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Abstract—Memristors or Resistive Random Access Memory
(RRAM) are emerging non-volatile memory devices that can be
used for both storage and computing. In this type of memory the
information is stored in memory cells in the form of resistance.
One of the very important challenges in memristive crossbars is
the existence of Sneak Paths, which result in erroneous reading
of memory cells. Most of the logic in-memory techniques have
emphasized on improving the logic design perspective, but have
given minor importance to the sneak path issue. In this paper
we show the effect of sneak paths on crossbars of various sizes,
and then try to analyze the logic design approaches like MAGIC
and MAJORITY with respect to their immunity to sneak paths.
Experimental result shows that with some extra overhead we can
eliminate the sneak path effect in various logic design methods.

Index Terms—RRAM, memristor crossbar, sneak path, in-
memory computing

I. INTRODUCTION

According to the International Technology Road-map for
Semiconductors (ITRS), contemporary memory technologies
like SRAM, DRAM, Flash, etc. will not be able to sustain the
design challenges arising from the scaling down of transis-
tors. Various alternative solutions like memristors are being
investigated by researchers. Memristor is a passive circuit
element that is capable of changing its resistance depending
on the voltage applied across it [1]. The resistance change is
non-volatile in nature, which makes applications like resistive
memory and in-memory computing possible.

Although the device properties of memristors were dis-
cussed many years before, but the popularity of such device
started with the physical realization of memristors in 2008 [2].
Since its fabrication in 2008, research has taken place for
designing memory system using memristors as well as for
performing logic operations [3]–[5]. Due to their fast resistive
switching properties and low footprint for fabrication, it is
possible to fabricate high-density resistive memory systems
using memristor crossbars. The crossbar structure typically
consists of a set of horizontal and vertical nanowires, with the
memristor devices fabricated at every junction [5]. By applying

suitable voltages across the rows (also called word lines) and
columns (also called bit lines) of the crossbar, selected cells
can be set to either low resistive state (LRS) or high resistive
state (HRS).

One vital issue with memristor crossbars is the presence of
sneak paths during cell readout operations [6]. A sneak path is
defined as a parallel current conduction path, which is separate
from the direct path used to sense the state of a crossbar cell.
The presence of such undesirable parallel paths can result in
erroneous reading of a cell, since a cell in HRS can be wrongly
sensed as being in LRS due to high sneak path current.

A number of approaches have been proposed to characterize
and mitigate the sneak path problem in crossbars. There have
been efforts to formally characterize the conditions under
which sneak paths can cause erroneous readout [7]. While
mapping logic operations to crossbar cells, there will be no
sneak path current if none of the necessary conditions as
mentioned in [7] are met. In several works relating to in-
memory computing on crossbars [8], some rows can be dis-
abled by feeding them with an isolation voltage Viso of suitable
magnitude. In an alternate approach, individual crossbar cells
can be enabled or disabled by providing some access device
with every cell. This leads to one-diode one-resistor (1D1R)
and one-transistor one-resistor (1T1R) structures that can solve
the sneak path problem, but at the cost of additional area
overhead due to the larger sizes of the access devices [9]. As
an alternative [10], every crossbar cell can contain two back-
to-back memristors in complementary states. This arrangement
can minimize the sneak path problem with nominal hardware
overheads; however, the complexity of the read circuitry
increases. Also if we consider the various logic design styles
[8], [11]–[17] in literature, we see that most of them use 0T1R
crossbar structure without any access devices, and are hence
vulnerable to sneak paths. Hence it is of utmost importance
to analyze sneak path effects in those methods.

The main contributions of this paper are as follows:

• We critically analyze the impact of sneak paths in cross-
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bars, and how they impact the correct reading of resistive
states of the devices.

• We analyze sneak paths of various lengths say k where
k is an odd number, whereby k number of memristor
devices in LRS appear in series and sneak some current
through the column being sensed.

• We analyze MAGIC and MAJORITY based logic design
styles and the impact of sneak paths on these methods.
A limited size crossbar with three columns is found to
eliminate sneak path issues.

The rest of the paper is organized as follows: Section II
provides a brief literature survey of memristors, and some
prior works on analyzing sneak paths in crossbars. Section
III discusses sneak path analysis on different size crossbars.
In Section IV we analyze the existing in-memory computing
techniques like MAGIC and MAJORITY and how sneak paths
affect them. In Section V we provide the experimental results,
followed by concluding remarks in Section VI.

