
1

Equivalence Checking on System Level using
A Priori Knowledge

Niels Thole1,2 Heinz Riener1 Goerschwin Fey1,2
1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2Institute of Space Systems, German Aerospace Center, 28359 Bremen, Germany

{nthole,hriener,fey}@informatik.uni-bremen.de

Abstract—Equivalence checking is applied when a system
description is refined iteratively to reduce the manual effort
required to check the consistency before and after modifications.
We present a novel functional equivalence checking algorithm
which is especially designed to verify equivalence of two hardware
descriptions on the system level. Our algorithm uses a stepwise
induction proof guided by counterexamples and incorporates a
priori knowledge provided by a designer to speed up reasoning.
The a priori knowledge is given symbolically in form of a
hypothesis, i.e., a logical formula, which approximates the set of
all possible equivalence states of the two designs. The algorithm
stepwisely refines the hypothesis until either a counterexample has
been found disproving equivalence or the hypothesis overapprox-
imating all equivalence states. Preliminary experiments for two
case studies, a scalable parallel counter and a processor model,
show the applicability of our approach in practice.

I. INTRODUCTION

State-of-the-art design flows for electronic systems start with
the development of an abstract, high-level description of the
system in a programming language like Java or C++. The
high-level description serves as an executable specification that
captures the functional behavior of the system, but neglects
low-level details like timing or power consumption. After
thorough functional testing and verification, the executable
specification is step-wisely refined until finally a hardware
description on register-transfer level is obtained. These step-
wise refinements typically correspond to a lengthy iterative
process, where parts of the description are manually changed
to reduce the abstraction in each iteration. The introduced
manual changes, however, bypass the initial testing process and
may introduce new subtle bugs such that additional functional
verification becomes necessary.

Formal methods like functional equivalence checking allow
for automation: the hardware descriptions before and after
refinement are checked for functional equivalence such that the
introduced changes are guaranteed to not affect the correctness
of the descriptions. Existing equivalence checking approaches,
however, do not scale well to complex system level designs.

In this paper, we propose a novel functional equivalence
checking algorithm which is especially designed to verify the
equivalence of two hardware descriptions on the system level.
We use a coarse-grained definition of functional equivalence,
i.e., two hardware descriptions D1 and D2 are functionally
equivalent if and only if (iff) D1 and D2 produce the same
sequence of outputs when from corresponding input states a

This work was supported by the University of Bremen’s Graduate School
SyDe, funded by the German Excellence Initiative, and the German Research
Foundation (DFG, grant no. FE 797/6-1).

sequence of corresponding operations has been executed. An
additional correspondence mapping has to be provided for the
two descriptions allowing for different public interfaces.

Our algorithm uses a stepwise induction proof guided by
counterexamples and incorporates a priori knowledge provided
by a designer to speed up reasoning. The a priori knowledge
is given symbolically in form of a hypothesis, i.e., a logical
formula, which approximates the set of all possible equivalent
states of the two hardware descriptions. Our algorithm can
handle hypotheses that neither precisely underapproximate nor
overapproximate the set of reachable states. During reasoning,
the initial hypothesis is adapted when new equivalent states
are discovered or states contained in the hypothesis are proven
non-equivalent. Eventually, either the hypothesis becomes
an invariant strictly overapproximating all equivalent states
or a counterexample is found proving non-equivalence of
the two hardware descriptions. A good initial choice, i.e.,
a hypothesis that describes “almost” the set of all possible
equivalent states, significantly speeds up the performance of
equivalence checking. Experimental results indicate that our
approach enables functional equivalence checking for complex
hardware designs in short time when the initial hypothesis is
chosen well.

Previous work on equivalence checking of high-level hard-
ware descriptions written in the programming languages C and
C++, e.g., [7, 6, 4, 3], focuses on similar source code or
concerns modifications of arrays. These approaches typically
use much “finer” definitions of functional equivalence such that
they do not scale well to larger designs. Our approach targets
complex system level designs.

