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∗Institute of Computer Science, University of Bremen, Bremen, Germany
{nthole, fey}@informatik.uni-bremen.de

†Institute of Space Systems, German Aerospace Center, Bremen, Germany
‡TIMA Laboratory, CNRS-UJF-INPG, Grenoble, France

lorena.anghel@imag.fr

Abstract—As systems become more complex, the size of tran-
sistors decreases. This effect leads to an increased probability of
transient faults as well as higher variability of the transistors.
Verifying that circuits are robust against transient faults and
variability is mandatory. While formal verification may be used
to prove robustness, a model that includes extracted electrical
parameters and the corresponding timing information is usually
too complex in practice. The contribution of this paper consists in
a hybrid algorithm that can decide robustness. The algorithm uses
Boolean reasoning as well as simulation to decompose the problem
into feasible SAT formulas and still achieves completeness. In
our experiments, we compare the algorithm against our previous
implementation and achieve an average speed up of 1500 on the
ISCAS-85 benchmarks and fault tolerant modifications.

I. INTRODUCTION

Technological improvements allow to continually decrease
the size of transistors. This enables the construction of more
powerful systems that use more transistors and reduces the
required energy for each transistor. As a side effect of this de-
velopment, circuits become more vulnerable against transient
faults like Single Event Transients (SET). Especially critical
systems need to be robust and must handle transient faults to
prevent visible errors. To ensure that a system is robust, the
robustness needs to be verified.

Most work that focuses on formal verification for robust-
ness checking are limited to certain masking effects. The
approaches [3, 4, 5, 9, 11] focus on logical masking while
[8, 2] in addition consider timing effects. In [7] only electrical
masking is considered. In [6], a complex mathematical model
is used.

The contributed algorithm can decide if a circuit is robust
against a given SET. Basic ideas similar to [1] are used for
this check. We describe a front area of the circuit as Boolean
Satisfiability (SAT) formula and utilize a solver to generate
counterexamples that affect the back area. If such a coun-
terexample exists, it is simulated on the whole circuit. When
the counterexample affects the primary outputs, it disproves
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Algorithm 1: ROBUST CHECK
input : a circuit c and an SET s
output: a counterexample that disproves robustness of c

under s or > if c is robust
1 Split c under s into cf and cb
2 f := CREATE SAT(front, s)
3 while

(
(cex := SAT(f)) 6= UNSAT

)
do

4 if SIMULATE(cex) then return cex
5 Block GENERALIZE(cex) in f
6 end
7 return >

equivalence. Otherwise, we refine the original SAT formula to
exclude the detected spurious counterexample.

Our algorithm
• separates the circuit into a front area and a back area

and thus provides a simpler SAT formula for the SAT
solver,

• uses both SAT solving and simulation where simulation
is used to check if detected counterexamples are real or
spurious,

• considers logical, timing, and electrical masking, and
• considers the used technology as well as process varia-

tion or other effects that affect the timing or variability
of the gates.

II. ALGORITHM

The presented algorithm decides whether a given SET s on a
circuit c could lead to erroneous output or the circuit is robust
against the SET under all possible inputs and variability of the
gates. The idea is sketched in Algorithm 1. For this decision,
we separate c into a front area cf and a back area cb (1) as
sketched in Figure 1. We separate the circuit such that all gates
where the effects of the SET reconverge are within cb. The
area cf is described as a SAT formula that includes logical,
timing, and electrical masking as well as variability (2). If s
cannot affect the signals that reach from cf into cb, c is robust.
Otherwise, the SAT solver generates a counterexample cex (3).
We simulate the assignments of cex on the whole circuit c to
check if the assignment affects the primary outputs of c. In that
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Fig. 1. Separation into front and back
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Fig. 2. Runtime experiments comparing our current algorithm (gray) against
our previous implementation (white) on ISCAS-85 circuits, using the normal
(n), TMR (t), and TTMR (T) version

case, cex is a real counterexample and disproves the robustness
of c (4). If the primary outputs are not affected by cex, we
generalize the assignment of cex and block it for future runs of
the SAT solver (5). This process is repeated until either a real
counterexample is found or the SAT formula is refined enough
and does not generate any more spurious counterexamples and
returns that the circuit is robust(6).

III. EXPERIMENTS

In our experiments, we compared the runtime of our new
algorithm to the runtime of [10]. In this implementation,
we split the circuit such that all gates in which the SET
reconverges are within the back area. We used the algorithms
on the circuits from ISCAS-85 and modified each circuit into
two fault tolerant versions. The modifications were Triple
Modular Redundancy (TMR) and Timed TMR (TTMR) like
described in [10].

For the injection location of the SET, we picked a random
gate near the inputs for each circuit. Picking a gate near
the inputs usually leads to a high number of gates that are
affected by the SET. Picking a gate farther away from the
inputs would lead to simpler SAT formulas as less gates are
affected by the SET. This would also result in a smaller back
area which leads to fewer spurious counterexamples and thus
shorter runtimes. The results are shown in Figure 2. If an
execution did not terminate after six hours, it was ended and
resulted in a timeout.

The average speed up on the considered circuits compared
to [10] is 1500. In the unmodified circuits, our new algorithm
is very fast, as the SAT formula that describes the front is of

low complexity and a real counterexample is quickly found
since the original circuits do not provide fault tolerance. In
fault tolerant versions, we can provide a significant speed up
as the counterexamples that are generated by the SAT solver
can be generalized. Especially the TMR versions profit from
generalization as each voter at the outputs only requires the
two inputs from the copied circuits that are not affected by the
SET to be correct and does not need to consider any signals
within the circuit that contains the SET.

While the exact speed up depends on the specific circuit,
we have shown that the runtime decreases in most cases and
only increases slightly in the remaining ones.
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