A Hybrid Algorithm to Conservatively Check the

Robustness

Abstract—With decreasing size of transistors, the impact of
transient faults as well as the local and global variability of tran-
sistors increases, affecting system functions and performances.
Formal verification may be used to prove that a circuit is
robust against transient and parametric faults. However, a model
including timing information combined with extracted electrical
parameters is typically too large in practice. We propose a
hybrid algorithm based on Boolean reasoning and simulation
that decomposes the problem while still achieving completeness
in verification. Our experiments show an average speed up of
748 compared to previous work on ISCAS-85 circuits and fault
tolerant modifications.

I. INTRODUCTION

Due to the continuing decrease of transistors’ size systems
become more powerful and require less energy. However,
smaller transistors are more vulnerable to transient effects
like Single Event Transients (SETs). To prevent an SET from
causing a fault in the system, different methods can be used
to provide fault tolerance. A circuit that is meant to be fault
tolerant still needs to be checked if the adjustments that should
provide fault tolerance really provide robustness against SETs.

An easy way to get a basic idea of the robustness of a circuit
are simulation and testing. But these cannot prove the absence
of possible errors except for very small circuits. On the other
hand, a SAT formula that models the circuit in high detail can
become very complex, especially if the signal that contains the
SET reconverges.

We present a hybrid approach that combines simulation
and formal verification to achieve scalability while keeping
a detailed technology model. We describe a circuit in high
detail dependent on the used technology. The resulting circuit
is partitioned into a front and a back partition. Different
partitionings are possible. For our work, we put all gates that
are affected by reconvergence of the SET in the back partition.
We can easily analyze the front partition by using a SAT solver.
Afterwards, we simulate detected possible counterexamples on
the whole circuit, generalize the counterexamples, and modify
the SAT formula until a robustness can be decided.

Our algorithm considers logical, timing, and electrical mask-
ing as well as variability in the gates.

Different work about the analysis of SETSs exists and focuses
on different aspects. Several techniques focus only on logical
masking [3, 4, 5, 10, 12] which leads to quick decisions as
the abstraction levels like register or gate level can easily be
decided. Other work emphasizes the effects of timing masking
under delay faults [1, 9]. In [8] only electrical masking is
considered. Logical, timing, and electrical masking as well as
variability is considered in [11]. They presented the accuracy
by comparing their model to Spice simulation. We use a similar
but more detailed model that allows a preciser representation
of delays. Miskov-Zivanov [6] uses a mathematical model
with a high grade of detail that considers logical, timing, and
electrical masking to compute the probability of errors. Finally,
simulation-based approaches like Spice simulation or [7] can

of Circuits

only check the effects of faults under a certain set of input
assignments and specific parameters for the fault.

In summary, the contributions of this paper are an algorithm
that

e is compositional as it partitions the circuit into two
partitions to prevent reconvergence in the front partition,

e is hybrid and uses SAT solving to check the front
partition and uses simulation to verify detected coun-
terexamples on the complete circuit,

e considers logical, timing, and electrical masking,

e describes the gates in great detail, specific to the used
technology and considering variability.

In the following Section II, we describe the models used
for our algorithms. The algorithm itself is explained in Sec-
tion III. Section IV discusses why our approach has a good
performance. In Section V, we compare our algorithm to [11].
Finally, Section VI concludes the paper.

II. PRELIMINARIES

Three-valued logic extends Boolean logic by a value X,
meaning that it is not known if that variable is 1 or 0. Opera-
tions on variables are extended accordingly, e.g., 1A X = X
and 0 A X =0.

A circuit C consists of a set C.G of gates, a set C.I of input
signals, and a set C.O C C.G of outputs. To determine the
connections between the gates, the functions C.predecessors :
G — 2IY¢ and C.successors : (G U I) — 29 return the
predecessors or successors of a gate or input signal.

The set C.SO C C.O describes safe outputs and contains
all outputs that are secured, i.e., can correct the effects of an
SET in this output, e.g., using Razor [2].

An SET s that affects C' is modeled by a number of
parameters. The gate s.g describes the location where the SET
strikes. The SET begins at the time s.b € R and ends at
s.e € R. During an offset time at the beginning s.o, € R
and at the end s.o, € R, the signal becomes unknown. In
between the offsets, the signal is inverted.

