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Abstract—With the growing demands for highly area-efficient,
delay-optimized, and low-power designs, the complexity of digital
circuits is increasing as well. Especially, a wide variety of arith-
metic circuits, including different types of adders, multipliers, and
dividers have been proposed to meet the demands in applications
such as cryptography and Artificial Intelligence (AI). Some of
these arithmetic circuits have highly parallel architectures and
contain millions of gates; as a result, they are extremely error-
prone. In the last 30 years, several formal verification methods
have been proposed to verify arithmetic circuits. These methods
report very good results when it comes to the verification of
adders and structurally simple multipliers. Moreover, their space
and time complexities are polynomial, i.e, they are scalable.
However, when it comes to the verification of structurally complex
multipliers, the story is different.

In this paper, we investigate the space and time complexity
of verifying a structurally complex multiplier using a word-level
verification method. We prove that the space and time complexity
is always exponential. Then, we introduce a new verification
strategy that takes advantage of several verification engines. We
show that the polynomial formal verification of the complex
multiplier becomes possible if the correctness of each stage is
verified using the proper verification method. Our verification
strategy can be applied to other complex digital circuits.

I. INTRODUCTION

In the last 30 years, the verification community has achieved
many successes in formal verification of a wide variety of
digital designs, particularly arithmetic circuits. Several formal
verification methods have been proposed to ensure the correct-
ness of highly complex and big arithmetic blocks, including
adders, multipliers, and dividers. The bit-level methods, in-
cluding the techniques based on Binary Decision Diagrams
(BDDs) [1] and Boolean Satisfiability (SAT) [2], [3], report
very good results for the verification of adders and subtractors.
On the other hand, the word-level methods, including the
approaches based on Symbolic Computer Algebra (SCA) [4]-
[9] and Binary Moment Diagram (*BMD and K*BMD) [10],
are used to verify multipliers and dividers. Despite this huge
progress, the space and time complexity of these verification
techniques are not fully investigated. As a result, there is
always an unpredictability in the performance of a method
when it comes to the verification of different architectures.

The unpredictability in the performance of a verification
method has some consequences: 1) It is not clear whether the
method is scalable for the verification of a specific architecture
or a group of architectures. For example, it has not been proven
whether SAT-based verification is scalable for parallel prefix
adders. 2) It is not possible to predict the required resources
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for the verification process, i.e., the run-time and memory
usage cannot be estimated. 3) It is impossible to compare two
available verification techniques and choose the best one with
respect to the architecture. In order to alleviate these issues, the
time and space complexity of formal verification methods has
to be calculated. In particular, we are interested in polynomial
formal verification, where the space and time complexity is
bounded by O(n™) (n is one of the circuit’s characteristics,
such as the number of input bits, and m is a positive number).

Recently, researchers made some efforts to calculate the
space and time complexity of both bit-level (e.g., BDD)
and word-level (e.g., SCA and *BMD) verification methods.
PolyAdd [11] proves that the formal verification of three
adder architectures is possible in polynomial time using BDDs.
The proof is based on the fact that underlying BDDs remain
polynomial during the whole construction process. However,
PolyAdd does not calculate the upper-bound complexities.
Authors of [12], [13] extend PolyAdd by obtaining the ver-
ification time complexities for a ripple carry adder and a
conditional sum adder, respectively. The method in [14] proves
that polynomial formal verification of three prefix adders
(i.e., serial prefix adder, Ladner-Fischer adder, and Kogge-
Stone adder) is possible using BDDs. Authors of [15] and [16]
show that polynomial formal verification of structurally simple
multipliers is possible using *BMDs and SCA.

The polynomial formal verification of structurally complex
multipliers is a challenging task that has not been studied yet.
The verification methods such as RevSCA-2.0 [7] reports good
results for the structurally complex multipliers in practice.
However, it is impossible to prove their polynomial complexity
for all multiplier architectures due to some heuristics in their
flow (e.g. dynamic backward rewriting). In this paper, we
come up with a new hybrid verification method that takes
advantage of both SCA and BDD to verify a structurally
complex multiplier in polynomial time. We first prove that
a pure SCA-based verification method has an exponential
complexity for a complex multiplier. Then, we introduce our
hybrid verification technique consisting of three main phases:
1) replacing the final stage adder with a ripple carry adder,
2) SCA-based verification of the structurally simple multiplier
after the replacement, and 3) BDD-based verification of the
final stage adder. Our method is applicable to structurally
complex multipliers where the boundaries between stages are
available. We theoretically prove that both verification phases
(i.e., BDD and SCA-based verification) can be carried out in
polynomial time, meaning that our proposed method is scal-
able. We also evaluate our proposed method experimentally
with various multiplier architectures. The experimental results
confirm the efficiency of our proposed method in practice.
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Fig. 1: General multiplier structure