II. PRELIMINARIES AND RELATED WORKS

In this section, we discuss about the preliminaries of mem-
ristors, and also some previous works that have analyzed sneak
paths in crossbar.
A. Memristors

A memristor is a two-terminal passive circuit element that
exhibits non-volatile switching of its resistance in response to
the voltage applied across it [1]. In 2008 a research group from
HP labs reported the fabrication of a memristor device [2].
They used a metal-insulator-metal structure, where a Titanium
Oxide (TiO2) slab is created between Platinum (Pt) electrodes.
In general, the device has a region with oxygen vacancies
(TiO2−x) referred to as the doped region, and one with no
oxygen vacancies (TiO2) referred to as the undoped region.
The doped region is highly conductive while the undoped
region is highly resistive. Depending on the voltage applied
across the terminals, the boundary between the two regions
can be made to move, which changes the overall resistance of
the device. When the voltage across the device is withdrawn,
the state of the device remains unchanged, which makes it
an ideal candidate for non-volatile memories. Memristors are
programmed to be in one of two states, low resistance (logic 1)
and high resistance (logic 0) for logic and memory operations.

Fig. 1(a) depicts the schematic symbol of a two-terminal
memristor. We can fabricate memristors in a compact fashion
as a crossbar, as shown in Fig. 1(b), where each device is
fabricated at the junction of a distinct row and column wire.

Memristive crossbars have been explored for both resistive
storage and in-memory computing applications. However, the
sneak path issue can potentially limit the crossbar from oper-
ating with full benefits. We briefly discuss the various works
in the literature that either analyze sneak paths or discuss
methods to mitigate them.

B. Related Works on Sneak Path Analysis

Many works have been reported in the literature where
analysis of sneak paths have been performed [6], [7], [10],
[18], [19].

(a) (b)

Fig. 1. (a) Schematic of a two-terminal memristor, (b) A 4× 4 crossbar.

Linn et al. introduced a complementary resistive switch as a
solution to sneak path reads in crossbars [10]. Here two anti-
serial memristors are placed together to form a single cell.

Zidan et al. analyzed sneak paths in a crossbar with par-
ticular emphasis on how aspect ratio of the memory array
affects the overall sneak path issue [6]. They also suggested
that higher number of cells in LRS leads to more sneak
paths. Finally they proposed a method for gating the memory
cell with a three-terminal memristor device. This method also
increases the crossbar size with the gating elements.

Cassuto et al. stated the necessary conditions to maintain
sneak-path-free readouts in crossbars [7]. They put emphasis
on the requirement of isolated-zero-rectangle free array, which
is an important concept from logic design point of view.

Gul et al. have used a one-diode one-resistor (1D1R)
structure, with Schottky diodes as access devices [18]. They
fabricated the device and investigated anti-crosstalk character-
istics.

As an alternative choice, one can also use one-transistor
one-resistor (1T1R) structure [9]. Although both 1T1R and
1D1R structures mitigate the sneak path effect on a cross-
bar, they increase the total area of the crossbar. Joshi et
al. analyzed and proposed methods for detecting sneak path
currents in memristive crossbar based on crossbar array size,
I/O switch vectors, memristor resistance and memristor pro-
gramming [19].

We can see that several solutions have been suggested for
mitigating sneak paths in crossbar arrays. But if we want to
utilize the full benefit of a crossbar without access devices
(i.e.. 0T1R), then we must map the circuits in such a way
that sneak paths do not occur. This is not an easy task from
the point of view of logic design. In this paper we analyze
MAGIC and MAJORITY based logic design styles for sneak
paths. As opposed to other methods in literature not only we
analyze sneak paths but also try to provide some perspective
for logic synthesis. We specifically identify the issues of these
methods where sneak path can affect the overall correctness.

III. SNEAK PATHS AND CURRENT ANALYSIS IN
MEMRISTOR CROSSBARS

In a memristive crossbar, when we want to read the state of
a cell (i.e., HRS or LRS), we apply a read voltage along the
row and measure the current along the column. However, it
may so happen that due to parallel current conduction paths in
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the crossbar, the current being sensed is affected. This can lead
to erroneous cell reading, whereby a cell in HRS is wrongly
interpreted as being in LRS.