The strength of the underlying algorithm for equivalence
checking lies in the combination of induction and model
checking. Kölbl et al. [5] also use an induction proof, however,
in contrast to our approach their proof is not guided by
counterexamples such that proving non-equivalence of two
hardware descriptions becomes expensive. In the worst case
k-induction [8] requires to unfold the transition relation to
the diameter of the graph which is too large for designs
used in practice. Our algorithm similarly to Property Directed
Reachability (PDR) [2] step-wisely refines a candidate set of
reachable states. While PDR always uses an overapproximation
of the reachable states, our algorithm starts from an initial
approximation of the equivalent states which does not need to
be an over- or underapproximation. This allows to incorporate
a priori knowledge of the designer and leads to a drastic
performance boost when the initial approximation is chosen
wisely.

We have implemented our algorithm for functional equiv-
alence checking of system level hardware designs modeled

2

in the programming language C++. Each hardware module
corresponds to a C++ class. The set of all member variables of
a class defines the state of the module, whereas public methods
define terminating operations that can be executed to change
the state. Our algorithm verifies whether two given modules are
functionally equivalent under a given correspondence mapping
allowing that the public interfaces of the two classes are
different.
In summary, we contribute an algorithm that

1) checks the equivalence of two system level models,
2) exploits a hypothesis that contains a priori knowledge

and does not need to be an under- or overapproximation.
The remainder of the paper is structured as follows: in Sec. II,

we provide definitions. Sec. III describes our algorithm and
Sec. IV presents preliminary experimental results for two case
studies, a scalable parallel counter and a processor model.
Sec. V concludes the paper.

II. PRELIMINARIES

In this paper, the behavior of a hardware module is described
as finite state machine. The exact definition of these finite state
machines depends on the C++ class that models the hardware
module.

Definition 1. A Mealy transducer M = (S,S0,X,Y, φ,ψ) is
a tuple, where S is a finite set of states, S0 ⊆ S is the finite
subset of initial states, X is a finite set of inputs, Y is a finite
set of outputs, φ ∶ S ×X → S is a function that determines
the next state depending on the current state and the input
and ψ ∶ S ×X → Y is a function that determines the output
depending on the current state and the input.

Suppose that M = (S,S0,X,Y, φ,ψ) is a Mealy transducer.
Every sequence (i1, i2, . . . , in) of inputs on M corresponds
to a sequence (s0, s1, . . . , sn) of states such that s0 ∈ S0
and sj = φ(sj−1, ij) for all 1 ≤ j ≤ n.

When we describe a C++ class as Mealy transducer, the set
of states S is defined as S = Var1×Var2×⋅ ⋅ ⋅×Varn, where n is
the number of member variables and each set Vari contains all
possible assignments for the i-th member variable. The initial
state s0 is defined as the variable assignment of the class after
calling the constructor and consequently S0 = {s0}. For the sake
of simplicity, we currently use only one initial state. Multiple
initial states would require overhead for defining which initial
states of two models correspond to each other which could
easily be implemented. The set of inputs X contains a label for
every possible call of a public method f with every possible
argument arg, i.e, X contains all elements f(arg) where f is
a function of the C++ class and arg is a valid argument of f .
As such, each possible argument for a function corresponds
to one element in X . The set Y contains all possible outputs
of all public methods. For void-methods the return value � is
used. The function φ(s, f(args)) returns the assignments of
variables of the C++ object after f(args) was called on the
assignment s. Similarly, ψ(s, f(args)) is the return value of
f(args) on the assignment s.

The used description leads to some restrictions to the C++
class. The finite number of states forbids mechanisms that lead
to an infinite number of states. Furthermore, all methods need
to terminate. Due to the halting problem, equivalence checking
is not decidable if it is not known if methods terminate. On the
abstract implementation of hardware systems these are common
restrictions.

Two Mealy transducers are combined in a product machine.
The product machine describes the behavior of the two C++
classes when running equivalent methods simultaneously.