Each gate ¢ is associated with an operation g.op :
{0,1,X}™ — {0,1, X} that describes the output of the gate
under given input values. The function g.delay : {0,1, X'} x
{0,1, X}™ — R returns the delay of the gate when the input
changes, depending on the old and new input values. For our
algorithm, we only need to consider changes in the inputs
where a single input changes to X or was previously X due
to the form of the SET. To remain conservative, we take the
minimal possible delay with the given input values when a
signal changes to X and the maximal delay when it previously
was X. Due to our conservative handling of the delays, the
time where a signal is X will become longer in any successor
unless the SET is logically masked. In this case, we do not
need delays as the signal is constant. The values g.d,,;, and
g.dyax denote the minimal and maximal delay in g.delay,
respectively. The output values of the gate over time are
described by a vector g.wave € V* where the set V' contains

(Parlition circuit into front and back)

(f:= CREATE_SAT(frony))

robust

not robust

4(Block GENERAE;EE(ce;x) in f)
Fig. 1: Sketch of the algorithm

back
simulation

front :,
SAT formula T

Fig. 2: Partition in front and back

three valued variables. The vector g.switch € R9-wavesize()
contains the times when the output of the gate changes to the
next variable. The first variable in g.wave describes the signal
before the SET affects g and the last variable describes the
signal after the SET has passed g. The variables in between
describe value changes at the output of g due to the SET. The
time g.switch; defines when the signal changes from g.wave;
to wave; ;. For better readability, we combine the vectors
g.wave = (v1, 09, ...,v,) and g.switch = (t1,ta,...,ty_1) to
a single vector g.signal = (v1,t1,v9,t2, ..., Vn—1,tn_1,Un)-
For example, a constant signal would only require a single vari-
able and no switch times and a gate g with g.wave = (v, v2)
and g.switch = (5) would change its output at time 5 from v,
to ve. The according vector g.signal would be (v1, 5, v3).

III. CHECKING FOR ROBUSTNESS

Our compositional computation verifies if a circuit C is
robust against an SET s. If C' is not robust, a counterexample
to the robustness is returned. A counterexample contains an
input assignment that leads to faulty behavior of C under s.
We assume the inputs to be constant and analyze the effects
of the SET to a stabilized circuit.

The algorithm is sketched in Figure 1. In the first step,
the circuit is partitioned into a front and back partition. The
partitioning is sketched in Figure 2. Afterwards, a SAT formula
f is created to describe the front partition. If f is not satisfiable,
the circuit is guaranteed to be robust against s. Otherwise, the
detected assignment is a counterexample cex against robustness
of the front partition. The assignment cex is simulated on
the whole circuit. If the primary outputs of C' are affected
by s under the assignment of cex, the circuit is not robust
and we call cex a real counterexample. Otherwise, cex is a
spurious counterexample, that is generalized and blocked in
f. Afterwards, we continue to check if the modified f is
satisfiable until we can make a decision if the circuit is robust.

In the following sections, we will explain the proposed
algorithm in detail. We start with the top level algorithm
in Section III-A decrease the level of abstraction with each
section.

Algorithm 1: ROBUST_CHECK

input : a circuit C' and an SET s
output: an assignment that leads to faulty behavior in C'
under s or “robust” if no such assignment exists
Glouna =0
Gback =
Qxearch =<s.9>
while Qe <> do
g = Qsearch' pop()
if g € Gfound then
‘ Ghack := Gpack U {g}
else
| Grouna := Grouna U {g}
end
foreach ¢’ € C.successors(g) do Qsearcn- push(g’)

o AU B W N -

[y
=)

[
—

end
Ofmnt = {g eG \ Gback|
(C. successors(g) N Gpaex) 0V g € C.O}
14 f = CREATE_SAT(C’7 G \ Gbacka Ofront, S)
15 while SAT(f) do

-
w N

16 a := getAssignment(f)
17 Qi = Gy : C. 1 — {0,1, X} with a;,(i) = a(4)
18 (asim, real) := SIMULATE (a;,, C, s, C.G)
19 if real then
20 | return a
21 else
2 foreach o € {g € C.O\ C.SO|f.po-faulty,(a)} do
23 f.po-faulty,.addClause(
~ GENERALIZE(0, agim, a, C, 5))
24 end
25 end
26 end

27 return “robust”

A. The algorithm ROBUST_CHECK

Algorithm 1 implements the sketch of Figure 1. In the
beginning we partition the circuit into front and back partition.
For the used partitioning, we want all gates in which the SET
reconverges to be in the back partition. This partitioning leads
to easy SAT formulas that can quickly be solved, To determine
the gates in the back partition we use an approach similar to
breadth search towards the outputs starting in the gate s.g in
lines 1 — 12. We also prepare the set Oy, that contains all
primary outputs as well as all gates in the front partition that
have successors in G in line 13.

