
Exact Synthesis of Ternary Reversible Functions

using Ternary Toffoli Gates

Abhoy Kole∗, P. Mercy Nesa Rani†, Kamalika Datta†, Indranil Sengupta‡ Rolf Drechsler§

∗ B. P. Poddar Institute of Management and Technology, Kolkata, India

Email: abhoy.kole@gmail.com

† National Institute of Technology Meghalaya, Shillong, India

Email: {mercyranip, kdatta}@nitm.ac.in

‡ Indian Institute of Technology, Kharagpur, India

Email: isg@iitkgp.ac.in

§ University of Bremen, Germany

Email: drechsler@informatik.uni-bremen.de

Abstract—Realization of logic functions using ternary re-
versible logic is known to require lesser number of lines as
compared to conventional binary reversible logic. This aspect
of ternary reversible logic has motivated researchers to explore
various synthesis approaches in the past. Existing synthesis
methods require additional lines (called ancilla lines) for syn-
thesis, which is expensive from the quantum implementation
point of view. There is no reported work for ternary reversible
logic synthesis that require the minimum possible number of
gates and also lines. This class of synthesis methods is called
exact synthesis. In this paper two exact synthesis methods for
ternary reversible logic have been proposed for the first time,
one based on boolean satisfiability (SAT) and the other based
on level-constrained heuristic search technique. A permutation
representing a reversible ternary truth table is given as input,
and a reversible circuit consisting of generalized ternary Toffoli
gates that implements the permutation is obtained as output.
Experimental studies have been carried out on various randomly
generated ternary reversible functions.

Keywords: Ternary reversible logic, exact synthesis, boolean
satisfiability, heuristic search

I. INTRODUCTION

Research in the area of reversible logic has been motivated

by Landauer [1] and Bennett [2], and has drawn the attention

of researchers for more than one decade in the search of

an alternate technology that can provide very low power

consumption. A number of synthesis approaches have been

proposed for reversible circuits, that map a given function

specification to a cascade of reversible gates. These methods

can be broadly classified as Exact, which guarantee minimum

cost solutions but are computationally very complex, and Non-

exact, which do not guarantee optimality but can perform

synthesis in less amount of time. Methods for exact synthesis

have been explored for binary reversible circuits [3], [4],

[5], [6], [7] mainly to compare the quality of the solutions

generated by non-exact synthesis algorithms with respect to

the optimal ones. However, no such exact synthesis methods

exist in the literature for ternary reversible logic.

The reversible gates as synthesized are typically mapped to

gates from some well-known quantum gate library to evaluate

the cost of implementation. Research in multivalued reversible

and quantum computing have picked up recent years, because

they promise low cost implementations both in terms of

number of gates and lines [8], [9], [10], [11], [12], [13], [14],

[15], [16]. The basic unit of information in a multivalued

quantum system is called a qudit. For an n-valued quantum

system, a qudit can be expressed as a linear superposition of

the basis states |0〉, |1〉,|n−1〉. A qudit for n = 3 is referred

to as a qutrit, which corresponds to a ternary quantum system

with states |0〉, |1〉, and |2〉.
A number of works have been reported for the synthesis of

logic functions using ternary reversible gates, which generates

sub-optimal solutions and use various ternary reversible gates

for synthesis. However, no exact synthesis method for ternary

reversible circuits exists in the literature that guarantees mini-

mum gate solutions. In this context, the present work proposes

two exact synthesis approaches for ternary reversible circuits

for the first time. The first approach is based on mapping the

synthesis problem into a boolean 0 problem and then using a

SAT solver to get the solution. The second approach is based

on mapping the synthesis problem as a state-space search

problem, and using level-constrained heuristic search to get the

solution. Results show that the heuristic search based approach

is better only for very small circuit instances as compared to

the SAT-based approach.

The rest of the paper is organized as follows. Section II

provides a background of ternary reversible logic and some

existing synthesis approaches. Section III presents the SAT-

based exact synthesis approach, while section IV discusses

the heuristic search based approach. Section V presents the

experimental results, while section VI concludes the paper.

II. BACKGROUND

In this section we briefly introduce ternary reversible gates

and some the variations proposed in the literature, and some

existing synthesis approaches for ternary reversible logic.

A. Ternary Reversible Functions and Gates

Definition 1. An n-input ternary reversible function f repre-

sents a bijection f : Tn → Tn, where T denotes the set of

ternary logic values {0, 1, 2}.

A ternary reversible function can be realized as a cascade

of ternary reversible gates. Some of the ternary reversible

gates that have been proposed in the literature are Toffoli gate,

controlled-NOT gate, and NOT gate as shown in Figure 1.

• A ternary Toffoli gate T : {c1, c2; t} contains two control

lines c1 and c2 and one target line t. The target line

changes to t′ (= t ⊕3 1) when both c1 and c2 are in

state |2〉.
• A ternary controlled-NOT gate CNOT : {c; t} contains

one control line c and a target line t. Here also the target

line changes to t′ (= t⊕3 1) when c is in state |2〉.
• A ternary NOT gate always changes (t⊕3 1) the state of

the target line t.