Definition 2. Given two Mealy transducers M1 =
(S1, S01 ,X1, Y1, φ1, ψ1) and M2 = (S2, S02 ,X2, Y2, φ2, ψ2)
that describe C++ classes and a relation EqMeth ⊆ X1 ×X2
which contains the information about methods that should be
equivalent, the product machine Mc = (Sc, S0c ,Xc, Yc, φc, ψc)
is defined in the following way:
● Sc = S1 × S2

● S0c = S01 × S02
● Xc = EqMeth
● Yc = Y1 × Y2
● φc ∶ Sc ×Xc → Sc with

φc((s1, s2), (f(args)1, f(args)2)) =
(φ1(s1, f(args)1), φ2(s2, f(args)2))

● ψc ∶ Sc ×Xc → Yc with
ψc((s1, s2), (f(args)1, f(args)2)) =
(ψ1(s1, f(args)1), ψ2(s2, f(args)2))

This model differs from the usual product machine which
uses all possible combinations of inputs from both state
machines instead of restricting itself to a subset.

Definition 3. Two models of C++ classes M1 =
(S1, S01 ,X1, Y1, φ1, ψ1) and M2 = (S2, S02 ,X2, Y2, φ2, ψ2)
are defined as equivalent under the relation EqMeth ⊆ X1 ×
X2 iff for all traces of inputs on the product machine
(m1,m2, . . . ,mn) ∈ EqMethn with the corresponding path
(s0, s1, . . . , sn) the outputs of the two models are identical
for every method call, i.e.,

∀i ∈ {1,2, . . . , n}∃y ∈ Y1 ∩ Y2 ∶ ψ(si−1,mi) = (y, y)
When the two elements of the output are equivalent for all

functions in a state s, it is called equivalent. All other states
are called non-equivalent.

For our proof we try to avoid extensive checks for reachability
and utilize a hypothesis that should separate the reachable states
from the non-reachable ones.

Definition 4. A hypothesis hyp is a Boolean logic formula over
the variables of the product machine. The formula hyp defines
a set Hyp ⊆ Sc which contains all states s ∈ S that fulfill the
formula hyp.

We call a hypothesis hyp with the corresponding set Hyp
optimal, if it is sufficient to show the equivalence with a single
inductive step, i.e.,

1) s0 ∈ Hyp
2) ∀s ∈ Hyp, f ∈Xc ∶ s is equivalent ∧ φc(s,m) ∈ Hyp

Our algorithm generates counterexamples and uses them to
refine the hypothesis.

Definition 5. A counterexample is a triple (sstart, sfollow,m) and
depends on a pre- and a post-hypothesis hyppre and hyppost as
well as on a product machine Mc = (Sc, S0c ,Xc, Yc, φc, ψc).
A counterexample describes a starting state sstart ∈ Sc that
fulfills hyppre. When the method m ∈ Xc is called in sstart
the state sfollow is reached, i.e., φc(sstart,m) = sfollow. In the
counterexample the method returns non-equivalent output, i.e.,
∃y1 ∈ Y1, y2 ∈ Y2 ∶ y1 ≠ y2 ∧ ψc(sstart,m) = (y1, y2), or the
following state does not fulfill the post-hypothesis.

3

Fig. 1: Two models for counters

III. OUR ALGORITHM

We present an algorithm that does an equivalence check
between two high-level models of a hardware system described
in C++. This section is introduced by an example that presents
the used models and shows an optimal hypothesis for them.
In Section III-A, we will present our used algorithm. Sections
III-B, III-C, and III-D present the functions used by our
algorithm.

Example 1. We consider two implementations of counters and
apply equivalence checking. The counters have a single variable
counter of the type integer and the public method countUp.