Consider a 5× 5 crossbar (see Fig. 2(a)) where we want to
read a HRS cell highlighted in orange, in row-3 and column-3,
denoted as (R3, C3). The green line shows the desired current
path from V3 to I3. But due to the LRS states of other cells
in the crossbar, there can be other current flowing paths (as
shown in Fig. 2(b) and 2(c)). Thus, the HRS state of the cell
may erroneously be read as LRS. In general, sneak paths refer
to some undesired parallel path in a crossbar through which
currents can flow in addition to the desired path.

(a) (b)

(c)

Fig. 2. A 5×5 memristive crossbar, where V3 = Vread is the volatge applied
in row 3, and current sensed from column 3: (a) The crossbar without sneak
paths, (b) Presence of a sneak path, (c) Presence of another sneak path.

It may be noted that if the cell at (R3, C3) in Fig. 2(a) is
in LRS, and we want to read its state, the presence of sneak
paths will further increase the current and hence the cell will
be read correctly, even if there is an effect of sneak path. The
effect of sneak path is prevalent in those cells which are in
HRS state. We can say that in a crossbar with higher number
of memristors in LRS, the chance of having sneak path effect
is also higher.

A. Sneak Path of Various Lengths

In a memristor crossbar sneak paths of various lengths can
exist. Consider sneak path of length k (where k is odd). In
this case the current flowing from the voltage source to the
current sensor will cover k memristors in series. As the value
of k increases, the magnitude of sneak path current will be
smaller. However, there may be multiple sneak paths appearing
simultaneously, thereby the total current will get added up.
Consider the crossbar of Fig. 3(a) where the cell at (R3,C4) is
being read (dotted sky-blue square). Fig. 3(b), 3(c) and 3(d)
show sneak paths of lengths 3, 5 and 7 respectively when some
of the cells (denoted by dotted red circles) are in LRS.

(a) (b)

(c) (d)

Fig. 3. (a) A 5×5 crossbar where the cell (R3,C4) is being read, (b) A sneak
path of length 3, (c) A sneak path of length 5, (d) A sneak path of length 7

Proposition 1: A sneak path that can result in erroneous
readout of a cell in HRS must be of odd length.
Proof: A memristor on the crossbar in LRS state provides a
current conduction path between the row and column to which
it is connected. A sneak path consists of a chain of memristors
along a current flowing path, each of which is in LRS.

Every LRS memristor along the sneak path will switch the
current from a row to a column, or from a column to a row. To
read the state of a cell Mij , we apply a voltage in row Ri and
measure the current in column Cj . In other words, any sneak
path that may lead to erroneous read operation of cell Mij

must switch the current initially entering the crossbar through
Ri finally to column Cj . It is clear that only an odd number
of memristors in the path can switch the current from a row to
a column, because every pair of consecutive memristors in the
path shall switch current from a row to a column, and again
back to a row. Hence the result.

■
Each of the memristors (in LRS) along a sneak path will

switch the current from a row to a column, or from a column
to a row. Since the voltage is applied along a row, and the
current is sensed along a column, there must be odd number
of such current switching along a sneak path. For a crossbar
of size n×n, the number of distinct sneak path lengths will be
(n− 1), and of sizes k = 3, 5, 7, . . . , 2n− 1. Thus for a 5× 5
crossbar, we can have 5−1 = 4 number of distinct sneak path
lengths (with k = 3, 5, 7, 9). Similarly, for a 6×6 crossbar, we
can have sneak paths of lengths k = 3, 5, 7, 9, 11. The total
number of sneak paths for a n × n array can be calculated
using the formula:

SPTotal =

k−1
2∏

i=1

(n− i)2 (1)

for k = 3, 5, 7, . . . , 2n− 1.
For a 6 × 6 crossbar, we can have maximum sneak path

length of 6 − 1 = 5. Hence according to eqn.(1), possible
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values of k can be 3, 5, 7, 9 and 11. Total number of sneak
paths of length 3, 5, 7, 9 and 11 can be estimated as [19]:

SP 6×6
3 = (6− 1)2

SP 6×6
5 = (6− 1)2.(6− 2)2

SP 6×6
7 = (6− 1)2.(6− 2)2.(6− 3)2

SP 6×6
9 = (6− 1)2.(6− 2)2.(6− 3)2.(6− 4)2

SP 6×6
11 = (6− 1)2.(6− 2)2.(6− 3)2.(6− 4)2.(6− 5)2

where SPm×n
k denotes the total number of sneak paths in an

m× n crossbar of length k.
Thus, the total number of possible sneak paths of all sizes

is given by

SP 6×6
Total = 25 + (25 ∗ 16) + (25 ∗ 16 ∗ 9) +

(25 ∗ 16 ∗ 9 ∗ 4) + (25 ∗ 16 ∗ 9 ∗ 4 ∗ 1)
= 32825

It may be observed that even in a small 6 × 6 crossbar,
there can be 32825 possible sneak paths of various lengths.
The effect of sneak current will be greater for larger crossbars
when higher number of cells are in LRS state.

B. Current Analysis in Memristor Crossbar

In this section we analyze the currents in the crossbar
both in the presence and absence of sneak paths. We use
SPICE simulation to estimate the currents. We have made
certain assumptions while performing the current analysis.
The memristors in the crossbar are assumed to be ideal (i.e.
without any parameter variations) and two-valued, with a
memristor being in either LRS or HRS. We have used the
resistance values corresponding to LRS and HRS as 500Ω and
5MΩ respectively, with a HRS-to-LRS ratio as 104. This is
consistent with the parameters provided in recent publications
(e.g. in [20]). For reading the state of a cell at location (i, j),
we apply a voltage of 0.5V to row i of the crossbar, and
sense the current in column j by connecting a 10Ω resistance
to ground and then measure the voltage across it. In general,
voltages can be applied to any arbitrary number of rows, and
current sensed in any arbitrary number of columns. We have
developed a software tool in C that reads the size of the
crossbar, HRS and LRS resistance values, positions of the
crossbar cells in LRS, and the rows where the read voltages of
0.5V have been applied. The tool directly generates a SPICE
netlist file where the memristors are modeled as resistances,
which is then simulated using LTSpice to get the measured
current values.

Example 1: Consider a 8 × 8 crossbar as shown in
Fig. 4, where the voltages along the rows are denoted
as (V1, V2, V3, V4, V5, V6, V7, V8), and the currents along the
columns as (I1, I2, I3, I4, I5, I6, I7, I8). If we want to read
the state of the cell in the fourth row and fifth column, we
have to apply the read voltage to V4 and sense the current I5.
In the absence of sneak paths, if the cell to be read is in HRS,
we get a low current value 0.42µA (due to the presence of
multiple parallel paths in HRS), and if the cell is in LRS, we
get a higher current value 0.98mA.

(a) (b)

(c) (d)

Fig. 4. A 8 × 8 crossbar where the cell (R4, C5) is being read: (a) Three
sneak paths of length 3, (b) Three sneak paths of length 5, (c) One sneak
path of length 7, (d) One sneak path of length 9.

Let us now consider the scenario where the cell at (R4, C5)
is in HRS. The following scenarios are depicted:

a) The cells marked in Fig. 4(a) in LRS contribute to three
sneak paths of length 3: (R4-C2, R2-C2, R2-C5), (R4-
C4, R8-C4, R8-C5), and (R4-C8, R7-C8, R7-C5).

b) The cells marked in Fig. 4(b) in LRS contribute to three
sneak paths of length 5: (R4-C4, R3-C4, R3-C6, R5-
C6, R5-C5), (R4-C2, R1-C2, R1-C7, R6-C7, R6-C5),
and (R4-C1, R2-C1, R2-C7, R8-C7, R8-C5).

c) The cells marked in Fig. 4(c) in LRS contribute to one
sneakpath of length 7: (R4-C2, R2-C2, R2-C7, R6-C7,
R6-C3, R8-C3, R8-C5).

d) The cells marked in Fig. 4(d) in LRS contribute to one
sneakpath of length 9: (R4-C3, R1-C3, R1-C8, R3-C8,
R3-C6, R7-C6, R7-C1, R5-C1, R5-C5).