After the circuit is partitioned into the front and back
partition, we create a SAT formula f to model the front
partition. This SAT formula is satisfiable if the SET can reach
the back partition and there is a possible fault in the circuit.
Line 14 calls the respective algorithm CREATE_SAT.

While f is satisfiable, potential counterexamples exist which
show the SET reaches the back partition. If f is satisfiable,
we get an assignment @ in line 16. The input assignment
ai, of a is simulated on the complete circuit by calling the
algorithm SIMULATE in line 18 to check if the potential
counterexample is real. The simulation is very similar to the
generation of the SAT formula, but simulates delays for the
given input values accurately using the delay maps of gates.
If the counterexample is real, it proves that the circuit is not

robust and the corresponding assignment is returned in line 20.

When the counterexample is spurious and the SAT formula
assumes for a non-safe primary output o € C.O C.SO that o is
affected by the SET, i.e., f.po-faulty, is true, we determine a
minimal assignment that prevents the SET from reaching o by
calling GENERALIZE. We add the generalized assignment to
f-po-faulty , which is meant to be true if the SET could reach
o. Since the assignment prevents o from being affected by the
SET, we can modity f.gate-faulty, accordingly in line 23.

The loop from lines 15 — 26 further modifies f until either a
real counterexample is found or f is not satisfiable any more.
In the later case, the loop terminates and the algorithm returns
that C' is robust in line 27.

B. The algorithm CREATE_SAT

The algorithm to create the SAT formula that describes the
front partition starts by initializing the SAT formula f with
true in line 1 of Algorithm 2. We use a queue to iteratively
compute the waveform and switch times for each gate. The
queue () is initialized with all successors of the primary inputs
in lines 2 — 5. While @ is not empty, we pop the front element
g of the queue. If g still has predecessors whose waveform is
not defined yet, g is pushed to the back of @) as seen in lines
8-0.

Otherwise, we determine the initial signal g.signal of g in
line 11 by calling COMPUTE_WAVE. The signal is further
modified by considering variable delays in line 12 by calling
VARIABLE_DELAY, adding the SET in case g = s.g in line
13 by calling ADD_SET, and finally considering electrical
masking in line 14 by calling ELECTRICAL_MASKING.

After g.signal computed, we add all successors of g to the
queue that have not been added yet and are part of the front
partition. This is done in lines 15 — 17.

After the loop is done, we require all inputs to be different
from X in lines 20 — 22. Thus, we have only boolean inputs
as all nominal behavior of the circuit is boolean as well and
the value X can only be assigned due to the SET.

In a next step, we introduce a subformula f.fo-faulty, of
f for each non-safe front output 0 € Opyy \ C.SO. This
subformula evaluates to true or X if o is affected by the SET,
i.e., faulty. The output o is faulty iff the signal of the o is not
constant. These subformulas are generated for each output in
lines 23 — 26.

We initialize further subformulas f.po-faulty, for each non-
safe primary output o € C.O\ C.SO. The formula f.po-faulty,
estimates conservatively if o is affected by the SET. Initially,
the formula is true iff at least one front output in the fanin of
o is faulty. The according loop is in the lines 27 — 30.

The final subformula overall-faulty introduced in line 31 is
true iff at least one front output is faulty. The variable overall-
faulty describes that there is a potential error in the circuit.
As we require counterexamples that describe such faults, we
require overall-faulty to be different from 0 by adding the
according clause to f in line 32.

The resulting SAT formula describes the behavior of the
front partition and is only satisfiable if there is a fault in
the front partition that could reach a primary output without
considering the constraints induced by the reconvergencies
only modeled in the back partition.