Different versions of Toffoli gates are also available. In the

present work we consider the one proposed in [17].

c1 c1

c2 c2

t t′

(a)

c c

t t′

(b)

t t′

(c)

Fig. 1: Ternary reversible gates. (a) Toffoli gate, (b) controlled-

NOT gate, (c) NOT gate

In the literature three kinds of conditions under which a

Toffoli or CNOT gate triggers have been mentioned [10], [11],

[18]: (i) when all the controls are in state |2〉, (ii) when all the

controls are in state |1〉, and (iii) when one control is in state

|1〉 and the other in state |2〉.
To evaluate the cost of implementation, reversible gates

are realized using elementary quantum gates (each of unit

cost). For conventional reversible logic we usually use the

NCV quantum gate library [19]. For ternary reversible gates,

one of the commonly used quantum elementary gate is the

Muthukrishnan-Stroud (M-S) gate [20], which is a 2-qutrit gate

MS(C;t), defined as follows:

t′ = Z(t), if C = |2〉

= t, otherwise

and depicted in Figure 2.

The state of the control line C remains unchanged. Z
represents a unitary operation that can be one of +1, +2, 12,

01, and 02, with the corresponding mappings illustrated in

Table I.

c c

t t′Z

Fig. 2: Muthukrishnan-Stroud (MS) gate

TABLE I: Truth table of MS-gate

Target t′

t Z(+1) Z(+2) Z(12) Z(01) Z(02)

|0〉 |1〉 |2〉 |0〉 |1〉 |2〉
|1〉 |2〉 |0〉 |2〉 |0〉 |1〉
|2〉 |0〉 |1〉 |1〉 |2〉 |0〉

A ternary Toffoli gate can be realized using M-S gates as

shown in Figure 3, which only uses gates corresponding to

Z(+1) and Z(+2).

c1 c1

c2 c2

|0〉 |0〉

t t′

+1 +1

+1

+2 +2

Fig. 3: Ternary Toffoli gate using M-S gates

B. Existing Works on Ternary Reversible Logic Synthesis

In this subsection, we discuss a few significant works related

to ternary reversible logic synthesis. Broadly various ternary

reversible synthesis methods can be classified into three main

categories viz., group theory based synthesis, Ternary Galois

Field Sum of Products (TGFSOP) based synthesis and some

miscellaneous approaches (like, based on genetic algorithm).

In [10] Li et al. presented the synthesis of ternary reversible

circuits with the minimum number of ancilla lines and garbage

lines. They have converted conventional ternary logic circuits

into ternary reversible logic circuits and the permutations are

obtained from the truth table. The 3-cycle permutations are

decomposed into the product of 0 3-cycles. Then the 0 3-

cycles are synthesized using ternary NOT gate and ternary

Toffoli gate. Here, ternary Toffoli gate fires when the control

inputs are 2. The merit of this approach is the number of

ancilla lines and garbage lines are less in the realization of

ternary half and full adders as compared to [12], at the cost

of an increase in the number of gates.

In [15], Mondal et al. presented the synthesis of balanced

ternary reversible logic circuits. Balanced ternary reversible

logic consists of 3 states, −1, 0 and +1. They have pro-

posed balanced ternary NOT, CNOT and C2NOT gates. The

realizations for full adder, half adder, single-trit multiplier

and double-trit multiplier circuits are shown. The hardware

complexity of synthesis has been reduced significantly using

this approach.

In [13] Khan et al. proposed constant ternary literals for

the variables to represent functions. They have also proposed

the composite ternary literals and reduced post literals. They

used 16 Ternary Galois Field Expansions (TGFE) and three

different types of ternary decision diagrams to realize ternary

benchmarks for the first time.

In [21] Khanom et al. presented a GA based solution to

realize ternary half adder using M-S gates. GA allows to find

appropriate combination of the gates that realize ternary logic

functions. Redundant gates presented in the synthesized circuit

are eliminated using a post GA reduction process.

III. SAT BASED EXACT SYNTHESIS

In this section we present a SAT based exact synthesis

approach for ternary reversible circuits. This is basically an

extension of existing SAT based exact synthesis approaches for

binary reversible circuits to the ternary domain. The method

exhaustively searches for an assignment of input variables

satisfying constraints encoded in SAT formulation to realize a

given function Fz using d number of Multiple Control Ternary

Toffoli (MCTT) gates. In order to obtain minimal gate realiza-

tion, the search starts with d = 1 and continues incrementing

the value of d until the specification become satisfiable. The

problem encoding is similar to the approach presented in [5],

[6]. For the sake of completeness, we reintroduce all the

constraints and extend them to the ternary domain.
a) Encoding Toffoli gate: For an n variable ternary re-

versible function Fz , a Toffoli gate T (Ck; tk) at depth

k can be selected in n.2n−1 ways where control (Ck)
and target (tk) lines can be selected 2n−1 and n ways
respectively. The selection vectors for control and target
lines are encoded as follows:

t
k = (tk⌈log2 n⌉ . . . t

k
1) C

k = (ckn−1 . . . c
k
1)

for 0 ≤ k < d, where tk represents an integer between

0 to n − 1 in binary format, and (tk + l) mod n is a

control line if ckl = 1.
b) Input/Output constraints: A ternary state z is realized

as a pair of bits (x, y) representing the most and
least significant bits respectively. For a given ternary
reversible function Fz synthesized using d gates, the
Boolean vectors representing the states of each circuit
line are

