.

6 Sören Tempel, Tobias Brandt, and Christoph Lüth

Hence, our aim is to give a modular, abstract representation of ISA semantics,
based upon which we can then implement software analysis techniques which
require a different kind of interpretation with minimal effort. Such techniques
may include symbolic execution [2] or dynamic information flow tracking [21].

3.2 Our Approach

The problem with the previously outlined approach is that the model of the
semantics (a state transition given by a state monad) is given in a very concrete
and monolithic form: there is no separation between the different aspects of the
semantics. However, the semantics of an ISA has several aspects: memory access,
register access, arithmetic, and control flow, and most analyses only concern one
or two of them (e.g. memory access, or arithmetic). Yet, if we want to change
the representation of the state, this affects all operations; similarly if we want
to reason about e.g. integer arithmetic to show absence of integer overflow, we
need to re-implement all operations.

Thus, we want to give the semantics of our ISA by combining several consti-
tuting parts, which we can change individually. To this end, we define an EDSL
which represents the operations of an abstract machine implementing the ISA,
e.g. loading and storing words into registers, using a free monad as introduced
in Subsect. 2.2.

data Operations r
= LoadRegister Reg (Word → r)
| StoreRegister Reg Word r
| IncrementPC Word r
| LoadMem Addr (Word → r)
| StoreMem Addr Word r
deriving Functor

loadRegister :: Reg → Free Operations Word
loadRegister r = Free (LoadRegister r Pure)

storeRegister :: Reg → Word → Free Operations ()
storeRegister r w = Free (StoreRegister r w (Pure ()))

incrementPC :: Word → Free Operations ()
incrementPC v = Free (IncrementPC v (Pure ()))

loadMem :: Addr → Free Operations Word
loadMem addr = Free (LoadMem addr Pure)

storeMem :: Addr → Word → Free Operations ()
storeMem addr w = Free (StoreMem addr w (Pure ()))

Listing 1.3. EDSL of the machine executing the ISA

Versatile and Flexible Modelling of the RISC-V Instruction Set Architecture 7

The operations comprising the EDSL are given by a parameterized data
type Operations, see Listing 1.35. The Operations data type models the ISA in
abstract terms; the free monad Free Operations describes combinations of these,
which are an abstract representation of the control flow of a (sequence of) ISA
operations. This representation is given by a function controlFlow :: INSTR →
Free Operations (), which defines the control flow for a given instruction (see

Listing 1.4); by composing these we get the control flow for a program (sequence
of operations).
controlFlow :: INSTR → Free Operations ()
controlFlow = λcase

LOADI imm r → storeRegister r imm≫ incrementPC instrSize
ADD rd r1 r2 → do

v1 ← loadRegister r1
v2 ← loadRegister r2
storeRegister rd (v1+v2)
incrementPC instrSize

LW r addr → do
v ← loadMem addr
storeRegister r v
incrementPC instrSize

SW addr r → do
v ← loadRegister r
storeMem addr v
incrementPC instrSize

BEQ r1 r2 off → do
v1 ← loadRegister r1
v2 ← loadRegister r2
if v1 == v2 then incrementPC off else incrementPC instrSize

Listing 1.4. Interpreting an in ISA instruction in the free monad.

To reconstruct the concrete execution of the ISA instructions from the previ-
ous section (Listing 1.1), we need to map the operations in the free monad to
concrete monadic effects, in our case in Haskell’s pure State monad. An exam-
ple implementation of a function which performs this mapping is provided in
Listing 1.5.
execute :: State → Free Operations () → State
execute st = flip execState st ◦ iterM go where

go = λcase
LoadRegister reg f → gets (λ(rs,_,_) → rs ! reg)≫= f
StoreRegister reg w c →

modify (λ(rs, mem, pc) → (insert reg w rs, mem, pc))≫ c
IncrementPC w c → modify (λ(rs,mem,pc) → (rs,mem,pc+w))≫ c
LoadMem addr f → gets (λ(_,mem,_) → mem ! addr)≫= f
StoreMem addr w c →

modify (λ(rs,mem,pc) → (rs, insert addr w mem, pc))≫ c

Listing 1.5. Evaluating the control flow using the State monad

5 For convenience, we add a smart-constructor for each constructor of the data type.

8 Sören Tempel, Tobias Brandt, and Christoph Lüth

Since we have now separated control flow and semantics of effects, we could also
use any other (monadic) effects for the evaluation without changing the control
flow. Reconstructing the example from Listing 1.2 just requires adjustments in
the semantics without restating the control flow as shown in Listing 1.6 (per-
formed adjustments are highlighted using red text color).
execute’ :: State” → Free Operations () → State”
execute’ st = flip execState st ◦ iterM go where

go = λcase
LoadRegister reg f → gets (λ(rs,_,_,_) → rs ! reg)≫= f
StoreRegister reg w c → modify

(λ(rs, mem, pc, counter) →
(insert reg w rs, mem, pc, counter))≫ c

IncrementPC w c → modify
(λ(rs, mem, pc, counter) → (rs,mem,pc+w,counter))≫ c

LoadMem addr f → do
v ← gets (λ(_,mem,_, counter) → mem ! addr)
modify (λ(rs,mem,pc,counter) → (rs, mem, pc, succ counter))
f v