In the first implementation the method countUp uses
the modulo operation, i.e., counter = (counter + 1)
% 4. The method returns the new value of counter.
This counter is interpreted as a state machine Mmod =
(S,S0,X,Ymod, φmod, ψmod). The counter has one variable and
its states correspond to all possible assignments for this variable,
i.e., S = Int, where Int corresponds to all possible assignments
for an integer variable. This is not constrained to all reachable
values but all values that are possible for integer. The method
countUp has no additional arguments and is the only possible
input for the state machine, i.e., X = {countUp}. The only
method returns integer values between 0 and 3 since the modulo
operation is used, i.e, Ymod = {0,1,2,3}. The method φmod
returns the next state. Since countUp is the only possible
input, the next state corresponds to its execution, i.e.,

φmod(counter,countUp) = (counter + 1)%4
The output function ψmod returns the new value of counter and
is by definition identical to φmod.

The second counter uses the if-command to reset the counter
when it would reach 4, i.e.,
counter++; if (counter == 4) counter = 0;

When we interpret this counter as a state machine as well, we
get Mif = (S,S0,X,Yif, φif, ψif) where the sets of states and
the alphabet of inputs are identical to the previous counter.
The function can return all integer values except for 4, i.e.,
Yif = Int ∖ {4}. The functions φif and ψif are different from
their counterpart in the first state machine. For these functions

φif(counter,countUp) = {0 if counter = 3
counter + 1 otherwise

and ψif is identical to φif. An excerpt of these counters is shown
in Fig. 1. The top counter is the modulo-counter and the bottom
one the if-counter. The vertices show the assignments to the
variable counter and the edges represent the next-state functions.
There are no labels on the edges since every edge corresponds
to the function countUp and returns the next state as output.
The initial states are marked with an additional arrow.

When we want to combine these two counters by using our
product machine we require a relation that describes which

Fig. 2: An excerpt of the product machine

Algorithm 1 EquivalenceCheck

Input:
cModel1, cModel2: the C++ models;
eqMeth: relation of equivalent methods from

cModel1 and cModel2;
hyp: starting hypothesis, a logical formula over the variables

of cModel1 and cModel2 that is true for the initial state;
Output:
Return “Equivalent” and an invariant if the models are equiva-
lent and return “Non-equivalent” otherwise
Description:

1: init = getInitState(cModel1, cModel2)
2: hyp = hyp ∧ ¬getPredStates(cModel1, cModel2,

eqMeth, hyp, true)
3: if init→ ¬hyp then return (“Non-equivalent”, false)
4: while a counterexample (sstart, sfollow,m) exists
5: preds = getPredStates(cModel1, cModel2,

eqMeth, hyp,¬sfollow)
6: if init→ preds then
7: if sfollow is a non-equivalent state

then return (“Non-equivalent”, false)
8: else add the following states to the hypothesis and

repeat this step for their descendants that do not
fulfill the hypothesis

9: else hyp = hyp ∧ ¬preds
10: return (“Equivalent”, hyp)

methods should be equivalent to each other. The two countUp
methods are meant to behave identically in the reachable states,
i.e., EqMeth = {(countUp,countUp)}. With this relation
the product machine Counterc = (Sc, S0c ,Xc, Yc, φc, ψc) can
be generated. The set Sc = Smod × Sif = Int × Int describes
all pairs of states of the two original state machines and the
functions φc and ψc determine the next states and outputs of
each original machine. An excerpt of the product machine is
shown in Fig. 2. In the representation of the states, the top value
corresponds to the if-counter and the bottom value corresponds
to the modulo-counter. The reachable states of the product
machine are equivalent, e.g., φc((2,2)) = (φmod(2), φif(2)) =
(3,3). But the non-reachable states are not equivalent, e.g.,
φc((4,4)) = (φmod(4), φif(4)) = (1,5).

In this example the hypothesis hyp = (if.counter =
mod.counter) ∧ 0 ≤ mod.counter ≤ 3, where the prefix mod
and if correspond to the according counters, would exactly
describe all reachable states of the product machine and
is an optimal hypothesis. Using this hypothesis will reduce
the runtime because the algorithm will find no unreachable
counterexamples.