X
k
i = (xk

i(n−1) . . . x
k
i0) Y

k
i = (yk

i(n−1) . . . y
k
i0)

for 0 ≤ i < 3n and 0 ≤ k ≤ d, and the pair (Xk
i , Y k

i)
represents input, output, or intermediate ternary state
vector Zk

i for k = 0, k = d or 0 < k < d, respectively.
The constraints for input and output of the truth table
are set as:

3n−1∧

i=0

X
0
i = ix ∧X

d
i = Fx(i) ∧ Y

0
i = iy ∧ Y

d
i = Fy(i)

where the pairs (Fx, Fy) and (ix, iy) represent the MSBs

and LSBs of the given function Fz and n-variable input

i, respectively.
c) Functional constraints: Depending on the input Zk

i

(Xk
i , Y k

i) of the k-th gate T (Ck; tk), the gate output

Zk+1

i (Xk+1

i , Y k+1

i) is computed as

3n−1∧

i=0

d−1∧

i=0

X
k+1
i = Tx(Z

k
i ,C

k
, t

k) ∧ Y
k+1
i = Ty(Z

k
i ,C

k
, t

k)

where the functions Tx(Z
k
i ,Ck, tk)) and

Ty(Z
k
i ,Ck, tk)) together realizes the functionality

of the MCTT gate T (Ck; tk) for the i-th truth table

entry.

A MCTT gate T (Ck, tk) performs the operation (Zk
it⊕3

1) on the target line when all control lines are in state

|2〉, i.e.
∧

c∈C Zk
ic = 2 ⇒

∧
c∈C Xk

ic = 1 ∧ Y k
ic = 0.

Figure 4a shows a ternary CNOT gate. When the control

line is in state |2〉, the target line changes as shown in

Figure 4b.

xk
i0y

k
i0 xk+1

i0 yk+1
i0

xk
i1y

k
i1 xk+1

i1 yk+1
i1

xk
i2y

k
i2 xk+1

i2 yk+1
i2

(a) CNOT

xk
i2 yki2 xk+1

i2 yk+1

i2

0 0 0 1
0 1 1 0
1 0 0 0
1 1 × ×

(b) Zk
i2 ⊕3 1

Fig. 4: Operation of Ternary CNOT gate

Specifically, to realize a 3-variable ternary function, the
following constraints for the k-th MCTT gate with tk =
(10) and Ck = (01) are added on i-th circuit instance
corresponding to the i-th truth table entry.

t
k = (10) ∧ C

k = (01) ⇒ x
k+1
i0 = x

k
i0 ∧ x

k+1
i1 = x

k
i1

∧ x
k+1
i2 = xk

i2 ∧ y
k
i2 ∧ x

k
i0

∧ y
k+1
i0 = y

k
i0 ∧ y

k+1
i1 = y

k
i1

∧ y
k+1
i2 = xk

i2 ∧ yk
i2 ∧ x

k
i0

d) Target line constraints: These constraints ensure that
the target line (tk) never exceeds the number of circuit
lines n:

d−1∧

k=0

t
k
< n

The formulation of the synthesis problem is illustrated by

the following example.

Example 1. Figure 5 shows the SAT formulation for the

ternary function Fz = (6 7 17 0 1 11 3 4 14 15 16 26 9 10 20
12 13 23 24 25 8 18 19 2 21 22 5) with n = 3 variables and

depth d = 3. Each of 33 = 27 truth table entries is represented

by a circuit instance with input and output mapped to the

corresponding truth table input and output. In each instance,

all the 3 gates (marked with dashed rectangles) are defined

by assigning values to their respective control (Ck) and target

(tk) lines.

With all the above constraints defined appropriately, the

synthesis flow can be stated as shown in Algorithm 1. One

restriction of the SAT based approach is that it starts the search

from d = 1 onwards. In other words, it will fail for an identity

reversible function (i.e. d = 0), where zero number of gates

are required. However, this is an extremal case that would

show up with extreme rarity in practical scenarios.

00 = x0
00y

0
00 x3

00y
3
00 = 00

00 = x0
01y

0
01 x3

01y
3
01 = 10

00 = x0
02y

0
02 x3

02y
3
02 = 00

00 = x0
10y

0
10 x3

10y
3
10 = 00

00 = x0
11y

0
11 x3

11y
3
11 = 10

01 = x0
12y

0
12 x3

12y
3
12 = 01

10 = x0
N0y

0
N0 x3

N0y
3
N0 = 00

10 = x0
N1y

0
N1 x3

N1y
3
N1 = 01

10 = x0
N2y

0
N2 x3

N2y
3
N2 = 10

N = 3n − 1

x1
00y

1
00

x1
01y

1
01

x1
02y

1
02

x1
10y

1
10

x1
11y

1
11

x1
12y

1
12

. . .

x1
N0y

1
N0

x1
N1y

1
N1

x1
N2y

1
N2

x2
00y

2
00

x2
01y

2
01

x2
02y

2
02

x2
10y

2
10

x2
11y

2
11

x2
12y

2
12

x2
N0y

2
N0

x2
N1y

2
N1

x2
N2y

2
N2

Fig. 5: Example SAT formulation

Algorithm 1: SAT-based Exact Synthesis

Input: Ternary reversible function Fz

Output: Sequence of MCTT gates that realize Fz

begin
found = false; d = 1;
while (found = false) do

instance = formulateProblem(Fz, d);
result = callSolver(instance);
if (result is satisfiable)

asgn = getAssignement();
circ = createCircuit(asgn);
found = true;

else
d = d+ 1;

endif
end

return circ;

IV. HEURISTIC SEARCH BASED EXACT SYNTHESIS

For an n-variable ternary reversible function, the input-

output relationship can be specified as a permutation defined

on the values (0, 1, 2, . . . , 3n−1). Every n-input MCTT gate

Gi corresponds to a permutation Π(Gi). A sequence of gates

G = {G1, G2, . . . , Gp} implements the permutation Π(G1) o

Π(G2) o · · · o Π(Gp). Given a permutation Πgiven to syn-

thesize, the synthesis problem consists of finding a sequence

of gates G that implements Πgiven.