StoreMem addr w c →
modify (λ(rs,mem,pc,counter) →

(rs, insert addr w mem, pc, succ counter))≫ c

Listing 1.6. Executing and counting memory accesses

While this is a major advantage in terms of reusability, there is still room
for improvement. In particular, we are not able to change the semantics of the
expression-level calculations an operation performs, since the data type of our
EDSL assumes concrete types, which entails they are already evaluated. Hence,
we generalize our Operations to allow a representation of the evaluation of ex-
pressions, much like we did for the instructions (except that the evaluation of
expressions is not monadic, hence we do not need a free monad here). For that,
we need to introduce a simple expression language, which will replace all the con-
stant values, e.g. the constructor StoreRegister :: Reg → Word → r becomes
StoreRegister’ :: Reg → Expr w → r, as well as adjust the Operations type
such that it becomes polymorphic in the word type.

Listing 1.7 shows the changes necessary, e.g. the execute’’’ function is now
provided with an expression-interpreter evalE, which is used to evaluate expres-
sions generated by the control flow. The Operations are now polymorphic in the
word-type and the semantics of the internal computations can be changed by
adjusting evalE; this allows our approach to be used to implement various soft-
ware analysis techniques on the ISA level. In the next section, we will present an
application of our approach to the RISC-V ISA, and utilize the resulting RISC-V
model to implement one exemplary software analysis technique as a case study.
data Expr a = Val a | Add (Expr a) (Expr a) | Eq (Expr a) (Expr a)

data Operations’ w r
= LoadRegister’ Reg (Expr w → r)
| StoreRegister’ Reg (Expr w) r

Versatile and Flexible Modelling of the RISC-V Instruction Set Architecture 9

| IncrementPC’ (Expr w) r
| LoadMem’ Addr (Expr w → r)
| StoreMem’ Addr (Expr w) r

evalE :: Expr Word → Word
evalE = λcase

Val a → a
Add e e’ → evalE e + evalE e’
Eq e e’ → if evalE e’ == evalE e then 1 else 0

execute’’’ :: (Expr Word → Word) → State’’
→ Free (Operations’ Word) () → State’’

execute’’’ evalE st = flip execState st ◦ iterM go where
go = λcase

LoadRegister’ reg f → gets (λ(rs,_,_,_) → Val $ rs ! reg)≫= f
StoreRegister’ reg w c → modify

(λ(rs, mem, pc, counter) →
(insert reg (evalE w) rs, mem, pc, counter))≫ c

IncrementPC’ w c → modify
(λ(rs,mem,pc,counter) → (rs,mem,pc+ evalE w, counter))≫ c

LoadMem’ addr f → do
v ← gets (λ(_,mem,_, counter) → mem ! addr)
modify (λ(rs,mem,pc,counter) → (rs, mem, pc, succ counter))
f $ Val v

StoreMem’ addr w c → modify (λ(rs,mem,pc,counter)
→ (rs, insert addr (evalE w) mem, pc, succ counter))≫ c

Listing 1.7. Operations type with simple expression language

4 Modelling the RISC-V ISA

As an application of our approach, we created an abstract model of the RISC-V
ISA. RISC-V is an emerging RISC architecture which has recently gained trac-
tion in both academia and industry. Contrary to existing ISAs, RISC-V is de-
veloped as an open standard free from patents and royalties. It is designed in
a modular way: the architecture consists of a base instructions set and optional
extensions (e.g. for atomic instructions) which can be combined as needed [15].

We refer to our model of the RISC-V architecture as LibRISCV. As the
name suggests, LibRISCV is a Haskell library which can be used to implement
different interpreters for RISC-V software. As such, the library provides an in-
stantiable framework for versatile interpretation of RISC-V software in binary
form. Fig. 2 illustrates how the concepts from Subsect. 3.2 are applied to RISC-V
in order to achieve versatile interpretation. The figure will be further described
in the following subsections.

10 Sören Tempel, Tobias Brandt, and Christoph Lüth

Binary
Code

RISC-V
Instructions

Abstract
Semantics ··

·

1st Actual
Semantics

nth Actual
Semantics

Instr.
Decoder

Formal
Model

Concrete
Interpreter

Symbolic
Interpreter

Custom
Interpreters

Fig. 2. Application of our ISA modelling approach to the RISC-V architecture

4.1 Instruction Decoder

As depicted in Fig. 2, our RISC-V implementation receives binary code as an in-
put value. This binary code constitutes RISC-V machine code and is converted to
an algebraic data structure representing instructions mandated by the RISC-V
standard using an instruction decoder. Contrary to imperative programming lan-
guages, execution and decoding/parsing is heavily intertwined for machine code.
As discussed in Subsect. 2.1, we can only decode the next instruction after finish-
ing execution of the current instruction. For example, when executing a branch
instruction the next fetched instruction depends on the result of the branch.
We make use of lazy evaluation to model the fetch-decode-execute cycle as part
of our control flow description. That is, the fetching of the next instruction is
itself—non-strictly—modelled, using free monads as outlined in Subsect. 3.2.