A. The Algorithm EquivalenceCheck

Algorithm 1 shows the pseudo code of our main algo-
rithm EquivalenceCheck. For our approach, we require

4

Algorithm 2 getPredStates

Input:
cModel1, cModel2: the C++ models;
eqMeth: relation of equivalent methods;
pre hyp, post hyp: pre- and post-hypothesis

as logical formula;
Output:
a logical formula that describes all starting states of

counterexamples and their predecessors that
fulfill the pre-hypothesis

Description:
1: result = false
2: while (generateCounterexamples(cModel1,

cModel2, eqMeth, pre hyp, post hyp)) {
3: (c1, c2, . . . , cn) = generateCounterexamples

(cModel1, cModel2, eqMeth, pre hyp, post hyp);
4: cex = generalize((c1, c2, . . . , cn),

pre hyp, post hyp);
5: result = result ∨ cex;
6: pre hyp = pre hyp ∧ ¬cex;
7: post hyp = post hyp ∧ ¬cex;
8: }
9: return result

the initial hypothesis to be true for the initial state of the
product machine. An initial hypothesis that is generated by a
developer should usually fulfill this requirement as well as an
overapproximation like true.

In line 1, we create a formula that describes the initial state
of the product machine. We require this formula for different
checks during our algorithm.

Afterwards, non-equivalent states and their predecessors are
excluded from the hypothesis in line 2. If any non-equivalent
state is reachable, the two models are not equivalent. If one such
state is reachable, calling equivalent methods in a reachable state
would return different results. This step is realized by calling the
function getPredStates with the starting hypothesis as pre-
hypothesis and true as the post-hypothesis. The post-hypothesis
true is valid for all states. This means that counterexamples
due to following states that do not fulfill the hypothesis do not
exist and every generated counterexample is generated due to
non-equivalent output.

If the initial state is excluded from the hypothesis in this
step, a non-equivalent state is reachable and the models are
proved to be not equivalent which is shown in line 3.

In the following loop that starts in line 4 the remaining
counterexamples are handled. Each of these counterexamples
arises from a following state that does not fulfill the hypothesis
because counterexamples due to non-equivalent output were
already removed from the hypothesis in the previous step.

With such a counterexample (sstart, sfollow,m), we generate
the formula preds which describes all predecessors of sfollow
that fulfill the hypothesis in line 5. This is realized by
calling getPredStates with the current hypothesis as pre-
hypothesis and the post-hypothesis ¬sfollow. Thus all states that
fulfill preds are predecessors of sfollow.

If the initial state fulfills preds, sfollow is reachable but does
not fulfill the hypothesis. This is checked in line 6. Since sfollow
is not contained in the hypothesis it needs to be checked if
it is a non-equivalent state. If sfollow is a non-equivalent state,

the models are not equivalent because a non-equivalent state
is reachable which is returned in line 7. Otherwise, sfollow is
added to the hypothesis. Direct descendants of sfollow that do
not fulfill the hypothesis are handled in the same way, i.e.,
checked for non-equivalence and added to the hypothesis. This
process is realized in line 8.

If the initial state does not fulfill preds, we can safely remove
preds from the hypothesis in line 9.

This loop from line 4 to line 9 is repeated until no coun-
terexamples remain. When the equivalence was not disproved
until the end of the loop, the models are equivalent since no
counterexamples remain to invalidate the equivalence which is
returned in line 10. The final hypothesis is an invariant of the
product machine and can support further tests.

It is possible to prove that this algorithm always terminates
and always decides correctly.

B. The Algorithm getPredStates

An essential function that is used by our algorithm is
getPredStates which returns all counterexamples to the
given pre- and post-hypothesis and a subset of their pre-
decessors. The subset contains all predecessors p where
a path from p to a counterexample exists that only uses
states that fulfill the pre-hypothesis. The inputs are iden-
tical to generateCounterexamples. Different from
generateCounterexamples, this function returns a log-
ical formula that describes all starting states of existing
counterexamples as well as a set of predecessors of those
counterexamples. Algorithm 2 shows the pseudo code of
getPredStates.