The synthesis problem can be mapped to a graph search

problem, where each node of the graph represents a permu-

tation. Every (directed) edge of the graph from vi to vj is

labeled with a MCTT gate Gk that maps a permutation Πvi
to

(Πvi
o Π(Gk)). Starting from an initial node that represents

the identity permutation, the objective is to search for a path in

the graph that leads to the desired permutation to synthesize.

For an n-input MCTT gate, the target can be placed in n dif-

ferent ways, while the controls can be placed in various ways

on the (n−1) other lines, resulting in N = n2n−1 possibilities.

Goal

Goal

g(x)

f(x)

h(x)

G1 Gi GN

Fig. 6: Heuristic search for goal node

An n-input MCTT gate is encoded as an ⌈log2n⌉(n − 1)-bit

number, where the first ⌈log2n⌉ bits indicate the position of

the target, while the last (n−1) bits represent the positions of

the control connections. In the search graph, from any node

the number of outgoing edges will be N .

We have implemented the heuristic search algorithm A∗ to

explore the search graph. The cost of a node x is computed

as f(x) = g(x) + h(x), where g(x) represents the cost of the

current node x from the starting node, and h(x) represents the

heuristic function that gives an estimate of the cost from x to

a goal node representing the desired permutation as shown in

Figure 6. g(x) is simply calculated as the number of edges

traversed from the starting node (i.e. number of gates) .

In the implementation, h(x) has been estimated by count-

ing the number of mismatches in the permutation positions

between the current node x and the goal node. Following the

justification given in [22], for a particular bit position, if the

bits change for p/2i positions, then (i + 1) is added to the

heuristic estimate, where p = 2n.

Algorithm 2 shows the steps of level-constrained A∗. The

input provided is the desired permutation P , number of inputs

n, and the maximum number of levels lmax up to which the

search will proceed. The initial permutation Piinit is inserted

into a priority queue OPEN. The function add to OPEN(x)

calculates the cost of a node x and enters it into OPEN.

The function remove from OPEN() returns the node with the

smallest cost from OPEN. The process is repeated until either

the desired permutation is reached, or if the number of levels

exceeds lmax or the time budget runs out.

Algorithm 2: Level Constrained A∗ Synthesis

Input: Desired permutation P, number of inputs n, max. level lmax

Output: Sequence of MCTT gates that realize P
begin

found = 0;
Πinit = (0, 1, 2, . . . , 3n − 1)
initial.perm = Πinit; initial.level = 0;
add to OPEN (initial);
level = initial level;
repeat

NODE = remove from OPEN ();
if (NODE.perm = P) then

found = 1;

Get solution by tracong path from NODE to S;
else

if (NODE.level < level) then
Q = Set of child nodes of NODE;
foreach q ∈ Q do

child.perm = q;
child.level = NODE.level + 1;
add to OPEN (child);

end
endif

endif
level = level + 1;

until ((found = 1) or (level > lmax));
end

In the algorithm, search proceeds with increasing values

of level, starting from the initial node. If a solution is found

for the first time at level i, it clearly means that there was no

solution with levels less than i, and hence the solution obtained

is exact (that is, minimal in number of gates).

V. EXPERIMENTAL STUDY

The exact synthesis tools based on A∗ and SAT solver have

been implemented in C and run on a core-i3 desktop with 2.4

GHz clock and 4 GB memory. The open access SAT solver

MiniSAT [23] is used in the implementation.

To compare the performances of the two implementations,

we have run the synthesis tools on a number of randomly gen-

erated ternary reversible functions in the form of permutations.

The synthesis results are summarized in Table II, where results

for up to 6 lines and 6 gates are shown. The first two columns

give the name of the random permutation and the number of

variables respectively. The permutation p-x-y-z indicates that

the permutation corresponds to a randomly generated ternary

gate netlist with x lines and y gates, where z is the instance

of the random permutation generated. The next three columns

give the number of gates G, the quantum cost in terms of the

number of M-S gates required for implementation, and the run

time in seconds for the SAT based implementation. The last

three columns show the corresponding values for the A∗ based

implementation. The dashed (‘-’) entries indicate that results

could not be obtained due to resource limitations.

The following can be concluded from the synthesis results.

a) Though the run time for the A∗ based tool is less

than that for the SAT based tool for several smaller

permutations, it increases significantly for functions with

larger number of variables and gates. For some of the

permutations (e.g. p-4-5-1), the A∗ tool ran out of

memory and could not give any result.

b) The SAT based tool gave results for some larger func-

tions that the A∗ based tool failed to synthesize; how-

ever, the run time increases rapidly with increase in

number of variables and gates.