Contrary to existing work, a description of RISC-V instruction decoding is
not part of our EDSL. Instead, the LibRISCV instruction decoder is auto-
matically generated from riscv-opcodes6, an existing formal language which
describes how binary code is mapped to RISC-V instructions (without modelling
instruction semantics). Based on algebraic data types, returned by the instruc-
tion decoder, we specify the abstract semantics of RISC-V instructions through
a formal ISA model described in the following.

4.2 Formal Model

An overview of the ISA model provided by LibRISCV is available in Fig. 3. As
illustrated in Fig. 2, the central component of the formal model is the descrip-
tion of the abstract instruction semantics which represents the lazily-generated
control flow of the RISC-V ISA operations. As discussed in Subsect. 3.2, we use
free monads for this purpose. For the implementation of free monads, we use
the freer-simple library7. The library provides an improved implementation
of the free monad approach described in the appendix (Sect. A). Within the
abstract description of instruction semantics, all operations on register/memory
6 https://github.com/riscv/riscv-opcodes
7 https://hackage.haskell.org/package/freer-simple

https://github.com/riscv/riscv-opcodes
https://hackage.haskell.org/package/freer-simple

Versatile and Flexible Modelling of the RISC-V Instruction Set Architecture 11

Arch State

Decoder

LibRISCV

Memory

Register File

Expression
Language

ELF Loader

RISC-V Decoder

Abstract
Semantics

Interpreter RISC-V Software

interprets

abstracts
operations

over

loads

creates

stores

instantiates
with

custom type

Fig. 3. Overview of the RISC-V ISA model provided by LibRISCV

values are abstracted using a generic expression language. The expression lan-
guage is implemented as an algebraic data type with an associated evaluation
function, as illustrated in Listing 1.7. The algebraic data type, used by the ex-
pression language, is parameterized over a custom type. The architectural state
(i.e. memory and register file) is also parameterized over this type. As shown
in Fig. 3, the abstract description of instruction semantics is based on an in-
struction type which is generated by the aforementioned instruction decoder.
The decoder is responsible for loading RISC-V software in the Executable and
Linkable Format (ELF) and for decoding/parsing instruction words—contained
in the file—according to the RISC-V specification.

Based on the abstract semantics, we can provide different interpreters which
implement the actual semantics for decoded RISC-V instructions as illustrated
in Fig. 2, such as concrete or symbolic execution of modelled instructions. The
actual semantics implement the state transition for each modelled instruction
while the abstract semantics only describe the control flow. Each interpreter in-
stantiates the expression language with a type. Based on this type, an interpreter
for the formal ISA model (i.e. the expression language and the free Operations
monad) needs to be supplied. Presently, LibRISCV provides a formal model for
the 32-bit variant of the RISC-V base instruction set (40 instructions). Based
on this formal model, we have implemented a concrete interpreter for RISC-V
instructions. Both the model and the concrete interpreter are written in roughly
1500 LOC and can be obtained from GitHub8. Using the concrete interpreter, we
were able to successfully execute and pass the official RISC-V ISA tests for the

8 https://github.com/agra-uni-bremen/libriscv

https://github.com/agra-uni-bremen/libriscv

12 Sören Tempel, Tobias Brandt, and Christoph Lüth

32-bit base instruction set9. These tests include multiple test programs (one for
each instruction) which check if the implemented behavior of an instruction con-
forms to the specification. Passing these tests indicates that our model correctly
captures the semantics of the base instruction set. In the following, we illustrate
how custom interpreters—beyond the standard concrete interpretation—can be
implemented on top of our abstract model, thereby making use of its flexibility.

4.3 Custom Interpreters

Our model of the RISC-V ISA is designed for maximum flexibility and versatil-
ity, along the lines sketched in Subsect. 3.2. This allows implementing different
interpretations of the ISA on top of our abstract model with minimal effort. Con-
ceptually, each custom interpreter implements actual semantics for the abstract
semantics provided by the formal ISA model (see Fig. 2). In order to implement
a custom RISC-V interpreter, an evaluator for the expression language and an
interpreter for the free Operations monad need to be provided. As an example,
dynamic information flow tracking [21], where data-flow from input to output is
analysed, can be implemented using the following polymorphic data type:

data Tainted a = MkTainted Bool a

instance Conversion (Tainted a) a where
convert (MkTainted _ v) = v

The product type Tainted tracks whether a value of type a is subject to data-
flow analysis. Furthermore, a conversion to Word32 is implemented through an
instance-declaration for the Tainted type. This conversion is the only class con-
straint imposed by our abstract model on the type used by the custom inter-
preter.10 An evaluator of the expression language for Tainted Word32 can be
implemented as follows:11

evalE :: Expr (Tainted Word32) → Tainted Word32
evalE (FromImm t) = t
evalE (FromInt i) = MkTainted False $ fromIntegral i
evalE (AddU e1 e2) = MkTainted (t1 | | t2) $ v1 + v2

where (MkTainted t1 v1) = evalE e1; (MkTainted t2 v2) = evalE e2

The evaluator performs standard concrete integer arithmetic on the Word32 en-
capsulated within the Tainted type. However, if one of the operands of the arith-
metic operations is a tainted value, then the resulting value is also tainted. This
enables a simple data-flow analysis for initially tainted values. Based on the eval-
uation function, an interpretation of the control flow is shown in the following,
where f ⇝ g denotes a natural transformation from f to g (as provided by the
freer-simple library):