II. PRELIMINARIES
A. Multiplier Structure

Fig. 1 shows an integer multiplier consisting of three stages:
(1) Partial Product Generator (PPG) which generates partial
products from two inputs, (2) Partial Product Accumulator
(PPA) which reduces partial products using multi-operand
adders and computes their sums, and (3) Final Stage Adder
(FSA) which converts these sums to the corresponding binary
output.

There are several architectures for each stage of a multiplier.
These architectures are chosen with respect to the design goals,
e.g. small area, low delay, and the small number of wiring
tracks. If the second and third stages of a multiplier are made
of only atomic blocks (e.g. half-adders, full-adder, and 4:2
compressors) [5], we call it structurally simple. The SCA-
based verification reports very good results for the structurally
simple multipliers. On the other hand, if the second and third
stages (usually FSA) are not fully made of atomic blocks,
we call them structurally complex. Formal verification of
structurally complex multipliers is a challenge for the SCA-
based methods. Thus, researchers usually take advantage of
some heuristics in the flow to make the SCA-based verification
possible.

B. Verification using SCA
We briefly summarize some basics of SCA:

e« Monomial: power product of the variables, i.e.
M = x{*x3? ... x% where a; > 0.

o Polynomial: finite sum of monomials, i.e. P = ¢y M; +
-+« + ¢; M; with coefficients in field k.

o Division: Assuming p is a polynomial and F' is a set of

polynomials, the division of p by F' is denoted by p EiN r,
where r is called remainder.

The goal of SCA-based verification is to formally prove that
all signal assignments consistent with the gate-level or AND
Inverter Graph (AIG) representation evaluate the Specification
Polynomial (SP) to 0. The SP determines the function of
an arithmetic circuit based on its inputs and outputs, e.g. for
the 2 x 2 multiplier of Fig. 2 SP = 8735 + 475 + 277 +
Zy — (2A1 + AO)(2B1 + Bo), where 873 + 475 + 271 + Zy
represents the word-level representation of the 4-bit output,
and (241 + Ag)(2B1 + By) represents the product of the 2-bit
inputs.

Before verification, the nodes of an AIG (or gates of a
gate-level representation) should be modeled as polynomials

SP =875 +4%,+2%1 + Zy— Ax B
SP L%y §Py = 8nyy + 42y + 27, + Zy— Ax B

SPy 172, 5Py = 8nyy 44— dngg £ 27, + Zo— Ax B

SPy 22, SPy = 8y 4 dng + dno — dngnag + 27, + Zo — A x B

P
SP; —% SPy := 8nyny + 4dng + dnyg — dngnig + 271 + Zg — Ax B
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Fig. 3: Backward rewriting steps

Fig. 2: 2x2 mult

describing the relation between inputs and outputs. Based on
the type of nodes and edges, five different operations might
happen in an AIG. Assuming z is the output, and n; and n;
are the inputs of a node:

Z =N; = PN ‘= 2 — Ny, z:ni/\njépN::z—ninj,

z=—m; =>pN:i=z—1+n;, 2z=-myAnj=pN:=2z—n;+nnj,

z=—mi AN—nj = pN =2z —1+n; +n; —nn;. [€))

The extracted node polynomials are in the form Py = x —
tail(Py) where x is the node’s output, and tail(Py) is a
function based on the node’s inputs. Similarly, the polynomials
for the gates can be extracted in a gate-level representation
(see [4], [17]).

Based on the Grobner basis theory, all signal assignments
consistent with the AIG evaluate the specification polynomial
SP to 0, iff the remainder of dividing SP by the AIG node
polynomials is equal to O (see [8] for more details).