VI. CONCLUSION

The problem of exact synthesis of ternary reversible circuits

have been addressed for the first time in this paper. Two differ-

ent exact synthesis methods have been presented, one based

TABLE II: Comparison of synthesis results

Permutations SAT A∗

Name n G cost runtime G cost runtime

p-2-3-1 2 3 3 0.01 3 3 0.00
p-2-3-2 2 3 3 0.01 3 3 0.00
p-2-4-1 2 4 4 0.02 4 4 0.00
p-2-4-2 2 4 4 0.02 4 4 0.00
p-2-5-1 2 5 5 0.01 5 5 0.00
p-2-5-2 2 5 5 0.02 5 5 0.00
p-2-6-1 2 5 5 0.03 5 5 0.00
p-2-6-2 2 6 6 0.03 6 6 0.00
p-3-3-1 3 3 3 0.05 3 3 0.00
p-3-3-2 3 3 11 0.04 3 11 0.00
p-3-4-1 3 4 4 0.07 4 4 0.04
p-3-4-2 3 4 12 0.05 4 12 0.04
p-3-5-1 3 5 5 0.11 5 5 0.22
p-3-5-2 3 5 13 0.08 5 13 0.19
p-3-6-1 3 6 6 0.14 6 6 1.25
p-3-6-2 3 6 10 0.15 6 10 3.20
p-4-3-1 4 3 11 0.17 3 11 0.12
p-4-3-2 4 3 11 0.16 3 11 0.21
p-4-4-1 4 4 12 0.28 4 12 2.75
p-4-4-2 4 4 12 0.28 4 12 1.29
p-4-5-1 4 5 13 0.44 - - -
p-4-5-2 4 5 17 0.39 5 17 43.13
p-5-3-1 5 3 15 0.74 3 15 5.40
p-5-3-2 5 3 11 0.70 3 11 7.91
p-5-4-1 5 4 16 1.12 - - -
p-5-4-2 5 4 12 1.17 - - -
p-5-5-1 5 5 17 2.82 - - -
p-5-5-2 5 5 13 2.33 - - -
p-5-6-1 5 6 14 5.10 - - -
p-5-6-2 5 6 22 5.73 - - -
p-6-3-1 6 3 15 3.93 - - -
p-6-3-2 6 3 19 3.37 - - -
p-6-4-1 6 4 20 5.31 - - -
p-6-4-2 6 4 24 5.91 - - -
p-6-5-1 6 5 25 18.73 - - -
p-6-5-2 6 5 29 19.72 - - -
p-6-6-1 6 6 42 31.66 - - -
p-6-6-2 6 6 54 33.69 - - -

n: no. of lines G: no. of MCTT gates cost: no. of M-S gates

on the A∗ heuristic search algorithm with level constraints,

and the other using a SAT solver. Synthesis results with up

to 6 variables have been reported. As expected, the run times

increase rapidly as the number of variables or required number

of gates increase. These approaches can provide a benchmark

against with the performances of other non-exact synthesis

techniques can be compared.

Non-availability of ternary benchmark has restricted the

experimental analysis in the present work. As a future work,

identifying a set of ternary benchmark functions from their

binary equivalents shall be taken up.

REFERENCES

[1] R. Landauer. Irreversibility and heat generation in the computing
process. Journal of IBM Research and Development, (5):183–191, 1961.

[2] C. H. Bennett. Logical reversibility of computation. Journal of IBM

Research and Development, 17(6):525–532, November 1973.

[3] R. Wille and D. Große. Fast exact Toffoli network synthesis of reversible
logic. In Intl. Conf. on CAD, pages 60–64, 2007.

[4] D. Große, X. Chen, G. W. Dueck, and R. Drechsler. Exact SAT-based
Toffoli network synthesis. In ACM Great Lakes Symposium on VLSI,
pages 96–101, 2007.

[5] D. Große, R. Wille, G. W. Dueck, and R. Drechsler. Exact synthesis
of elementary quantum gate circuits for reversible functions with don’t
cares. In Intl Symp. on Multi-Valued Logic, pages 214–219, May 2008.

[6] D. Große, R. Wille, G. W. Dueck, and R. Drechsler. Exact multiple-
control Toffoli network synthesis with SAT techniques. IEEE Transac-

tions on CAD, 28(5):703–715, May 2009.

[7] D. Große, R. Wille, G. W. Dueck, and R. Drechsler. Exact synthesis
of elementary quantum gate circuits. Multi-Valued Logic and Soft

Computing, 15(4):283–300, 2009.

[8] M. H. A. Khan. GFSOP-based ternary quantum logic synthesis. In Pro-

ceedings of SPIE - The International Society for Optical Engineering,
volume 7797- 16 V.2, pages 1–15, 2010.

[9] M. H. A. Khan. GFSOP based ternary quantum logic synthesis. In In

Proc. Optics and Photonics for Information Processing IV, pages 1–15,
2010.

[10] X. Li, G. Yang, and D. Zheng. Logic synthesis of ternary quantum
circuits with minimal qutrits. Journal of Computers, 8(3):1941–1946,
December 2013.

[11] G Yang, X. Song, M. Perkowski, and J. Wu. Realizing ternary
quantum switching networks without ancilla bits. Journal of Physics

A: Mathematical and General, 38:1–10, 2005.

[12] S. Mandal, A. Chakrabarti, and S. Sur-Kolay. Synthesis techniques for
ternary quantum logic. In Proc. 41st Intl. Symp. on Multiple Valued

Logic (ISMVL), pages 218–223, 2011.