9 https://github.com/riscv/riscv-tests
10 This constraint is necessary as the instruction decoder operates on Word32 values.
11 The FromImm, FromInt, and AddU constructors belong to our expression abstraction.

https://github.com/riscv/riscv-tests

Versatile and Flexible Modelling of the RISC-V Instruction Set Architecture 13

type ArchState = (REG.RegisterFile IOArray (Tainted Word32)
, MEM.Memory IOArray (Tainted Word8))

type IftEnv = (Expr (Tainted Word32) → Tainted Word32, ArchState)

iftBehaviour :: IftEnv → Free Operations (Tainted Word32) ⇝ IO
iftBehaviour (evalE , (regFile, mem)) = λcase

(ReadRegister idx) → REG.readRegister regFile idx
(WriteRegister idx reg) → REG.writeRegister regFile idx (evalE reg)
(LoadWord addr) → MEM.loadWord mem (convert $ evalE addr)
(StoreWord addr w) → MEM.storeWord mem (convert $ evalE addr)

(evalE w)

This function operates on a polymorphic register and memory implementation.
Expressions are evaluated using evalE, and then written to the register file or
memory. When execution terminates, we can inspect each register and mem-
ory value to check whether it depends on an initially tainted input value. As
shown, the interpreter only implements a subset of the Operations monad and
the expression language; a complete implementation is provided in the example/
subdirectory on GitHub. We have already implemented dynamic information
flow tracking for RISC-V machine code in prior work based on the riscv-vp
simulator mentioned in Sect. 1 [13]. For this prior implementation, we had to
modify riscv-vp extensively to allow for such an analysis to be performed, as it
does not separate instruction semantics from instruction execution. In this con-
text, the case study provided here serves to demonstrate that such techniques
can be more easily implemented on top of an abstract formal model as custom
interpreters for this model.

5 Performance Evaluation

Free monads introduce a well-known performance problem [9, Sect. 2.6] (see
Sect. A). As our approach is focused on implementing interpreters, simulation
performance is important when executing real-world software. To evaluate sim-
ulation speed, we conduct a comparison with existing RISC-V simulators and
specifically quantify the impact of the utilized freer-simple library on sim-
ulation performance. For this purpose, we leverage the existing Embench 1.0
benchmark suite [6]. Embench contains several benchmark applications which
perform different computation-intensive tasks (e.g. checksum calculation). We
compiled all applications for the 32-bit RISC-V base instruction set, executed
them with different RISC-V simulators, and measured execution time in seconds.
The results are shown in Table 1. All experiments have been conducted on an
Intel Xeon Gold 6240 running an Alpine Linux 3.17 Docker image. Artefacts for
the performed evaluation are available on Zenodo [24].

For each benchmark application in Table 1, we list the execution time in
seconds for different RISC-V simulators. In order to specifically quantify the
performance impact of the freer-simple library, we use a modified version
of LibRISCV as a baseline where we manually removed the dependency on

14 Sören Tempel, Tobias Brandt, and Christoph Lüth

Table 1. Execution time comparison in seconds with existing RISC-V simulators

Benchmark baseline libriscv forvis grift riscv-vp

aha-mont64 21.68 41.32 53.81 351.85 14.15
crc32 8.71 16.61 21.08 148.69 5.75
cubic 28.80 57.99 71.90 614.11 19.20
edn 80.16 160.36 193.93 1 680.24 53.62
huffbench 8.31 15.41 20.18 108.62 5.60
matmult-int 41.71 82.72 96.94 820.24 28.07
minver 13.87 26.93 33.87 272.13 9.16
nbody 24.55 48.85 58.78 529.97 16.50
nettle-aes 8.91 16.19 19.99 118.77 5.93
nettle-sha256 6.94 12.50 15.68 89.82 4.43
nsichneu 4.19 7.63 9.30 59.18 2.79
picojpeg 13.99 26.30 38.66 203.55 9.73
qrduino 11.85 23.33 30.91 200.08 8.52
sglib-combined 7.94 14.33 18.52 106.38 5.24
slre 6.82 12.56 15.88 91.89 4.55
st 16.18 32.48 38.65 344.91 10.94
statemate 1.69 3.26 5.20 23.68 1.39
ud 14.44 27.10 33.47 222.35 9.42
wikisort 7.57 14.49 18.32 136.27 5.09

Geometric mean 12.07 23.02 29.37 197.96 8.16

freer-simple and evaluate the ISA directly in Haskell’s IO-monad. As such,
this baseline version is conceptually similar to the primitive model presented in
Subsect. 3.1, i.e. the interpretation cannot be varied and it unconditionally per-
forms concrete execution of RISC-V instructions. To contextualize the obtained
results, we performed further experiments with existing Haskell implementations
of the RISC-V ISA, namely Forvis [3] and GRIFT [17]. Contrary to our own
work, these implementations do not utilize free monads (see Sect. 6). Lastly, Ta-
ble 1 also contains evaluation results for the aforementioned riscv-vp, which is
written in the C++ programming language [7]. To summarize benchmark results,
Table 1 provides the geometric mean on a per-simulator basis in the bottom row.