The step-wise division of S P by node polynomials is shown
in Fig. 3 for the 2 x 2 multiplier. Since the remainder is zero,
the circuit is bug-free. In arithmetic circuits, dividing S P; by
a node polynomial Py, = x; — tail(Py,) is equivalent to
substituting x; with tail(Py,) in SP;. For example, dividing
SPs by P,,, in Fig. 3 is equivalent to substituting 111 with
tail(Py,,) = nan7 in SPs. In the results, we always replace
powers z;* with a; > 1 by z;, since z; can only take values
from {0, 1}. In the theory, this corresponds to adding ? — x;
to the node polynomials. The process of step-wise division
(substitution) is called backward rewriting. We refer to this
intermediate polynomial as SP; in the rest of the paper.

C. Verification using BDDs

We briefly summarize some basics of BDD:

o Binary Decision Diagram (BDD): a directed, acyclic
graph whose nodes have two edges associated with the
values of the variables 0 and 1. A BDD contains two
terminal nodes (leaves) that are associated with the values
of the function O or 1.

e Ordered BDD (OBDD): a BDD, where the variables
occur in the same order in each path from the root to a
leaf.

e Reduced OBDD (ROBDD): an OBDD that contains a
minimum number of nodes for a given variable order.

We refer to ROBDD as BDD in the rest of the paper since

it is the canonical representation that is used in the verification
of arithmetic circuits.

The ITE operator (If-Then-Else) is used to calculate the

results of the logic operations in BDDs:

ITE(f,g,h) = (f Ag)V (f Ah), 2)



Algorithm 1 If-Then-Else (ITE)

Input: f, g, h BDDs

Output: ITE BDD

1: if terminal case then
return result

else if computed-table has entry {f, g, h} then
return result

else > General case
v = top variable for f, g, or h
t =ITE(fv=1,9v=1,hv=1)
e =ITE(fv=0,9v=0, hv=0)
r = FindOrAddUniqueT able(v, t, €)
InsertComputedTable({f, g, h},r)
return R

SOXRPNDUN AW

The basic binary operations can be presented using the ITE
operator:

fANg=1ITE(f,g,0),
f®©g=1ITE(f,3,9),

ITE can be also used recursively in order to compute the
results:

fVvg=ITE(f1,g9),

f=ITE(f,0,1). (3

ITE(f,g,h) = ITE(xi, ITE(fz;,9z;, he;), ITE(fz;, gz, , h=,)),
“)

where f.. (fz,) is the positive (negative) cofactor of f with
respect to x;, i.e., the result of replacing x; by the value 1 (0).

The algorithm for calculating ITE operations is presented
in Algorithm 1. The result is computed recursively based
on Eq. (4) in this algorithm. When calculating the results
of ITE operations for the f, g, h BDDs, the arguments for
subsequent calls to the ITE subroutine are the subdiagrams of
f, g and h. The algorithm employs two major data structures:
a Unique Table to guarantee the canonicity of the BDDs (see
Line 9), and a Computed Table to store results of previous
computations and avoid repetition (see Line 10). The number
of subdiagrams in a BDD is equivalent to the number of nodes.
For each of the three arguments, the sub-routine is called at
most once. Assuming that the search in the Unique Table is
performed at a constant time, the computational complexity
of the ITE algorithm, even in the worst-case, does not exceed
O(|f] - 19| - |h|), where |f|, |g| and |h| denote the size of the
BDDs in terms of the number of nodes [18].

In order to formally verify an adder, we need to have the
BDD representation of the outputs. Symbolic simulation helps
us to obtain the BDD for each primary output. In a simulation,
an input pattern is applied to a circuit, and the resulting output
values are observed to see whether they match the expected
values. On the other hand, symbolic simulation verifies a set of
scalar tests (which usually covers the whole input space) with a
single symbolic test. Symbolic simulation using BDDs is done
by generating corresponding BDDs for the input signals. Then,
starting from primary inputs, the BDD for the output of a gate
(or a building block) is obtained using the ITE algorithm. This
process continues until we reach the primary outputs. Finally,
the output BDDs are evaluated to see whether they match the
BDDs of an adder.

III. VERIFICATION COMPLEXITY

In this section, we first investigate the time and space
complexity of backward rewriting. Then, we consider a struc-
turally complex multiplier and prove that it has an exponential
verification complexity using SCA.