[13] M. H. A. Khan, M. Perkowski, M. R. Khan, and P. Kerntopf. Ternary
GFSOP minimization using Kronecker decision diagrams and their
synthesis with quantum cascades. Journal of Multi Valued Logic and

Soft Computing, 11:567–602, 2005.

[14] F. S. Khan and M. Perkowski. Synthesis of ternary quantum logic
circuits by decomposition. Phys. Rev. A, 62(5):052309/1–8, 2005.

[15] B. Mondal, P. Sarkar, P. K. Saha, and S. Chakraborty. Synthesis of
balanced ternary reversible logic circuit. In Proc. 43rd Intl. Symp. on

Multiple Valued Logic, pages 334–349, 2013.

[16] S. Basu, S. B. Mandal, A. Chakrabarty, and S. Sur-Kolay. An efficient
synthesis method for ternary reversible logic. In Intl. Symp. on Circuits

and Systems (ISCAS), pages 2306–2309, 2016.

[17] M. H. A. Khan. Design of reversible/quantum ternary multiplexer and
demultiplexer. Engineering letters, 13(2):65–69, 2006.

[18] P. M. N. Rani, A. Kole, K. Datta, and A. Chakrabarty. Realization of
ternary reversible circuits using improved gate library. In Proc. 6th Intl.

Conf. on Advances in Computing and Communication, pages 153–160,
2016.

[19] M. Nielsen and I. Chuang. Quantum Computation and Quantum

Information. Cambridge University Press, 2000.

[20] A. Muthukrishnan and C. R. Stroud Jr. Multivalued logic gates for
quantum computation. Phys. Rev. A, 62(5):052309/1–8, 2000.

[21] R. Khanom, T. Kamal, and M. H. A. Khan. Genetic algorithm based
synthesis of ternary reversible/quantum circuit. In Proc. 11th Intl. Conf.

on Computer and Information Technology, pages 270–275, 2008.

[22] K. Datta, G. Rathi, I. Sengupta, and H. Rahaman. Exact synthesis
of reversible circuits using A* algorithm. Journal of Institution of

Engineers (Series B), 96(2):121–130, 2015.

[23] N. Eén and N. Sörensson. MiniSAT SAT solver. MiniSAT is available
at http://minisat.se.

APPENDIX: THE RANDOM PERMUTATIONS

Some of the random permutations for which synthesis

results have been reported in Table II are given below.

p-2-3-1: 7 8 6 1 2 0 4 5 3

p-2-3-2: 3 4 6 7 8 2 0 1 5

p-2-4-1: 7 2 6 1 5 0 4 8 3

p-2-4-2: 3 4 7 8 6 2 0 1 5

p-2-5-1: 8 2 7 1 5 0 4 6 3

p-2-5-2: 6 7 1 2 0 5 3 4 8

p-2-6-1: 2 5 1 4 8 3 7 0 6

p-2-6-2: 7 8 2 0 1 3 4 5 6

p-3-3-1: 0 1 20 3 4 23 15 16 8 9 10 2 12 13 5 24 25 17 18 19 11 21 22 14 6 7 26

p-3-3-2: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 21 22 26 24 25 20 19 23 18

p-3-4-1: 0 1 20 3 4 23 16 17 6 9 10 2 12 13 5 25 26 15 18 19 11 21 22 14 7 8 24

p-3-4-2: 1 2 0 4 5 3 7 8 6 10 11 9 13 14 12 16 17 15 22 23 24 25 26 18 20 21 19

p-3-5-1: 9 10 2 12 13 5 25 26 15 18 19 11 21 22 14 7 8 24 0 1 20 3 4 23 16 17 6

p-3-5-2: 10 11 9 13 14 12 16 17 15 19 20 18 22 23 21 25 26 24 4 5 6 7 8 0 2 3 1

p-3-6-1: 21 22 14 24 25 17 19 20 9 3 4 23 6 7 26 1 2 18 12 13 5 15 16 8 10 11 0

p-3-6-2: 10 14 9 13 17 12 11 15 16 19 23 18 22 26 21 20 24 25 4 8 6 7 2 0 5 3 1

p-4-3-2: 27 28 29 30 31 32 33 34 62 36 37 38 39 40 41 42 43 71 45 46 47 48 49 50 51 52 80 54 55 56

57 58 59 60 61 17 63 64 65 66 67 68 69 70 26 72 73 74 75 76 77 78 79 8 0 1 11 3 4 14 6 7 35

9 10 20 12 13 23 15 16 44 18 19 2 21 22 5 24 25 53

p-4-4-1: 0 1 2 3 4 5 15 16 17 9 10 11 12 13 14 79 80 78 45 46 47 48 49 50 6 7 8 27 28 29 30 31 32 42

43 44 36 37 38 39 40 41 25 26 24 72 73 74 75 76 77 33 34 35 54 55 56 57 58 59 69 70 71 63

64 65 66 67 68 52 53 51 18 19 20 21 22 23 60 61 62

p-4-4-2: 27 28 29 30 31 32 33 34 60 36 37 38 39 40 41 42 43 69 45 46 47 48 49 50 51 52 78 55 56 54

58 59 57 61 62 17 64 65 63 67 68 66 70 71 26 73 74 72 76 77 75 79 80 8 0 1 11 3 4 14 6 7 35