Algorithm 2: CREATE_SAT

input : a circuit C, a set Gp,n Of gates without potential
reconvergence of the SET, a set Oponr € Gprone Of
output gates of the front part, and an SET s

output: a SAT formula that is satisfiable iff there can be
a fault in the front output in our model of C
under the SET s

f = true

Q:=<>

foreach g € |J; . ; C.succesors(i) do

| Q-push(g)

end

while) #<> do

g :=Q.pop()

if Ip € C. predecessors(g) : p.wave = L then

| Q-.push(g)

else

COMPUTE_WAVE(g, C, f)
VARIABLE_DELAY (g)
if g = s.g then ADD_SET(g, s, f)
ELECTRICAL_MASKING(g)
foreach suc € C'. successors(g) do

if suc.wave = L A\ Q. contains(suc)

A suc € Gjop then Q. push(suc)

o 0 AN A W N

e~ <
AN B W N =D

17 end

18 end

19 end

20 foreach i € C.I do

21 | f.addClause(i # X)

22 end
23 foreach fo € Oppn \ C.SO do
24 w = fo.wave

25 [-fo-faulty;, := new SAT subformula of f:
“(wog =w1 A+ Awp_1 = wy)

26 end
27 foreach po € C.O \ C.SO do
28 w = po.wave

29 [.po-faulty,, := new SAT subformula of f:
\/foefanin(pu) ffofaultyfa

30 end

31 overall-faulty := VoEC’.O\C.SO f.po-faulty,,
32 f.addClause(overall-faulty # 0)

33 return f

C. The algorithms COMPUTE_WAVE, VARIABLE_DELAY,
ADD_SET, and ELECTRICAL_MASKING

The algorithm COMPUTE_WAVE determines the waveform
and switch times of a gate g depending on the inputs and
gates’ operation and is shown in Algorithm 3. We define an
index for each predecessor of g that refers to a position in
the waveform of the predecessor. The current indices refer to
the current inputs and will increase while the algorithm moves
forward in time. We also introduce the current inputs current-in
that depend on the current indexes. As a final preparation, we
define the first variable of g.wave. The preparations are done
in lines 1 — 7.

While there is still an index that refers to an existing
switch time, we determine the minimal switch time m and

Algorithm 3: COMPUTE_WAVE

Algorithm 5: ADD_SET

input : a gate g € C.G, a circuit C, and a SAT formula

f that is currently constructed

1 n:= |C. predecessors(g)|

2 {po,...,pn} = C. predecessors(g)

3 (g, ... in) = (0,...,0)

4 current-in = (co, ..., cpn) = (po.waveg, . .., pn.waveg)
5wy = (wo)

6 Sg 1=

7 f.addClause(wy = g. op(current-in))

8 while 35 € {0,...,n}:4; < p;.switch.size() do

9 m := min(p;.switch;;|j € {0,...,n}})

10 J = indexOf(m)

1 current-in := (Co, . . . Cj—1,P; -Wave;, 11,Cji1,- - -,Cn)
12 1ji=1;+1

13 Sg 1= 840 (M + g.duin)

14 v := new Variable

15 wy 1= wy ° (V)

16 f.addClause(v = g. op(current-in))

17 end

18 g.wave := wy

—
£

g.switch 1= s,

Algorithm 4: VARIABLE_DELAY

input : a gate g € C.G
1 (t1,...,t,) 1= g.switch
2 for j:=2,4,....,n do
3 ‘ tj:=1t; + (g.dmax — g-dmin)
4 end
5 g.switch := (t1,...,t,)

the corresponding index j in the lines 9 and 10. We adjust the
current inputs by using the next variable of the j-th input in
line 11 and increase the index i; by one in line 12. We add
the next switch time which is the determined minimal switch
time and the added minimal delay of g, i.e., m + g.d,,;, in line
13 and a new variable v to the waveform which needs to be
equal to the output of g with the changed inputs in the lines
14 - 16.

When considering the variable delay of g in the algorithm
VARIABLE_DELAY shown in Algorithm 4, we exploit that
there is no reconvergence in g as g is in the front partition.
This leaves three cases for the waveform:

1) The output is constant

2) The output has the form of the SET: v.X—-vXv

3) The output has the form of the SET, but the middle part

has been removed: vXv

As the variables do not have assigned values at this time, it
is impossible to decide which case will hold, however we can
do the following modification in all cases. Since we will only
modify the switch times in this algorithm, the semantics of the
output will not change if it is constant. Otherwise, we want
to hold the output at X as long as possible within the limits
of the delays to remain conservative. Since in a non-constant
output every second variable is X, we set the switch times at
those locations to the maximum delay instead of the minimum
delay. Therefore we use the minimal delay when we change
the output to X and use the maximal delay when we change

input : a gate g € C.G, an SET s, and a SAT formula f
//Signal of g is constant before SET is induced

v 1= g.waveg

vx, VN = new Variable

g.wave := (v,Vx,VN,Vx,V)

g.switch := (s.b, s.b + s.op, s.€ — S.0., s.€)
f.addClause(vx = X Aoy = —w)