A. Backward Rewriting

The main operation during backward rewriting is the substi-
tution of gates/atomic blocks polynomials in S'P;. In order to
calculate the time complexity of the whole backward rewriting
process, we first have to obtain the complexity of a single
substitution step. Assume that in step ¢ of backward rewriting,
the variable v is substituted by polynomial f in SP;. The
detailed substitution steps are as follows:

1) SP; is searched for all occurrences of variable v,

2) all occurrences of variable v are substituted by f,

3) the multiplications between f and the monomials are
performed and the newly generated monomials are
added to SP;, and

4) it is checked whether the newly generated monomials
can be simplified with the existing monomials; if yes,
the coefficients are updated.

The time complexity of a single substitution is calculated
by adding up the computational complexity of each step. The
computational complexity of steps 1 and 4 are dependent
on the size of SP; before and after substitution since the
polynomial has to be traversed in both cases. On the other
hand, the computational complexity of steps 2 and 4 relies
on the number of variable v occurrences in SP;. Finally, the
backward rewriting time complexity is obtained by adding up
the time complexity of each substitution step (i.e., including
4 sub-steps).

The space complexity of SCA-based verification is calcu-
lated based on the maximum size of SP; during backward
rewiring with respect to the number of variables.

B. Verification of a Structurally Complex Multiplier

Formal verification of structurally complex multipliers is
a big challenge for the SCA-based verification methods. A
large number of monomials are generated during the backward
rewriting, leading to a memory shortage and consequently the
verification failure. It has been shown experimentally in [7]
that a large number of monomials (and variables) are generated
during the backward rewriting of the FSA stage when it is not
only made of atomic blocks (i.e., half-adders, full-adders, and
4:2 compressors). The only FSA architecture which is fully
made of atomic blocks is ripple carry adder. Thus, employing
other architectures (e.g., carry look-ahead adder and prefix
adders) as FSA results in a structurally complex multiplier
and therefore an explosion during backward rewriting.

Despite several experiments, the explosion during the ver-
ification of structurally complex multipliers has not been yet
theoretically investigated. Thus, we now consider a structurally
complex multiplier with a carry look-ahead adder as its FSA
and prove that its verification complexity is exponential.

The Boolean formulation of a n-bit carry look-ahead adder
is as follows:

Gi =z Ny,

P, =z dyi,

c1 :G()V(Co/\P()),

c2=G1V(GoANPL)V (co NPy APr),

CgZGQ\/(G1/\P2)\/(G0/\P1/\PQ)\/(Co/\Po/\Pl/\Pg),
. (&)

where x; and y; are it bits of the first and second inputs,
and ¢; is a carry. In a carry look-ahead adder, the carry
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bits are generated in parallel and independently. In order to
compute c;, first, the AND operations are performed, and
then the consecutive OR gates (OR gates chains) are used
to obtain the carry. We consider the backward rewriting for
¢, which contains n consecutive OR gates. Starting from the
output of the FSA, the OR gates are first visited, and their
polynomials are substituted in SF;. The polynomial for ¢,
after the substitution of OR gate polynomials is as follows:
cpn=XVY

=AY, = X 4Y — XY,
O, = X4V - XY+ Y — XY — VY 4+ X117,

cn =Xo+ Y — XoYo+ Y] — XoVT — Yo
+ X021 +Y — XoV — YoV + XoYoV — V1Y + XoiY
+ Y21V — XoYo 1Y,

X1=XoVYs
—_—

(6)

The number of variables substituted in each step of back-
ward rewriting is growing exponentially, i.e., X, X;, and
Xo occur 2, 4, and 8 times, respectively. As a result, the
polynomial size increases exponentially in terms of the number
of variables. On the other hand, the computational complexity
of each substitution step depends on the number of variables.
Thus, we can conclude that both the space and time complex-
ities of the SCA-based verification are exponential.

Our proof indicates that if a structurally complex multiplier
has a carry look-ahead adder as its FSA, independent of
the first and second stage architectures, the verification com-
plexity is exponential. It is possible to prove the exponential
complexity for the verification of other structurally complex
multipliers, containing optimized adders.