9 10 20 12 13 23 15 16 44 18 19 2 21 22 5 24 25 53

p-4-5-1: 0 1 2 3 4 5 15 16 17 9 10 11 12 13 14 80 78 79 46 47 45 49 50 48 6 7 8 27 28 29 30 31 32 42

43 44 36 37 38 39 40 41 26 24 25 73 74 72 76 77 75 33 34 35 54 55 56 57 58 59 69 70 71 63

64 65 66 67 68 53 51 52 19 20 18 22 23 21 60 61 62

p-4-5-2: 3 4 5 6 7 8 0 1 2 12 13 14 15 16 17 9 10 11 48 49 50 51 52 53 45 46 47 30 31 32 33 34 35 27

28 29 39 40 41 42 43 44 36 37 38 75 76 77 78 79 80 72 73 74 58 62 57 61 56 60 55 59 54 67

71 66 70 65 69 64 68 63 22 26 21 20 24 25 19 23 18

p-5-3-1: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 18 22 23 21 25 26 24 27 28 29 30 31 32 33

34 35 36 37 38 39 40 41 42 43 44 46 47 45 49 50 48 52 53 51 54 55 56 57 58 59 60 61 143 63

64 65 66 67 68 69 70 152 73 74 72 76 77 75 79 80 159 81 82 83 84 85 86 87 88 89 90 91 92

93 94 95 96 97 98 100 101 99 103 104 102 106 107 105 108 109 110 111 112 113 114 115 116

117 118 119 120 121 122 123 124 125 127 128 126 130 131 129 133 134 132 135 136 137 138

139 140 141 142 224 144 145 146 147 148 149 150 151 233 154 155 153 157 158 156 160 161

240 162 163 164 165 166 167 177 178 179 171 172 173 174 175 176 187 188 186 181 182 180

184 185 183 168 169 170 189 190 191 192 193 194 204 205 206 198 199 200 201 202 203 214

215 213 208 209 207 211 212 210 195 196 197 216 217 218 219 220 221 231 232 71 225 226

227 228 229 230 241 242 78 235 236 234 238 239 237 222 223 62

p-5-3-2: 3 4 5 6 7 8 0 1 29 12 13 14 15 16 17 9 10 38 21 22 23 24 25 26 18 19 47 30 31 32 33 34 35 27

28 65 39 40 41 42 43 44 36 37 74 48 49 50 51 52 53 45 46 56 57 58 59 60 61 62 63 64 2 66 67

68 69 70 71 72 73 11 75 76 77 78 79 80 54 55 20 84 85 86 87 88 89 81 82 110 93 94 95 96 97

98 90 91 119 102 103 104 105 106 107 99 100 128 111 112 113 114 115 116 108 109 146 120

121 122 123 124 125 117 118 155 129 130 131 132 133 134 126 127 137 138 139 140 141 142

143 144 145 83 147 148 149 150 151 152 153 154 92 156 157 158 159 160 161 135 136 101 165

166 167 168 169 170 162 163 191 174 175 176 177 178 179 171 172 200 183 184 185 186 187

188 180 181 209 192 193 194 195 196 197 189 190 227 201 202 203 204 205 206 198 199 236

210 211 212 213 214 215 207 208 218 219 220 221 222 223 224 225 226 164 228 229 230 231

232 233 234 235 173 237 238 239 240 241 242 216 217 182

p-5-4-1: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 18 22 23 21 25 26 24 27 28 29 30 31 32 33

34 35 36 37 38 39 40 41 42 43 44 46 47 45 49 50 48 52 53 51 63 64 65 66 67 68 69 70 152 72

73 74 75 76 77 78 79 161 55 56 54 58 59 57 61 62 141 81 82 83 84 85 86 87 88 89 90 91 92

93 94 95 96 97 98 100 101 99 103 104 102 106 107 105 108 109 110 111 112 113 114 115 116

117 118 119 120 121 122 123 124 125 127 128 126 130 131 129 133 134 132 144 145 146 147

148 149 150 151 233 153 154 155 156 157 158 159 160 242 136 137 135 139 140 138 142 143

222 162 163 164 165 166 167 177 178 179 171 172 173 174 175 176 187 188 186 181 182 180

184 185 183 168 169 170 189 190 191 192 193 194 204 205 206 198 199 200 201 202 203 214

215 213 208 209 207 211 212 210 195 196 197 225 226 227 228 229 230 240 241 80 234 235

236 237 238 239 223 224 60 217 218 216 220 221 219 231 232 71

p-5-4-2: 3 4 5 7 8 6 0 1 29 12 13 14 16 17 15 9 10 38 21 22 23 25 26 24 18 19 47 30 31 32 34 35 33 27

28 65 39 40 41 43 44 42 36 37 74 48 49 50 52 53 51 45 46 56 57 58 59 61 62 60 63 64 2 66 67

68 70 71 69 72 73 11 75 76 77 79 80 78 54 55 20 84 85 86 88 89 87 81 82 110 93 94 95 97 98

96 90 91 119 102 103 104 106 107 105 99 100 128 111 112 113 115 116 114 108 109 146 120

121 122 124 125 123 117 118 155 129 130 131 133 134 132 126 127 137 138 139 140 142 143

141 144 145 83 147 148 149 151 152 150 153 154 92 156 157 158 160 161 159 135 136 101 165