A U AW N -

Algorithm 6: ELECTRICAL_MASKING
input : a gate g € C.G

1t:= g~dmin/2
2 for j:=0,...,g.switch.size() — 2 do
3 for k:=j+1,...,g.switch.size() — 1 do
4 //Equal checks between variables check if the
variables are equal, not their values
5 if g.switchy, — g.switch; < tA
g.wave; = g.wavey 1 then
6 g.wave := (g.wavey, . .., g.wave;_,
g-wavegy1i, ..., g.waveq yaye. size()—l)
7 g.switch := (g.switchg, . . ., g.switchj_1,
g-switchy 1, . .., §.5SWitchg gyirch. size()—1)
8 end
9 end
10 end

back to another value.

If we induce the SET s into a gate g, we use the algorithm
ADD_SET shown in Algorithm 5. The waveform of g needs
to be constant and only contain one variable as only the SET
leads to a change in the output of a gate. In line 4 we generate
a new waveform for g which corresponds to the SET and in
line 5 we set the switch times according to the parameters of
the SET.

The final modification to the waveform is done in the algo-
rithm ELECTRICAL_MASKING in Algorithm 6. The electrical
properties of a gate remove short glitches, i.e., changes of the
value that last for a short time only. A common abbreviation
for this time is half the delay of gate. To remain conservative,
we use half the minimal delay and set the variable ¢ for the
threshold accordingly in line 1. In the entwined loops from
line 2 — 10, we check if two equal variables have a distance of
t or less between them. If so, the waveform and the according
switch times between the two variables describe a glitch that
is removed. So we adjust the waveform and switch times of g
accordingly in lines 6 and 7.

A small example for these algorithms is shown in Figure 3.

(2,6,2x,7,2n,10, 2x, 13, 2)
(2,6, 2x,8, 2N, 10, 2x, 14, 2)
N (2,6,zx,14,2)

(z,2,zx,3,zN,6,zx,9,x)

(y)

Fig. 3: Example for generation of waveform and switch
times of a gate considering variable delays and electrical
masking depending on gate

Algorithm 7: GENERALIZE

input : a gate o that is a primary output, an assignment
asim : (I UC.G) — {0,1, X }* of inputs and gate
signals to values, a partial assignment
asar(I UC.G) — {0,1, X }*, a circuit C' and an
SET s
output: a SAT formula f, when f is true, an eventual
fault in o cannot propagate to the outputs of C
FI := const-fanin(g, asar)
sortByDistance(FI, o)
Qgen = Qgen : FI — {0,1, X'} With e, (i) = asim ()
foreach ¢ € {FlI.size(),...,1} do
Clgen(FIi) =X
(sim, real) := SIMULATE (agen, C, s, fanin(0))
if real then ag, (FI;) = asm(FI;)
end
return A\ py

o 01 AN U AW N

()#x}9 = agen(9)

Ggen

D. The algorithm GENERALIZE

The algorithm GENERALIZE shown in Algorithm 7 gets
the assignment of a spurious counterexample and a primary
output o that is affected by the SET according to the SAT
formula. We use a greedy approach and return a SAT formula
that describes a generalized assignment that suffices to prevent
the SET from propagating towards o.

In line 1, we get the vector FI that contains the deepest
constant signals within the fanin of o. We stop the search
for the fanin at the first constant signal in the front partition
according to agar as these are equal in the assignment of the
counterexample as well as the simulation because the different
considerations of delays do not matter for constant signals. By
this, we can further generalize the assignment. For example, in
an xor-gate both inputs are relevant as a change of any input
changes the output. However, we do not necessarily care about
the exact inputs of the gate but only the output which can have
different possible input assignments.

Afterwards, in line 2, we sort the vector FI by the distance
of the gates to o. In this order, we can start to check gates
that have a higher distance earlier and eventually set their
assignment to X before checking closer gates that often have a
higher impact on o. For example, an or-gate where one constant
input is 1 only needs that 1 for its output to remain 1 and can
set all variables that affect the other input to X.

In the loop from line 4 — 8, we try for each gate FI;, in order
from high to low distance to o, to set the assignment a.,(FI;)
to X in line 5 and simulate the modified assignment in line
6. To avoid unnecessary overhead, we only simulate the gates
within the fanin of o. If the modified counterexample is real,
i.e., o evaluates to X or the SET propagates to o, the value of
FI; is relevant for the SET not propagating towards o and we
need to reset g, (i) to its original value a(7) in line 7.