In addition to the theoretical proofs, we also confirm the
exponential verification complexity of structurally complex
multipliers in practice. Fig. 4 shows the size of intermediate
polynomial S P; during the verification of two 16 structurally
complex multipliers, i.e. SPoWT oCL and SPo DT o BK
against a structurally simple multiplier, i.e. SP o AR o RC
(see Fig. 1 for abbreviations). The complex multipliers take
advantage of optimized adders in their last stage. During the
backward rewriting of complex multipliers, the size of SP;
grows very fast in the first steps, and an explosion happens
in the number of monomials (variables). On the other hand,
the size of SP; remains almost constant for the structurally
simple multiplier until the final steps; then, it starts to decrease.
As a result, the experimental results also confirm that the
SCA-based verification of structurally complex multipliers has
exponential complexity.

AB; A3B, AB; ABiAgB;  AyB, A,By A\B, AoB, AB, A.B,
HA FA FA HA
2By A3B, A,B, A3By
’/ FA ’/ FA ’/ FA ’/ HA
2 A I A B A
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Z; Zs Zs Zy Z Zy 4y 0

Fig. 5: A 4 x 4 structurally simple multiplier

Recently, researchers have extended SCA-based verification
methods to verify structurally complex multipliers. For exam-
ple, RevSCA-2.0 takes advantage of atomic blocks identifi-
cation, vanishing monomials removal, and dynamic backward
rewriting to avoid the explosion [7]. Despite the practical suc-
cess of RevSCA-2.0, it is impossible to prove its polynomial
space and time complexity due to the use of heuristics in
its flow. Thus, we propose a new hybrid method in the next
section to make the polynomial formal verification possible.

IV. POLYNOMIAL VERIFICATION USING SCA AND BDD

The state-of-the-art SCA-based verification methods such as
RevSCA-2.0 do not need any information on the structure of
multipliers in order to prove their correctness. However, they
cannot guarantee the polynomial space and time complexity.
Thus, they cannot be used in applications where polynomial
verification has to be ensured.

On the other hand, if the design hierarchy including the
boundaries between the three stages (i.e. PPG, PPA, and
FSA) and the components in each stage are available, we
can propose a polynomial formal verification method based
on SCA and BDD. Our method consists of three main steps:

1) the final stage of the multiplier, i.e. FSA, is replaced
with a ripple carry adder,

2) the new multiplier architecture is verified using SCA,

3) the FSA is verified using BDDs.

If both verification methods ensure correctness, the multi-
plier is bug-free. Otherwise, it is buggy.

It is now possible to calculate the space and time complexity
of SCA and BDD-based methods separately and prove that
they are polynomial with respect to the multiplier size.

V. POLYNOMIAL VERIFICATION OF SIMPLE MULTIPLIER

After replacing the FSA with a ripple carry adder, the
complex multiplier is now converted into a structurally simple
multiplier since the second and third stages are only made
of atomic blocks (e.g. half-adders and full-adders). We now
calculate the space and time complexity of SCA-based ver-
ification when it comes to structurally simple multipliers.
Moreover, we prove that the polynomial formal verification
is possible for these circuits.

Please consider the substitution steps in Section III-A again.
During backward rewriting of structurally simple multipliers,
there is always one occurrence of variable v in each step.
Moreover, the size of polynomial f, and consequently the
number of multiplications are constant. Therefore, steps 2 and
3 of substitution have constant computational complexity. On



the other hand, for finding variable v in SP; in step 1 and
simplifying the newly generated monomials in step 4, we have
to go through all variables in SP;. Hence, the complexity of
steps 1 and 4 depends on the size of SP; with respect to the
number of variables. We conclude that the time complexity of
each substation step relies on the size of the current polynomial
SP;. The overall time complexity of backward rewriting is
obtained by adding up the complexity of each step.

Fig. 5 shows the structure of a 4 x 4 simple multiplier. The
second and third stages of the multiplier are only made of
atomic blocks. There is always a simple word-level function
that describes the relationship between inputs and outputs of
an atomic block. The word-level functions for a half-adder, a
full-adder, and a 4:2 compressor are as follows:

HA(in: X,Y out:C,S) =
FA(in: X,Y,Z out:C,S) =
CM((in: X,Y,Z,W,C;y,, out:Co,C,S) =

204+ S=X+Y
204+ S=X+Y +Z2
2C0+2C+S=X+Y
+Z+ W+ Cin
)

Eq. (7) shows that if during backward rewriting, the outputs
of an atomic block are substituted by their polynomials, the
size of SP; increases by k, where £k < 2. For an n X n
multipliers, the number of atomic blocks in the second and
third stages are of O(n?) complexity. Similarly, the size of
specification polynomial (i.e. SP := Z — A x B) is of O(n?)
complexity. After substitution of atomic blocks in the second
and third stages, the size of SP; increases by O(n?).