Naturally, the C++ implementation (riscv-vp) has the lowest execution time
over all benchmark applications. On average, it is roughly three times faster than
our own Haskell implementation of the RISC-V ISA (LibRISCV). This is to be
expected as, contrary to Haskell, C++ is not garbage collected. Nonetheless, and
despite the employment of free monads, LibRISCV is—on average—still faster
than Forvis and GRIFT. While LibRISCV and Forvis have similar execution
time results, GRIFT is significantly slower even though it is also written in
Haskell. We attribute this to the fact that GRIFT employs a bit-vector expres-
sion language, as an additional abstraction layer, to perform operations on regis-
ter/memory values. The performance impact of the free monad abstraction (used
in LibRISCV) can be estimated by comparing simulation performance with the

Versatile and Flexible Modelling of the RISC-V Instruction Set Architecture 15

baseline column in Table 1. As discussed above, the baseline column represents
execution time for a LibRISCV variant which does not use the freer-simple
library. The gathered data indicates that LibRISCV is two times slower than the
baseline version, confirming that free monads have a significant impact on simu-
lation performance. Nonetheless, LibRISCV is still faster than existing Haskell
implementations (Forvis and GRIFT) and approximately only three times slower
than a primitive C++ implementation (riscv-vp). As such, we believe the in-
duced performance penalty to be acceptable for our use case as the advantages
of free monads outweigh this disadvantage by far.

6 Related Work

In the following, we discuss related work on formal ISA semantics, modular
interpreters for imperative programming languages, and software analysis tools.

6.1 Formal Specifications

Formal semantics for ISAs is an active research area with a vast body of exist-
ing research. Specifically regarding RISC-V, a public review of existing formal
specifications has been conducted by the RISC-V foundation in 2019 [14]. From
this review, SAIL [1] emerged as the official formal specification for the RISC-V
architecture. SAIL is a custom DSL for describing different ISAs and comes with
tooling for automatically generating simulators from this description. However,
we believe a functional specification in a programming language like Haskell to
be more suitable for rapid prototyping of custom interpreters. Similar to our own
work, existing work on GRIFT [17], Forvis [3], and riscv-semantics [12] models
the RISC-V ISA using a Haskell EDSL. Forvis and riscv-semantics are explicitly
designed for readability and thus only use a subset of Haskell. As opposed to our
own work, instructions are executed directly and this prior work does not sepa-
rate the description of instruction semantics from their execution. In this regard,
GRIFT is closer to our own work as it uses a bit-vector expression language to
provide a separate description of instruction semantics. However, GRIFT’s ex-
pression language is designed around natural numbers as it focuses on concrete
execution. For this reason, it is not possible to represent register/memory values
abstractly using GRIFT (i.e. not as natural numbers, but for example as SMT
expressions). To the best of our knowledge, our formal RISC-V model is the first
executable model which focuses specifically on flexibility and thereby enables
non-concrete execution of RISC-V instructions.

6.2 Modular Interpreters

Early work on modular interpreters for imperative languages [11] used monad
transformers to compose the monads used to interpret the imperative features
in a modular way. Monad transformers can be thought of as monads with a hole;
instead of a monad m modelling a feature f (say, stateful computation), we give a

16 Sören Tempel, Tobias Brandt, and Christoph Lüth

monad transformer m’ modelling the addition of feature f to an existing monad.
This allows us to combine features in a “stack” of monads, and is implemented
in Haskell in the mtl library12.

However, this approach has three drawbacks: firstly, the monad transformer
already specifies the interaction with the other monad, so the approach is not
truly compositional; secondly, it is not truly extensible, as once the monad stack
is composed, no more monads can be added (this would result in a new monad
stack); and thirdly, there is a severe performance cost for larger monad stacks [9,
Sect. 4]. For these reasons, we use free monads with extensible effects which do
not suffer from these drawbacks as explained in Sect. A, even though lowering
the performance penalty of free monads (cf. Sect. 5) is still an open challenge.

Our work is intended as a framework for abstract interpretation on machine
code. Leveraging monads for this purpose, it is related to work on monadic
abstract interpreters [18]. Besides the use of monad transformers in that work,
there is one crucial difference: for software, abstract interpretation techniques
extract the control flow graph (CFG) of the program ([18] uses continuation-
passing style semantics for this). We model the control flow implicitly using lazy
evaluation; the next instruction is only fetched and decoded once it is needed.

6.3 Binary Software Analysis

Due to the utilization of free monads, we believe our RISC-V ISA model to be
a versatile tool for implementing dynamic software analysis techniques that op-
erate directly on the machine code level. Prior work has already demonstrated
that it is feasible to implement techniques such as symbolic execution [26] or
dynamic information flow tracking [13] for RISC-V machine code. However, this
prior work does not leverage functional ISA specifications and thus relies on
manual modifications of existing interpreters and is not easily applicable to ad-
ditional RISC-V extensions or other ISAs (ARM, MIPS, . . .). For this reason,
the majority of existing work on binary software analysis does not operate di-
rectly on the machine code level and instead leverages intermediate languages
and lifts machine code to these languages [4,5,19].