The return value result of getPredStates is initialized
with false in line 1, which describes the empty set. The loop
that starts in line 2 continues while counterexamples still
exist. Whenever counterexamples to the current pre- and post-
hypothesis are generated in line 3, the counterexamples are
generalized in a first step by using the function generalize
in line 4. This allows us in each step to consider a set of
states instead of only a small number of states. The generalized
counterexamples are added to the result in line 5 and removed
from the pre- and post-hypothesis in the lines 6 and 7. The
removal from the pre-hypothesis prevents the same counterex-
amples from triggering again while the removal from the
post-hypothesis makes every direct predecessor of the current
counterexamples a counterexample as well. The loop is repeated
until no counterexamples remain. Finally, result is returned in
line 9.

C. The Function generateCounterexamples

The function generateCounterexamples returns k
different counterexamples and receives the two models cModel1
and cModel2, the relation of methods equiv methods, as well
as two hypotheses, where the pre-hypothesis pre hyp should
hold in the starting state and the post-hypothesis post hyp
in the following state. The variable k is a constant. If less
than k counterexamples exist, all existing counterexamples are
returned. If no counterexamples exist, null is returned. This
function merely offers an interface to the underlying model
checker that generates a single counterexample.

5

D. The Function generalize

We use the function generalize to generalize a number
of given counterexamples to describe a set of counterexamples.
As additional inputs, a pre- and a post-hypothesis are given.
To generalize the counterexamples, we use three approaches:

1) Check for “don’t care” variables: We check for each
counterexample (sstart, sfollow,m) which assignments of vari-
ables are not relevant for the counterexample and remove
the assignments of those “don’t care” variables. This pro-
vides a set of similar counterexamples instead of a single
state. We start with a formula that describes a starting state
sstart = ⋀i∈I(vari = valuei), where I is an index set over
all variables of the two models. The formula describes the
assignment of variables in the starting state. We start with a
set J ∶= I and try for each element of I to remove it from J .
After removing an element j from J it is tested if all states
that fulfill the formula s′start = ⋀i∈J(vari = valuei) lead to a
counterexample when the method m is called. If some states
do not lead to a counterexample, j is inserted into J again.

2) Check for intervals: In the next step, we try to generalize
the set of counterexamples even more by finding intervals for
the integer variables of the provided models. For each integer
variable var that remains in at least one counterexample after
removing the “don’t care” variables, we determine the values
in the counterexamples as well as the upper and lower bound
according to the pre-hypothesis. The upper and lower bounds
are detected by looking for terms within the pre-hypothesis that
limit var and do not need to be the optimal bounds that can be
taken from the hypothesis. With these values, we generate a
sorted vector (val1, . . . , valk) of values that are assigned to var
in at least one counterexample or are bounds according to the
pre-hypothesis. We try to decrease the upper bound valk of var
according to the pre-hypothesis by replacing it with the highest
value of a counterexample valk−1. The value valk−1 must be
less than valk because the starting state of a counterexample
needs to fulfill the pre-hypothesis. If this is possible, we try to
decrease it even further and try valk−2, valk−3, In a next
step, we try to increase the lower bound analogously.

We use two approaches to verify if the value of var needs to
remain within an interval. The first checks if all states s with
s→ pre hyp∧¬(upper > val > lower) can be starting states of
a counterexample, where upper and lower are the upper and
lower bound of the interval. In this case, all these states s can
be removed from the hypothesis and only states where var is
within the interval remain.

The second approach checks if the value of var is always
within the interval after calling any function when the value
was in the interval before and the pre-hypothesis was valid.
We also need to check if the initial value for var is within the
interval. In this case, it is not possible to leave the interval and
we can safely remove all states where var is not in the interval
from the hypothesis.

The two different presented approaches are used due to
different possible scenarios. In our example of the adders, the
if-counter can be successfully checked by the first method and
the modulo-counter by the second method.

Additionally, we try to shrink the intervals even further by
decreasing the best detected upper bound of the interval and
increasing the lower bound. For each bound, we try to shrink the
interval accordingly, i.e., decrease the upper bound or increase
the lower bound by using an approach similar to binary search
until we find the optimal bound for var.