Finally, in line 9 we return a formula that blocks the
generalized counterexample.

IV. DISCUSSION

Our approach provides a good performance due to two main
reasons. On the one hand the generated SAT formula for the
front partition is very simple and quickly solved and on the

circuit [11] SAT-based hybrid solver calls
c432 123.1s 2.8s 0.5s 2
c432-TMR 432.5s 35.1s 2.3s 5
c432-TTMR 5943.4s timeout 1534.1s 1342
c2670 67.8s 47s 0.4s 2
¢2670-TMR 227.0s 588.9s 9.1s 3
¢c2670-TTMR 1758.2s timeout 573.2s 1025
c7552 5982.3s timeout 2.2s I
¢7552-TMR timeout timeout 70.7s 11
¢7552-TTMR timeout timeout timeout 2227+

TABLE I: Runtimes of all approaches and number of solver
calls for hybrid approach on some circuits

other hand our generalization allows us to block a high number
of counterexamples after a single solver call.

When generating the SAT formula for the front partition,
we can exploit the absence of a reconverging SET. Thus,
we can describe the output of each gate with at most three
variables as explained in Section III-C. Additionally, no further
variables are needed for the variable delays or electrical
masking because it suffices to check for equal variables instead
of equal values. The resulting SAT formula can usually solved
within seconds or less and we can easily use the solver multiple
times within a short time.

If we would block each spurious counterexample individu-
ally, the runtime would not be feasible for most circuits as there
is usually a very high number of counterexamples. For this
reason, we generalize counterexamples as shown in Section
III-D. By generalizing detected counterexamples, we can block
multiple similar counterexamples with one SAT solver call.
The degree of generalization depends on the circuit but usually
provides a significant speed up.

V. EXPERIMENTS

In our experiments, we compare our hybrid approach against
[11]. In addition, we also consider a modified SAT-based
version of our approach where all gates are considered as
front gates and the effects of the SET are also included
in the SAT formula, i.e., using the approach from [11] but
utilizing our model. We use the ISCAS-85 benchmarks. Each
circuit is analyzed in its regular version and in two fault
tolerant variations. The first variation uses Triple Modular
Redundancy (TMR) and the second uses Timed TMR (TTMR).
Both variations are presented in [11].

For each circuit, we choose a random gate near the inputs as
location for the SET. An SET close to the inputs usually affects
more gates and leads to a larger number of gates where the
SET overlaps to sufficiently compare the differences between
the algorithms.

The experiments are run on a Dual-Core AMD Opteron
Processor 2222 SE with 3 GHz and 64 GB main memory.
The resulting runtimes are shown in Figure 4. In addition, a
table for the runtimes of all approaches as well as the number
of solver calls done by our hybrid approach is shown for some
circuits in Table I.

We can see that our hybrid approach is usually faster than
[11] unless both time out after six hours. Our SAT-based ap-
proach often has a runtime between the two other approaches,
showing that our model also decreases the runtime.

Even on the bigger circuits our algorithm takes less than
2.5 seconds to find a counterexample that disproves robustness
for the normal non-robust versions. Our algorithm generates a
simple SAT formula for the front and finds counterexamples
quickly. Since the circuits are not robust by themselves, only

timeout
10000s
1000s
100s

10s

n t
c432 c499 c880 c1355

Tl 0

c1908

c2670 c3540 c5315 c6288 c7552

Fig. 4: Runtime experiments comparing [11] (white), our SAT-based approach (light gray), and our hybrid approach on
ISCAS-85 circuits, using the normal (n), TMR (t), and TTMR (T) version

few counterexamples need to be simulated until a real coun-
terexample is found. In comparison, [11] creates a complex
SAT formula for each circuit which takes more time to solve.

For the robust circuits, our approach needs to generalize
the detected counterexamples until robustness is proven. The
generalization for the TMR circuits is quickly done as for each
primary output the outputs of the two copies that are unaffected
by the SET suffice to guarantee a correct value in the primary
output. In both TMR and TTMR, we exploit that the fault
correction is applied to each primary output individually and
only need to analyze the relevant fanin.