This prior work therefore operates on a higher abstraction level and can thus
not reason about architecture-specific details (e.g. instruction clock cycles) dur-
ing the analysis. By building dynamic software analysis tools on an abstract
ISA model, we can bridge the gap between the two approaches; we can operate
directly on the machine code level while still making it easy to extend the anal-
ysis to additional instructions or architectures. This is especially important for
modular ISAs like RISC-V.

7 Discussion and Future Work

So far, we have only applied our approach to the RISC-V architecture. Nonethe-
less, we believe the concepts described in Subsect. 3.2 to be applicable to other
12 https://hackage.haskell.org/package/mtl

https://hackage.haskell.org/package/mtl

Versatile and Flexible Modelling of the RISC-V Instruction Set Architecture 17

architectures as well. We have, focused on the RISC-V architecture due to its
simplicity as we consider the main contribution of this paper to be the implemen-
tation of custom interpreters on top of a formal ISA model. A possible direction
for future work would be focusing more on modelling aspects by supporting ad-
ditional RISC-V extensions (especially from the privileged specification [16]),
further RISC-V variants (e.g. 64- and 128-bit RISC-V), and maybe even ad-
ditional ISAs (e.g. ARM). Alternatively, it would also be possible to perform
further experiments with additional interpreters for our abstract ISA model. We
are specifically interested in complementing our own prior work on symbolic ex-
ecution of RISC-V machine code by implementing it on top of the formal ISA
model proposed here, thereby making it easier to extend this prior work to addi-
tional RISC-V extension or even additional architectures [26]. More broadly, one
end goal of our work in this regard would be facilitating formal ISA models for
the implementation of binary software analysis tools along the lines sketched in
Subsect. 6.3. Compared to the prevailing prior work on binary software analysis
tools—which lifts machine code to an intermediate representation—we believe
that building these tools on top of a formal ISA model also allows easier proofs
of their correctness. An interesting direction for future work would therefore
be investigating the issue of correctness of custom ISA interpreter. As illus-
trated in Fig. 2, correctness proofs are paramount as we need to ensure that
both the abstract and the actual semantics correctly implement the behaviour
mandated by the modelled ISA. Considering that our approach is specifically
designed to support multiple actual semantics—through custom interpreters—
manual validation is infeasible. Instead, it may be possible to leverage existing
proof-assistant definitions for ISAs [1] to prove the correctness of created ISA
interpreters through computer-aided theorem proving.

8 Conclusion

We have presented a flexible approach for creating functional formal models of
instruction set architectures. The functional paradigm gives a natural and con-
cise way to model the instruction format on different levels of abstraction, and
the structuring mechanisms allow us to relate these levels. This way, by leverag-
ing free monads, our approach separates instruction semantics from instruction
execution. Contrary to prior work, our approach does not make any assumption
about the representation of memory/register values. Therefore, it can be used
to implement software analysis techniques such as dynamic information flow
tracking or symbolic execution; achieving the benefits outlined in Sect. 1.

We have demonstrated our approach by creating an abstract formal model of
the RISC-V architecture. Based on this formal RISC-V model, we have created
a concrete interpreter—which passes the official RISC-V ISA tests—for the 32-
bit base instruction set and a custom interpreter for information flow tracking
as a case study. An evaluation conducted with the Embench benchmark suite
indicates that our concrete interpreter is faster than prior executable Haskell
models of the RISC-V architecture. In future work, we would like to model

18 Sören Tempel, Tobias Brandt, and Christoph Lüth

additional extensions of the RISC-V architecture, perform further experiments
with additional interpreters for our model, and investigate correctness proofs
for these interpreters through computer-aided theorem proving. To stimulate
further research in this direction, we have released our formal RISC-V model as
open source software on GitHub.

References
1. Armstrong, A., Bauereiss, T., Campbell, B., Reid, A., Gray, K.E., Norton, R.M.,

Mundkur, P., Wassell, M., French, J., Pulte, C., Flur, S., Stark, I., Krishnaswami,
N., Sewell, P.: ISA semantics for ARMv8-a, RISC-V, and CHERI-MIPS. Proc.
ACM Program. Lang. 3(POPL) (Jan 2019). https://doi.org/10.1145/3290384

2. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. 51(3) (May 2018). https:
//doi.org/10.1145/3182657

3. Bluespec, Inc.: Forvis: A formal RISC-V ISA specification. GitHub, https://
github.com/rsnikhil/Forvis_RISCV-ISA-Spec, accessed 2022-12-06

4. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: A binary analysis
platform. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification.
pp. 463–469. Springer Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-22110-1_37

5. Chipounov, V., Kuznetsov, V., Candea, G.: S2E: A platform for in-vivo multi-
path analysis of software systems. In: Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems. p. 265–278. ASPLOS XVI, Association for Computing Machinery, New
York, NY, USA (2011). https://doi.org/10.1145/1950365.1950396