The first stage of a multiplier with the simple partial product
generator architecture is made of n? AND gates. Substitution
of AND gates polynomials reduces the size of SP; by 4 since
a cancellation happens between the new monomials with 2
variables and the monomials in SP.

The size of SP; increases during the substitution of the sec-
ond and third stages, and it decreases during the substitution of
the first stage. Thus, the maximum size of S P; occurs when the
substitution of atomic blocks polynomials in the second and
third stages are done. We conclude that the space complexity
of SCA-based verification for a structurally simple multiplier
is O(n?). Due to the fact that time complexity depends on the
size of S P;, we can calculate the time complexity of verifying
a structurally simple multiplier as follows:

n?—1 n?—1
> (ISPl +i)+ > (1SPmas| — 4§) = O(n*), ®)
i=0 j=0

2nd and 3rd stages 1st stage

where the first part of Eq. (8) is related to the size of SP;
during the substitution of atomic blocks polynomials in the
second and third stages, and the second part is related to the
size of SP; during the substitution of AND gates polynomials
in the first stage. Please note that the specification polynomial
size |SP| and the maximum size of intermediate polynomial
after substituting atomic blocks in the second and third stages
|SPnaz| are of O(n?) complexity. Thus, the time complexity
of the backward rewriting process is O(n*). Based on the
calculations in this section, we now come up with a theorem
for the complexity of SCA-based verification:

Theorem 1: The SCA-based verification of an n X n struc-
turally simple multiplier has O(n?) space complexity and
O(n*) time complexity.

Anl Bnl ‘4‘2 l2 ‘31 ll 14‘0 'B¢0
S,=C,.
U opA kG2 Sl pa R FA RS HA
; ! ! !
Su s, 5, S

Fig. 6: n-bit carry ripple adder

VI. POLYNOMIAL VERIFICATION OF FSA

The next phase of our proposed method is the verification
of the original FSA. The verification method based on BDD
reports very good results when it comes to the verification
of integer adders. However, in order to ensure the polynomial
verification, the time complexity is obtained. We first calculate
the time complexity of verifying a ripple carry adder; then, we
briefly review the research works on the polynomial formal
verification of other adder architectures.

Fig. 6 depicts an n-bit ripple carry adder. We first calculate
the computational complexity of symbolic simulation for a
single FA. The sum and carry bits of a FA can be shown by
ITE operations:

Si=Ai @B ®Ci—1 =ITE(Ci—1,A; ©® Bi, Ai & B;) =
ITE(Ci—1, ITE(A:, B, B:), ITE(A;, Bi, By)), )

Ci=(AiNB)V(AiNCi1)V (BiNCimy) =
ITE(Ci—1,A;V Bi, A; A B;) =

ITE(C;_1,ITE(Ai, 1, B;), ITE(A;, B, 0)) (10)

The ITE operations are computed by Algorithm 1 to get the
BDDs for the S; and C; signals. Assuming that f, g and h
are the input arguments of an ITE operator, the computational
complexity is computed as |f] - |g| - |h|- As a result, the
complexity of computing S; and C; is as follows:

Complexity(S;) = 25|C;—1| + 54,
Complexity(C;) = 16|C;_1| + 18,
Complexity(FA;) = 41|Ci—1| + 72.

an
12)
13)

It has been proved in [23] that the BDD size of the i‘" carry
bit (C;) is bounded by 3(i + 1). Thus, the overall complexity
of verifying a ripple carry adder can be obtained as follows:

n—1
complexityres) = Z (41|Cs_1| + 72) = O(n?).

=1

(14)

We can conclude that the order of the verification com-
plexity is O(n?). We have also used a similar approach to
prove the polynomial time complexity of verifying other adder
architectures such as conditional sum adder [13] and prefix
adders [14]. Since both verification complexities (i.e., SCA-
based verification complexity of the structurally simple multi-
plier and the BDD-based verification complexity of the FSA)
are polynomial, our hybrid verification approach can prove the
correctness of structurally complex multipliers in polynomial
space and time.

VII. EXPERIMENTAL RESULTS

In this section, we evaluate the efficiency of our hybrid veri-
fication method in practice. Our method has been implemented
in C++. The experiments have been carried out on an Intel(R)
Xeon(R) CPU E3-1270 v3 3.50 GHz with 32 GByte of main
memory.