It may be noted that for a sneak path of length k, the current
flows through k conducting memristors in series. The higher
the value of k is, the smaller is the sneak path current. The
current values in the presence of sneak paths of various lengths
will be as follows:

• Normal read of a cell in LRS (with no sneak path):

Inorm =
V

RLRS
(2)

• Current in the presence of sneak path of length k:

Isp =
V

k ×RLRS
(3)

Here, V denotes the read voltage, and RLRS denotes the
resistance of a memristor in LRS state.
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This characteristic of sneak path may be taken into consid-
eration when designing in-memory logic synthesis methods
using memristors. It is worth mentioning that if we want
to realize sneak path free designs, we need to compromise
with respect to either area or computational steps. In the next
section we discuss the logic synthesis and mapping techniques
that are proposed in literature and we further analyze the effect
of sneak paths on these techniques.

IV. ANALYZING LOGIC DESIGN STYLES FOR SNEAK
PATHS

Research on realizing functions on memristive crossbars has
taken a great leap [4], [8], [9], [11]–[13], [15], [21]–[27]. In
this section we shall discuss select in-memory logic design
techniques using memristor crossbar. We shall further analyze
these methods and identify the ones that are more susceptible
to sneak paths.

A. MAGIC-based computing

Memristor Aided LoGIC (MAGIC) [8] is a computing
method used to carry out logic operations directly on memris-
tor crossbars. It is a stateful logic design style that is found to
be efficient as compared to other memristor-based logic design
styles like IMPLY [21]. One of the major benefits of MAGIC
is that the inputs and outputs are stored in separate memristors
as opposed to IMPLY. Also, MAGIC does not require any
extra hardware like resistors, which makes it more suitable
for crossbar realization.

1) Logic Design using MAGIC: Several prior works exist
for realizing logic gate operations using MAGIC [13], [15],
[17], [27]–[29]. The basic idea is to represent a function in
terms of NOR/NOT netlist and then map the gate operations to
the crossbar (in either row-wise or column-wise fashion). The
gate mapping techniques can be broadly divided into Serial
Mapping and Parallel Mapping [15].

Fig. 5(a) shows the NOR/NOT gate realization of a full
adder, which consists of 12 gates across 7 levels. The gates
can be mapped to the crossbar using single-row mapping as
shown in Fig. 5(b). First the inputs are initialized in columns
C1, C2, C3 with the input values A, B, Cin respectively. Then
all the gates in the netlist (12 gates in total), are mapped to a
single row in columns from C4 to C15. The gate operations are
then carried out in level-wise order by applying the necessary
control signals to the crossbar columns.

This method will never give rise to sneak paths as only a
single row is enabled during computation. Although we have
shown row-wise operations in Fig. 5(b), it is also possible to
map the gates in a single column and then carry out column-
wise operations. One drawback of the single-row (single-
column) method is that for larger functions, the number of
time steps required will be high due to the sequential nature
of execution.

Fig. 5(c) shows how the gates can be mapped across
multiple rows of the crossbar [13]. Most of the methods
in literature [13], [14], [27], [29] have used multiple-row
mapping, with parallel gate evaluation across the rows. The
same can be done for multiple-column mapping as well. This

(a)

(b)

(c)

Fig. 5. Realization of a full adder: (a) NOR/NOT gate netlist, (b) Single-row
mapping, (c) Multiple-row mapping.

requires proper alignment of the input and output memristors,
and may necessitate copying the states of memristors for
necessary alignments [13]. In general, a copy operation can
be implemented by a read followed by a write; however,
the correctness of the read operation becomes susceptible to
sneak paths. However, in MAGIC we can implement the copy
operation using two back-to-back NOT operations, which does
not involve any reads and is hence resistant to sneak paths. The
only time sneak paths can play a role is while reading the final
outputs.

Fig. 6. Mapping of full adder in multiple crossbar rows [15].

Another gate mapping method based on MAGIC [15] uses
a crossbar of fixed size to map the gates. For the full adder
netlist of Fig. 5(a), we see that the maximum number of gates
in a level is n = 3. Thus we need to evaluate the n gates in
parallel, for which we require a crossbar of size n× 3. Fig. 6
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shows the corresponding mapping using the method of [15].
Due to the restriction imposed on the size of the crossbar, there
will not be any sneak paths during read operation as discussed
in Lemma 1.