6. Free and Open Source Silicon Foundation: Embench: A modern embedded bench-
mark suite, https://www.embench.org/, accessed 2023-01-24

7. Herdt, V., Große, D., Pieper, P., Drechsler, R.: RISC-V based virtual prototype: An
extensible and configurable platform for the system-level. Journal of Systems Archi-
tecture 109, 101756 (2020). https://doi.org/10.1016/j.sysarc.2020.101756

8. Kelly, G.M.: A unified treatment of transfinite constructions for free algebras,
free monoids, colimits, associated sheaves, and so on. Bulletin of the Aus-
tralian Mathematical Society 22(1), 1–83 (Aug 1980). https://doi.org/10.1017/
S0004972700006353, publisher: Cambridge University Press

9. Kiselyov, O., Ishii, H.: Freer monads, more extensible effects. SIGPLAN Not.
50(12), 94–105 (Aug 2015). https://doi.org/10.1145/2887747.2804319

10. Kiselyov, O., Sabry, A., Swords, C.: Extensible effects an alternative to monad
transformers. In: Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell.
vol. 48, pp. 59–70 (Jan 2014). https://doi.org/10.1145/2578854.2503791

11. Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters. In:
Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. p. 333–343. POPL ’95, Association for Computing Ma-
chinery, New York, NY, USA (1995). https://doi.org/10.1145/199448.199528

12. Massachusetts Institute of Technology: riscv-semantics. GitHub, https://github.
com/mit-plv/riscv-semantics, accessed 2022-12-06

13. Pieper, P., Herdt, V., Große, D., Drechsler, R.: Dynamic information flow track-
ing for embedded binaries using SystemC-based virtual prototypes. In: 2020
57th ACM/IEEE Design Automation Conference (DAC). pp. 1–6 (2020). https:
//doi.org/10.1109/DAC18072.2020.9218494

https://doi.org/10.1145/3290384
https://doi.org/10.1145/3290384
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://github.com/rsnikhil/Forvis_RISCV-ISA-Spec
https://github.com/rsnikhil/Forvis_RISCV-ISA-Spec
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1145/1950365.1950396
https://www.embench.org/
https://doi.org/10.1016/j.sysarc.2020.101756
https://doi.org/10.1016/j.sysarc.2020.101756
https://doi.org/10.1017/S0004972700006353
https://doi.org/10.1017/S0004972700006353
https://doi.org/10.1017/S0004972700006353
https://doi.org/10.1017/S0004972700006353
https://doi.org/10.1145/2887747.2804319
https://doi.org/10.1145/2887747.2804319
https://doi.org/10.1145/2578854.2503791
https://doi.org/10.1145/2578854.2503791
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528
https://github.com/mit-plv/riscv-semantics
https://github.com/mit-plv/riscv-semantics
https://doi.org/10.1109/DAC18072.2020.9218494
https://doi.org/10.1109/DAC18072.2020.9218494
https://doi.org/10.1109/DAC18072.2020.9218494
https://doi.org/10.1109/DAC18072.2020.9218494

Versatile and Flexible Modelling of the RISC-V Instruction Set Architecture 19

14. RISC-V Foundation: ISA Formal Spec Public Review. GitHub (2019), https://
github.com/riscvarchive/ISA_Formal_Spec_Public_Review, accessed 2022-12-
06

15. RISC-V Foundation: The RISC-V Instruction Set Manual, Volume I: User-Level
ISA (Dec 2019), https://github.com/riscv/riscv-isa-manual/releases/
download/Ratified-IMAFDQC/riscv-spec-20191213.pdf, Document Version
20191213

16. RISC-V Foundation: The RISC-V Instruction Set Manual, Volume
II: Privileged Architecture (Jun 2019), https://github.com/riscv/
riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/
riscv-privileged-20190608.pdf, Document Version 20190608-Priv-MSU-
Ratified

17. Selfridge, B.: GRIFT: A richly-typed, deeply-embedded RISC-V semantics written
in Haskell. In: SpISA 2019: Workshop on Instruction Set Architecture Specification
(Sep 2019), https://www.cl.cam.ac.uk/~jrh13/spisa19/paper_10.pdf

18. Sergey, I., Devriese, D., Might, M., Midtgaard, J., Darais, D., Clarke, D., Piessens,
F.: Monadic abstract interpreters. In: Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation. pp. 399–410.
PLDI ’13, Association for Computing Machinery, New York, NY, USA (Jun 2013).
https://doi.org/10.1145/2491956.2491979

19. Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,
Grosen, J., Feng, S., Hauser, C., Kruegel, C., Vigna, G.: SOK: (state of) the art of
war: Offensive techniques in binary analysis. In: 2016 IEEE Symposium on Security
and Privacy (SP). pp. 138–157 (2016). https://doi.org/10.1109/SP.2016.17

20. Stallings, W.: Computer Organization and Architecture: Designing for Perfor-
mance. Pearson Education Inc., ninth edn. (2012)

21. Suh, G.E., Lee, J.W., Zhang, D., Devadas, S.: Secure program execution via dy-
namic information flow tracking. In: Proceedings of the 11th International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems. p. 85–96. ASPLOS XI, Association for Computing Machinery, New York,
NY, USA (2004). https://doi.org/10.1145/1024393.1024404