2 4 6 8 10

0

500

1,000

tru
e

eq
ua

l

lim
it

optimal

Number of parallel counters

R
un

tim
e

in
se

c

Fig. 3: Performance comparison for different hypothesis and
numbers of counter variables.

3) Find equal variables: Finally, we test if some variables in
the models are always equal. If a variable var1 from the first
model and a variable var2 from the second model are different
in all counterexamples, they could be required to be equal. We
check for each of these pairs, if those variables are equal in the
initial state. If they are equal, we verify, similarly to the second
approach for intervals, that they are equal after calling any
function when they were equal before and the pre-hypothesis
was fulfilled. If this checks returns a positive result, we can
return all states where var1 ≠ var2 as counterexamples.

After all generalizations are done, we return the final set of
generalized counterexamples.

IV. EXPERIMENTAL RESULTS

All experiments were conducted on a Lenovo T430 with an
Intel Core i5-3320M CPU with 2.6GHz and 8GB of RAM.
The operating system is Windows 7 32bit. For the generation
of counterexamples, CBMC v4.9 [1] is used as a blackbox.

For the experiments two kinds of counters were implemented.
The compared versions used the operands modulo or if to
count from 0 to 9,999,999 like described in Ex. 1. Multiple
counters are used in a single C++ class, so it is possible
to count on n different and independent variables. The lines
of code in the used classes range from 22 for the one-
dimensional modulo-counter to 88 for the ten-dimensional
if-counter. An optimal hypothesis optimal for this example
consists of two parts, i.e., optimal = equal∧ limit. The first part
equal = ⋀i∈{0,1,...,n}(if.counteri = mod.counteri) describes the
equality between the two counters and limit = ⋀i∈{0,1,...,n}(0 ≤
mod.counteri ≤ 9999999 ∧ 0 ≤ if.counteri ≤ 9999999))
describes the bounds for the variables. The hypothesis optimal
describes exactly all reachable states of the corresponding
product machine.

Equivalence checking on counters is complicated because the
paths to some reachable states are very long. In this example the
equivalence check is further complicated by the fact that most
non-reachable states of the product machine are non-equivalent.

The different runtimes of our algorithm depend on the used
initial hypothesis and the number of parallel counters can be
seen in Fig. 3. We tried the initial hypotheses true, equal, limit,

6

and optimal. We can see, that hypothesis optimal is decided
almost instantly in all cases and takes from 0.7 seconds for
n = 1 to 1.6 seconds for n = 10. The additional runtime due to
additional counters is almost linear due to the removal of “don’t
care” variables. When a better hypothesis is used, the runtime
is further decreased. However, we can even show equivalence
in an acceptable time when we start with the hypothesis true.

Thus, this experiment has shown that our algorithm scales
well in this example with increasing complexity of the model.
The experiment also showed that the runtime highly depends
on the used hypothesis. While we can show equivalence for the
hypothesis true, the runtime increases significantly compared
to an optimal hypothesis.

In our second experiment we considered a simple processor
with a pipeline as a more complicated model. Our processor
uses a 3-step-pipeline and has 4 registers that store 3-bit-values.
There is no external memory and the processor can use 3-op-
codes to add or substract the values in the registers from each
other. The C++ model provides getter-functions for all registers
and a nextStep-function, that corresponds to a single cycle
of the pipeline and loads a new command as argument. The
processor forbids write/read- and write/write-conflicts within
the pipeline and loads a nop-command instead, if a loaded
command would cause a conflict.

The abstract model of the processor is basically a queue.
When nextStep is called, the processor computes the result
of the third command in the pipeline and writes the result in
the according register. The detailed model loads the required
inputs for the first operation in the pipeline, computes the result
of the operation for the second operation and writes the result
of the third operation back into the according register. The
variables that store the data that is required for the next step,
i.e., the read operands and the computed result, are stored in
special registers that do not exist in the abstract model.