Table I reports the results of verifying various multiplier
architectures. The Time-Out (TO) has been set to 150 hours



TABLE I: Results of verifying different multiplier architectures

Run-times (seconds)
. Proposed

Benchmark Size #Gates | DS | Commercial [19] [20] 21] [22] (7 71
SPoDToLF 32,680 1.72 TO TO TO TO TO 2,105.74 5.09
SPoWToCL 52,083 1.84 TO TO TO TO TO TO 16.53
SPoBDoKS 34,065 1.77 TO TO TO TO TO TO 12.05
SPoARoCK 64%64 31,944 1.71 TO TO TO TO TO TO 3.07
BPoARoRC 24,442 4.54 TO 37.18 TO 0.09 TO 882.52 14.36
BPoCToBK 21,872 4.57 TO TO TO TO TO 1,729.33 28.53
BPoOSoCU 26,821 4.55 TO TO TO TO TO TO 23.73
BPoWToCS 24,830 4.59 TO TO TO TO TO TO 41.48
SPoWToBK 128 %128 131,683 16.38 TO TO TO TO TO TO 142.22
SPoDToLF 131,297 17.04 TO TO TO TO TO TO 153.60
SPoWToBK 256% 256 526,520 98.07 TO TO TO TO TO TO 3773.21
SPoDToLF 525,531 98.58 TO TO TO TO TO TO 5,622.45
SPoWToBK 512512 2,103,610 827.39 TO TO TO TO TO TO 67,493.30
SPoDToLF 2,101,205 836.12 TO TO TO TO TO TO 114,257.87

Stage I = SP: Simple partial product generator BP: Booth partial product generator TO: Time-Out (150 hrs)

Stage 2 =
Stage 3 =

AR: Array BD: Balanced delay tree DT: Dadda tree
RC: Ripple carry  BK: Brent-Kung  LF: Ladner-Fischer
CU: Conditional sum

for all experiments. The first column of Table I presents
the architecture of the multiplier based on its stages (see
abbreviations below the table). The second column Size shows
the size of the multiplier based on the input bits. The number
of gates for each architecture is given in the third column
#Gates.

The fourth column of Table I reports the run-time of our pro-
posed method. The remaining columns present the run-times
of the most recent state-of-the-art formal verification methods.
As can be seen, our approach can verify all multipliers with
different architectures and sizes. It outperforms all the existing
state-of-the-art formal verification methods.

The run-times of seven state-of-the-art techniques are re-
ported in the table: While Commercial reports the run-times
of a commercial verification tool, the remaining subcolumns
give the run-times of some of the most recent SCA verifica-
tion approaches. The commercial tool only verifies 16 x 16
multipliers. The verification methods of [19]-[22] only verify
a few architectures and time-out for the rest. The proposed
method in [17] supports the verification of more architectures.
Finally, RevSCA 2.0 [7] verifies all multiplier architectures;
however, its run-time is huge especially for the architectures
bigger than 128 x 128 input sizes.

VIII. CONCLUSION

In this paper, we first proved that the SCA-based verification
complexity of a structurally complex multiplier is exponential.
Then, we proposed a polynomial approach to proving the
correctness of structurally complex multipliers. In our method,
the FSA stage is first replaced with a ripple carry adder; then,
the obtained structurally complex multiplier is verified using
SCA. Subsequently, the correctness of the original FSA stage
is ensured using BDDs. We proved that both verification steps
have polynomial complexity.

In our future research, we plan to take advantage of our
hybrid verification strategy in proving the correctness of other
complex designs such as floating-point arithmetic circuits. We
also investigate the complexity bounds for various verification
methods when it comes to proving the correctness of different
classes of structures. The examples of these classes are totally
symmetric functions and tree-like circuits, which have been
partially studied in [24] and [25], respectively.

WT: Wallace tree
CL: Carry look-ahead

(11
(21

(41

(31

(71

(81
91

[10]
[11]
[12]
[13]
[14]

[15]

[16]
[17]

[18]

[19]

[20]
[21]
[22]
[23]
[24]
[25]

CT: Compressor tree OS: Overturned-stairs tree
KS: Kogge-Stone  CK: Carry-skip ~ CS: Carry select
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