22. Swierstra, W.: Data types à la carte. Journal of Functional Programming 18(4),
423–436 (Jul 2008). https://doi.org/10.1017/S0956796808006758

23. System C Standardization Working Group: IEEE Standard for Standard SystemC
Language Reference Manual. Tech. rep., IEEE (2012). https://doi.org/10.1109/
IEEESTD.2012.6134619

24. Tempel, S., Brandt, T., Lüth, C.: Artifacts for the 2023 trends in functional pro-
gramming publication: Versatile and flexible modelling of the RISC-V instruction
set architecture. Zenodo (Apr 2023). https://doi.org/10.5281/zenodo.7817414

25. Tempel, S., Herdt, V., Drechsler, R.: Automated detection of spatial memory safety
violations for constrained devices. In: Proceedings of the 27th Asia and South
Pacific Design Automation Conference. ASPDAC ’22 (2022). https://doi.org/
10.1109/ASP-DAC52403.2022.9712570

26. Tempel, S., Herdt, V., Drechsler, R.: SymEx-VP: an open source virtual prototype
for OS-agnostic concolic testing of IoT firmware. Journal of Systems Architecture
p. 12 (2022). https://doi.org/10.1016/j.sysarc.2022.102456

27. Wadler, P., Thiemann, P.: The marriage of effects and monads. ACM Transactions
on Computational Logic 4(1), 1–32 (2003). https://doi.org/10.1145/601775.
601776

https://github.com/riscvarchive/ISA_Formal_Spec_Public_Review
https://github.com/riscvarchive/ISA_Formal_Spec_Public_Review
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf
https://www.cl.cam.ac.uk/~jrh13/spisa19/paper_10.pdf
https://doi.org/10.1145/2491956.2491979
https://doi.org/10.1145/2491956.2491979
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1145/1024393.1024404
https://doi.org/10.1145/1024393.1024404
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.5281/zenodo.7817414
https://doi.org/10.5281/zenodo.7817414
https://doi.org/10.1109/ASP-DAC52403.2022.9712570
https://doi.org/10.1109/ASP-DAC52403.2022.9712570
https://doi.org/10.1109/ASP-DAC52403.2022.9712570
https://doi.org/10.1109/ASP-DAC52403.2022.9712570
https://doi.org/10.1016/j.sysarc.2022.102456
https://doi.org/10.1016/j.sysarc.2022.102456
https://doi.org/10.1145/601775.601776
https://doi.org/10.1145/601775.601776
https://doi.org/10.1145/601775.601776
https://doi.org/10.1145/601775.601776

20 Sören Tempel, Tobias Brandt, and Christoph Lüth

A Free Monads and Extensible Effects

Subsect. 2.2 introduced the free monad for a type constructor f as the closure
of f under application, conceptually given as
data Free f a = Pure a | Free (f (Free f a))

However, this implementation incurs a severe performance penalty. In this ap-
pendix, we explain how the library that we use 13 remedies these deficiencies.

The problem is that each application of the functor f corresponds to one
application of the constructor Free, and moreover, when running the computa-
tion we need to compose from the inside (from the right), whereas we construct
monads from the outside (left):
run :: (Monad m, Functor f) ⇒ (f (m a) → m a) → Free f a → m a
run _ (Pure x) = pure x
run p (Free f) = p (fmap (run p) f)

This makes the run-time of the simple approach quadratic. Kiselyov et al. [9,10]
extended the approach, by representing each application of f with a continuation:
data Freer f a where

Pure :: a → Freer f a
Impure :: f x → (x → Freer a f) → Freer f a

This is a generalized algebraic data type (GADT); it is needed here (as opposed
to a plain recursive data type) because the argument type a changes in the
continuation (the first argument of Impure)14. The resulting free monad can be
implemented more efficiently, by concatenating all the continuations in a queue,
which gives a linear run-time [9].

The data type Freer is not fully extensible: once the type variable f is fixed,
we cannot later extend it (by adding new types for computations). In our case,
this means we have to foresee all possible interpretations in our interpretation
of the ISA, or alternatively change the implementation. This limitation can be
overcome by combining the free monad with extensible effects (see also [27]).
Effects insert labels, which are evaluated later, for computational features; they
can be made extensible by using an open union type (a type Union r v with
injection function inj :: t v→ Union r v and partial projection prj :: Union r
v→Maybe (t v)) as labelling type. Crucially, this union type can be extended
at run-time, so we can add effects to our analysis functions later on as we need
them; e.g. we can adapt the way in which we evaluate expressions, using symbolic
evaluation instead of fixed operations on bit-vectors.

Thus, freer-simple uses Union r v as the functor type, and a second type
Arrs encapsulates the type-indexed queues:
data Eff r a where

Pure :: a → Eff r a
Impure :: Union r x → Arrs r x a → Eff r a

This representation is both efficient and extensible, making it flexible as required.
13 The aforementioned freer-simple library.
14 The same effect can be achieved by an existential type variable for x.

	Versatile and Flexible Modelling of the RISC-V Instruction Set Architecture