In all TTMR circuits, our SAT-based approach times out.
Due to the higher degree of detail for delays, the different
switch times overlap and new variables need to be introduced
to describe the value in between. With increasing depth of the
circuit, this effect leads to an exponential growth of variables
for each gate which especially affects the TTMR circuits.
While this effect also becomes more relevant with increasing
complexity, it only occurs when the SET reconverges in
the front partition and therefore does not affect our hybrid
approach.

Only the circuits ¢880 and ¢5315 in the normal and TMR
version are decided faster by [11]. In these cases, the location
of the SET leads to a very small back partition. Thus, the re-
sulting SAT formula for the front is only slightly easier to solve
than the one generated by [11]. As our implementation may
need multiple counterexamples even in non-robust circuits, our
runtime is slightly higher in these specific cases. However, over
all experiments our new implementation provides an average
speedup of 748.

We ran the experiments on ¢2670 again without using gen-
eralization. In the non-robust circuit, the number of detected
spurious counterexamples only increased slightly as a real
counterexample can easily be found in a small number of
tries. In the robust cases, we generated 86 times more coun-
terexamples and 340 times the previous runtime on average.
These numbers show that the generalization is relevant for the
runtime as discussed in Section IV.

As an alternative way to partition the circuit, we tried to
put all gates within the back partition that require more than
k variables. This alternate partitioning did not provide any
significant speed up and took more time in most cases.

VI. CONCLUSION

We presented a hybrid algorithm to decide if a circuit is
robust against a given SET. The algorithm partitions the circuit
into a front and a back partition, uses SAT solving on the front
partition and analyzes detected counterexamples by simulation.
The experiments showed that dividing the problem this way
can lead to a significant speed up.

REFERENCES

[1] Mehdi Dehbashi and Gorschwin Fey. SAT-based speed-
path debugging using waveforms. In IEEE European Test
Symposium, pages 1-6, 2014.

[2] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant,
Rajeev Rao, Toan Pham, Conrad Ziesler, David Blaauw,
Todd Austin, Krisztian Flautner, and Trevor Mudge.
Razor: a low-power pipeline based on circuit-level tim-
ing speculation. In Microarchitecture, 2003. MICRO-
36. Proceedings. 36th Annual IEEE/ACM International
Symposium on, pages 7-18, 2003.

[3] Stefan Frehse, Gorschwin Fey, Eli Arbel, Karen Yorav,
and Rolf Drechsler. Complete and effective robustness
checking by means of interpolation. In Formal Methods
in Computer-Aided Design, pages 82-90, 2012.

[4] Jie Han, Hao Chen, Jinghang Liang, Peican Zhu, Zhixi
Yang, and Fabrizio Lombardi. A stochastic computational
approach for accurate and efficient reliability evaluation.
Computers, IEEE Transactions on, pages 1336-1350,
2014.

[5] Regis Leveugle. A new approach for early dependability
evaluation based on formal property checking and con-
trolled mutations. In On-Line Testing Symposium, pages
260-265, July 2005.

[6] Natasa Miskov-Zivanov and Diana Marculescu. Multiple
transient faults in combinational and sequential circuits:
A systematic approach. Computer-Aided Design of In-
tegrated Circuits and Systems, IEEE Transactions on,
pages 1614-1627, 2010.

[7] Kartik Mohanram. Simulation of transients caused by
single-event upsets in combinational logic. In Test
Conference, 2005. Proceedings. ITC 2005. IEEE Inter-
national, pages 9 pp.—981, 2005.

[8] Martin Omafia, Giacinto Papasso, Daniele Rossi, and
Cecilia Metra. A model for transient fault propagation
in combinatorial logic. In IEEE International On-Line
Testing Symposium, pages 111-115, 2003.

[9] Matthias Sauer, Alexander Czutro, Ilia Polian, and Bernd
Becker. Small-delay-fault ATPG with waveform accu-
racy. In Proceedings of the International Conference on
Computer-Aided Design, pages 30-36, 2012.

[10] Ashwin Seshia, Wenchao Li, and S Mitra. Verification-
guided soft error resilience. In Design, Automation Test
in Europe Conference Exhibition, pages 1-6, 2007.

[11] Niels Thole, Gorschwin Fey, and Alberto Garcia-Ortiz.
Conservatively analyzing transient faults. In Proceedings
of the IEEE Computer Society Annual Symposium on
VLSI, 2015.

[12] Michael Yoeli and Shlomo Rinon. Application of ternary
algebra to the study of static hazards. Journal of the
ACM, pages 84-97, 1964.