Lemma 1: There will not be any sneak path during MAGIC
NOR gate evaluation using row-wise parallel mapping.
Proof: The output of a NOR gate will be 0 if one or more of
the inputs are 1; otherwise, the output will be 1. The crossbar
can be represented as a binary state matrix, where the elements
represent the memristor states. It is known that sneak paths in
a crossbar can result in erroneous read only when there is the
presence of an (imaginary) rectangle in the state matrix with
three of the corners in state 1 and one of the corner in state
0 [7], where the cell in state 0 is being read.

Fig. 7(a) shows the mapping of n 2-input NOR gates in
an n × 3 crossbar for parallel evaluation, with the first two
columns denoting inputs and the third column denoting output.
Considering the cell marked ‘0’ in the output column, reading
the cell may become erroneous due to sneak paths if, say, a
rectangle exists with the corner cells a = b = c = 1. However,
the output of a NOR gate (here, c) will be 1, if all the gate
inputs (here, b) are at 0. This contradicts the assumption, and
hence the condition a = b = c = 1 can never be satisfied. The
same logic can be extended to an n×m crossbar for parallel
evaluation of n NOR gates with (m−1) inputs each as shown
in Fig. 7(b), for any values of n and m.

■

(a) (b)

Fig. 7. Sneak path in MAGIC computation: (a) n 2-input NOR gates, (b) n
(m− 1)-input NOR gates.

B. Majority-based computing

The output of the 3-variable majority function evaluates to
1 if at least two of the inputs are at 1; otherwise it evaluates
to 0. It can be represented as [30]:

MAJ(A,B,C) = AB +BC + CA (4)

The set {MAJ, INV, 0, 1} is functionally complete, and can
be used to implement any Boolean function.

The MAJ operation can be implemented using a single
memristor as shown in Fig. 8(a), where the inputs A and B (as
B′, in complemented form) are applied as voltages across the
terminals TE and BE [23]. A voltage +V is applied for logic
value 1, while −V is applied for logic value 0. It is assumed

that the memristor will be set (to 1) if VTE,BE = +2V , and
will be reset (to 0) if VTE,BE = −2V . The third input C,
and also the output, is mapped to the resistive state of the
memristor. In other words, computation is carried out as a
combination of stateful and stateless logic styles.

Fig. 8. Memristor realization of MAJ(A,B,C) = AB +BC + CA.

Example 2: The MAJ/NOT netlist for a full adder is shown
in Fig. 9(a), which consists of three majority gates M1, M2
and M3, and two inverters. One possible crossbar mapping
for carrying out the evaluation is shown in Fig. 9(b), with the
required control signals depicted in Fig. 9(c).

It can be seen that the evaluation requires three write
operations in steps T1 and T2 (with two parallel writes in
step T1). During the MAJ operations in steps T3, T5 and T7,
the controller applies the required voltages to the SL and BL
lines. Lastly, the controller reads the state of memristor in
steps T4, T6 and T8. During the read operations, there can be
errors due to sneak paths. Although sneak path may not be an
issue for such a small crossbar but as many intermediate read
operations are required in MAJ based mapping, this method
is vulnerable to sneak paths.

(a) (b)

Step Micro-operations Operation
T1 M1 = Cin, M2 = Cin Initialization
T2 M3 = B Initialization
T3 BL1 = V (A), SL1 = V (B′) M1 = MAJ(A,B,C)
T4 Read M1 Read operation
T5 BL2 = V (A), SL1 = V (B) M2 = MAJ(A,B′,C)
T6 Read M2 Read operation
T7 BL1 = V (M1′), SL2 = V (M2′) M3 = MAJ(M1′,M2,B)
T8 Read M3 Read operation

(c)

Fig. 9. Full adder realization: (a) MAJ/NOT netlist, (b) Crossbar mapping,
(c) Required micro-operations.

To summarize, the MAGIC based approach require more
memristors to carry out the operations (i.e. m + 1 for an m-
input NOR gate), but does not suffer from sneak path issues
during gate operations. Also, the final read operation can be
made resilient to sneak paths for the n × m organization of
the crossbar. In contrast, the MAJ based approach requires less
number of memristors but suffers from sneak path issues.
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V. EXPERIMENTAL RESULTS

The gate mapping methods, both for MAJ gate decom-
position and MAGIC NOR/NOT gate decomposition, have
been implemented in C and run on a Linux-based machine
with Core-i7 processor, 3 GHz clock, and 8GB memory. We
have carried out experiments both on IWLS and ISCAS-85
benchmark functions.