First, we determine an optimal hypothesis for this equivalence
check. The registers and operations in the pipeline need to be
equal to their according element in the other model of the
processor. All registers need to be inside their valid range, i.e.,
between 0 and 7, and all operations in the pipeline need to be
valid. There must not be any conflicts in the pipeline. Finally,
the registers for the loaded inputs and the computed result in
the detailed model need to be correct according to the current
registers and the operation that just loaded those values.

When we use an optimal hypothesis that contains this
information, our approach can show the equivalence of the
two models in 10 seconds. We can leave out some information
from the hypothesis and will still get a correct result within an
acceptable time. For example, when we remove the equality
of the second operation in the pipeline, equivalence is shown
in 1789 seconds.

However, changes to the more complex part of the hypothesis,
e.g., omitting the correctness of the computed output value
in the detailed model, will not be found by our heuristics for
generalization and will lead to a time-out. In our experiments,
we aborted this run after 12 hours.

In this second experiment, we showed that complex models
cannot be handled within a feasible time when we use a simple
hypothesis. However, when we use a good hypothesis, our
approach can handle these complex models.

For each optimization we implemented, we provided an
example in our experiments that would not be feasible without
that optimization. When we check the adders and use the
initial hypothesis equal but do not provide the check for

intervals, the algorithm will time out. Similarly, when we use
the hypothesis limit instead and do not provide the optimization
for checks of equivalence, the algorithm will time out as well.
The optimization of removing “don’t care” variables helps
when we analyze parallel counters, which could not be handled
otherwise. On the other hand, when an optimization is not
required for a specific hypothesis, the runtime only increases
slightly. For example, when we remove the check for equality
while using the initial hypothesis equal, the runtime decreases
from 28 seconds to 25 seconds without the optimization for
equality.

V. CONCLUSION

In this paper, we present an algorithm to prove functional
equivalence of two hardware description on the system level.
The presented algorithm uses a hypothesis that is stepwisely
refined to approximate the set of all equivalent states of the two
designs. The hypothesis allows to use the expert knowledge of
a designer to speed up verification. Preliminary experimental
results for two case studies, a scale parallel counter and a
processor model, show that the runtime can be significantly
reduced, even for complex designs, when the “right” hypothesis
has been chosen.

REFERENCES

[1] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda.
A tool for checking ANSI-C programs. In International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 168–176, 2004.

[2] Niklas Eén, Alan Mishchenko, and Robert K. Brayton.
Efficient implementation of property directed reachabil-
ity. In International Conference on Formal Methods in
Computer-Aided Design, pages 125–134, 2011.

[3] Alexander Finder, Jan-Philipp Witte, and Goerschwin Fey.
Debugging HDL designs based on functional equivalences
with high-level specifications. In International Symposium
on Design and Diagnostics of Electronic Circuits &
Systems, pages 60–65, 2013.

[4] Shanghua Gao, Takeshi Matsumoto, Hiroaki Yoshida, and
Masahiro Fujita. Equivalence checking of loops before
and after pipelining by applying symbolic simulation and
induction. In Workshop on Synthesis And System Integration
of Mixed Information Technologies, pages 380–385, 2009.

[5] Alfred Kölbl, Reily Jacoby, Himanshu Jain, and Carl Pixley.
Solver technology for system-level to RTL equivalence
checking. In Design, Automation and Test in Europe, pages
196–201, 2009.

[6] Takeshi Matsumoto, Hiroshi Saito, and Masahiro Fujita.
Equivalence checking of C programs by locally performing
symbolic simulation on dependence graphs. In International
Symposium on Quality of Electronic Design, pages 370–
375, 2006.

[7] Kodambal. C. Shashidhar, Maurice Bruynooghe, Francky
Catthoor, and Gerda Janssens. Functional equivalence
checking for verification of algebraic transformations on
array-intensive source code. In Design, Automation and
Test in Europe, pages 1310–1315, 2005.

[8] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck.
Checking safety properties using induction and a SAT-
solver. In International Conference on Formal Methods in
Computer-Aided Design, pages 108–125, 2000.