166 167 169 170 168 162 163 191 174 175 176 178 179 177 171 172 200 183 184 185 187 188

186 180 181 209 192 193 194 196 197 195 189 190 227 201 202 203 205 206 204 198 199 236

210 211 212 214 215 213 207 208 218 219 220 221 223 224 222 225 226 164 228 229 230 232

233 231 234 235 173 237 238 239 241 242 240 216 217 182

p-5-5-1: 0 1 11 3 4 14 6 7 17 9 10 20 12 13 23 15 16 26 19 2 18 22 5 21 25 8 24 27 28 38 30 31 41 33

34 44 36 37 47 39 40 50 42 43 53 46 29 45 49 32 48 52 35 51 63 64 74 66 67 77 69 70 161 72

73 56 75 76 59 78 79 143 55 65 54 58 68 57 61 71 141 81 82 92 84 85 95 87 88 98 90 91 101

93 94 104 96 97 107 100 83 99 103 86 102 106 89 105 108 109 119 111 112 122 114 115 125

117 118 128 120 121 131 123 124 134 127 110 126 130 113 129 133 116 132 144 145 155 147

148 158 150 151 242 153 154 137 156 157 140 159 160 224 136 146 135 139 149 138 142 152

222 162 163 173 165 166 176 177 178 188 171 172 182 174 175 185 187 170 186 181 164 180

184 167 183 168 169 179 189 190 200 192 193 203 204 205 215 198 199 209 201 202 212 214

197 213 208 191 207 211 194 210 195 196 206 225 226 236 228 229 239 240 241 62 234 235

218 237 238 221 223 233 60 217 227 216 220 230 219 231 232 80

p-5-5-2: 30 31 32 34 35 33 27 28 56 39 40 41 43 44 42 36 37 65 48 49 50 52 53 51 45 46 74 57 58 59

61 62 60 54 55 11 66 67 68 70 71 69 63 64 20 75 76 77 79 80 78 72 73 2 3 4 5 7 8 6 9 10 29

12 13 14 16 17 15 18 19 38 21 22 23 25 26 24 0 1 47 111 112 113 115 116 114 108 109 137

120 121 122 124 125 123 117 118 146 129 130 131 133 134 132 126 127 155 138 139 140 142

143 141 135 136 92 147 148 149 151 152 150 144 145 101 156 157 158 160 161 159 153 154

83 84 85 86 88 89 87 90 91 110 93 94 95 97 98 96 99 100 119 102 103 104 106 107 105 81 82

128 192 193 194 196 197 195 189 190 218 201 202 203 205 206 204 198 199 227 210 211 212

214 215 213 207 208 236 219 220 221 223 224 222 216 217 173 228 229 230 232 233 231 225

226 182 237 238 239 241 242 240 234 235 164 165 166 167 169 170 168 171 172 191 174 175

176 178 179 177 180 181 200 183 184 185 187 188 186 162 163 209

p-5-6-1: 0 1 11 3 4 14 6 7 17 9 10 18 12 13 21 15 16 24 20 2 19 23 5 22 26 8 25 27 28 38 30 31 41 33

34 44 36 37 45 39 40 48 42 43 51 47 29 46 50 32 49 53 35 52 66 67 75 69 70 159 63 64 72 76

77 59 79 80 143 73 74 56 58 68 57 61 71 141 55 65 54 81 82 92 84 85 95 87 88 98 90 91 99

93 94 102 96 97 105 101 83 100 104 86 103 107 89 106 108 109 119 111 112 122 114 115 125

117 118 126 120 121 129 123 124 132 128 110 127 131 113 130 134 116 133 147 148 156 150

151 240 144 145 153 157 158 140 160 161 224 154 155 137 139 149 138 142 152 222 136 146

135 162 163 173 165 166 176 168 169 179 171 172 180 174 175 183 177 178 186 182 164 181

185 167 184 188 170 187 189 190 200 192 193 203 195 196 206 198 199 207 201 202 210 204

205 213 209 191 208 212 194 211 215 197 214 228 229 237 231 232 78 225 226 234 238 239

221 241 242 62 235 236 218 220 230 219 223 233 60 217 227 216

p-5-6-2: 30 31 32 34 44 33 27 28 29 39 40 41 43 53 42 36 37 38 48 49 50 52 35 51 45 46 74 57 58 59

61 71 60 54 55 56 66 67 68 70 80 69 63 64 65 75 76 77 79 62 78 72 73 2 3 4 5 7 17 6 9 10 11

12 13 14 16 26 15 18 19 20 21 22 23 25 8 24 0 1 47 111 112 113 115 125 114 108 109 110 120

121 122 124 134 123 117 118 119 129 130 131 133 116 132 126 127 155 138 139 140 142 152

141 135 136 137 147 148 149 151 161 150 144 145 146 156 157 158 160 143 159 153 154 83

84 85 86 88 98 87 90 91 92 93 94 95 97 107 96 99 100 101 102 103 104 106 89 105 81 82 128

192 193 194 196 206 195 189 190 191 201 202 203 205 215 204 198 199 200 210 211 212 214

197 213 207 208 236 219 220 221 223 233 222 216 217 218 228 229 230 232 242 231 225 226

227 237 238 239 241 224 240 234 235 164 165 166 167 169 179 168 171 172 173 174 175 176

178 188 177 180 181 182 183 184 185 187 170 186 162 163 209