For MAJ gate decomposition, functional specifications for
the IWLS and ISCAS-85 benchmarks are converted into
equivalent MAJ/NOT gate netlists using CirKit library [31].
The netlists are then topologically sorted and levelized. All the
MAJ gates in a level can be evaluated in parallel on a k × k
crossbar, where k denotes the maximum number of MAJ gates
in a level. The number of cycles required to evaluate all the
gates in a level is 3 (or 4), depending on whether all the inputs
of the MAJ gates are uncomplemented (or complemented). It
may be noted that read operations will be required at every
level, which can be carried out in a single cycle. In other
words, the number of MAJ gate levels and the number of read
cycles required are the same. These read operations become
vulnerable in the presence of sneak paths, which depends on
the state of the crossbar as discussed in Section III.

Let N denote the total number of MAJ gates in the initial
netlist. We assume the gates are topologically ordered in k
levels {L1, L2, . . . , Lk}. Some of the MAJ gates may be
having complemented inputs. If ni denotes the number of MAJ
gates in level Li, then

N =

k∑
i=1

ni (5)

Also, let ni,NOT denote the number of complemented inputs
in the MAJ gates in level Li. For evaluating the gates in each
level we need 3 (or 4) cycles. Parallel evaluation of gates
are possible and hence if there are m gates in a level we
can evaluate all the m gates in 3 (or 4) cycles. For parallel
evaluation we need to make sure that we map each gates in
different rows/columns unless they have a shared operand. In
this case, two or more resistive majority gates can be mapped
to a single row for parallel evaluation.

In a similar way, for the MAGIC based approach, the IWLS
and ISCAS-85 functional benchmarks are transformed into
equivalent NOR/NOT gate netlists using the ABC tool. The
gate netlists are similarly topologically sorted and levelized,
and the gates mapped to the crossbar in level-wise fashion for
evaluation [15]. It has been shown that for k gates mapped
to a k × 3 crossbar, all the gates can be evaluated in parallel
without any sneak path effects [15]. The number of cycles
required to evaluate all the gates in a level is 6.

Table I shows the results of gate mapping using the MAJ-
based and MAGIC-based approaches. The first three columns
of the table show the names of the benchmarks, number of
primary inputs (#PI), and number of primary outputs (#PO)
respectively. The next six columns show the results for the
MAJ-based approach, in terms of the number of MAJ gates
(#MAJ), number of MAJ gate levels (#Lev), number of cycles
required to evaluate (CMAJ ), the number of read operations

(#Read), the crossbar size (Csize), and the number of possible
sneak paths of length 3 (#SP3). The next three columns show
the results for the MAGIC-based approach, containing the
number of NOR/NOT gates (#Gates), number of gate levels
(#Lev), and number of cycles required for evaluation (CMAG).
The last column show the cycle overhead (% Overhead) of
MAGIC-based method over MAJ-based method, calculated as
a percentage using the formula (CMAG/CMAJ) ∗ 100.

From the table it is evident that the number of cycles
required to evaluate a function in the MAGIC-based approach
is much higher compared to that for the MAJ-based approach.
However, evaluation of gates across levels in the MAJ-based
approach is vulnerable to sneak paths. As the size of the
crossbar increases, the number of sneak paths also increases
very rapidly (number of sneak paths of length 3 is shown for
illustration), and hence there is high chance of erroneously
reading a cell value. To summarize, we can say that the
MAGIC-based approach may not be suitable for applications
where lower latency is required. Although MAJ-based ap-
proach offers much lower latency, for practical realization we
need to design sneak path aware mapping technique.

VI. CONCLUSION

In this paper we analyze sneak paths of various lengths in
a crossbar array. We analyze two logic design styles based on
MAJ and MAGIC for sneak paths. We observe that some of
the MAGIC based logic design methods are resilient towards
sneak paths. Although MAJ-based mapping is more effective
in terms of number of cycles, it is susceptible to sneak
paths. We also compare the cycle overhead of MAGIC-based
method with respect to MAJ-based method. As a future work,
algorithms for sneak path aware MAJ-gate mapping can be
developed.
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