
Technical Documentation of Software and Hardware
in Embedded Systems

Beate Muranko Rolf Drechsler
Institute of Computer Science

University of Bremen
28359 Bremen, Germany

Email: {bmuranko, drechsle}@informatik.uni-bremen.de

Abstract— Embedded systems are characterized by the pres-
ence of software and hardware components. They are integrated
e.g. into telecommunication or products such as cars. Due to
the size of embedded systems and the reuse of components,
documentation of them becomes more important. Although the
importance of documentation has increased over the years, it is
still a largely neglected part of the development process.

In this paper we discuss the integration of the technical
documentation in the software and hardware development pro-
cesses. Therefore, we analyze and evaluate classical software
and hardware development models with regard to technical
documentation. Furthermore, we present a workflow for doc-
umentation which is derived from practical experience and can
be integrated in existing software and hardware development
models. As a proof of concept we present an approach for
the integration of documentation techniques into one software
development workflow.

I. INTRODUCTION

Embedded systems are integrated e.g. into telecommuni-
cation or products such as cars. Embedded systems can be
analyzed from different perspectives e.g. by looking at the
number of processors. According to [1] “about 79% of all the
processors are used in embedded systems”. Furthermore, there
it is reported that “for many products in the area of consumer
electronics the amount of code is doubling every two years”.
Usually embedded systems involve hardware and software, for
this both has to be taken into consideration. There are standard
components which can be reused, hence the design process
does not necessarily start from scratch.

Due to the size of embedded systems and the reuse of
components, documentation of software and hardware strongly
supports the understandability and use of them. Therefore, as
the first step of a research study our interest was in the status
quo of present technical documentations. An analysis of the
market revealed the following:

On the one hand technical documentation is widely regarded
as of little scientific value. Therefore, very little has been
published on this subject. Furthermore, software and hard-
ware development, respectively, are considered as much more
important than the technical documentation of the developed
system. This for instance becomes obvious in [2], where
documentation is mentioned only briefly.

On the other hand existing documentation usually does not
match the current version of the project, is incomplete and
often too complicated. However, technical documentation is a
substantial component of the overall product and should be
given the same attention as the design and implementation.
In more than one case, insufficient documentation has been
identified as a source for design error, see e.g. [3].

Beside this, our study showed that there are not many
research papers in the area of documentation:

There are tools for automatic source code documentation:
An example is the “Javadoc” tool1 provided by SUN Mi-
crosystems, which generates an API documentation in HTML
starting from comments in the source code. Furthermore,
there is the “CppDoc” tool2 which also generates HTML
documentation. This is done by extracting the source code and
special comments from C++ classes. The output of CppDoc
and Javadoc are similar. These tools are helpful for providing
an initial source code documentation, but they do not give a
systematic way of deriving a complete documentation.

Additionally there are initiatives for documentation. An
example is the SPIRIT Consortium initiative3. The SPIRIT
Consortium Specification focused on improving and establish-
ing the automated integration of IP into design flows. This is
done by creating specifications in two areas: “an IP meta-
data description specification and an interface for integrating
IP generators and point-tools” [4]. Thus, the focus is on
IP integration (and by this also covers some documentation
aspects), but not the documentation flow itself.

Our approach considers the problem from a different per-
spective. We study new aspects in terms of creation of manuals
and other important documents.

Hence, in this paper we examine the status quo of the
integration of documentation into software and hardware de-
velopment processes. Afterwards we take a closer look at
classical development models, which we analyze with respect
to the way they address documentation issues. Then, we
present a workflow for documentation which is derived from

1http://java.sun.com/j2se/javadoc/
2http://www.cppdoc.com/
3http://www.spiritconsortium.com/



practical experience. Based on this we show an integration of
documentation into a software model.

This paper is structured as follows: Section II gives a
short introduction to the theoretical background of technical
documentation. In Section III we give a brief overview of
software and hardware development models and analyze them
with emphasis on documentation. Then we analyze each model
individually with respect to the integration of documentation
techniques. The results of this analysis are illustrated and
discussed. Section IV presents a prototypical workflow of a
general documentation process. In Section V we present an
approach for a general solution for the integration problem.
Finally, Section VI discusses the results of this paper and a
direction for future research is given.

II. BACKGROUND

This section provides the theoretical framework that is
necessary for the understanding of the paper. The terms “tech-
nical documentation” and “internal/external documentation”
are defined and a listing of possible documentation types is
given. Finally, we give a brief overview of German DIN EN
62079, which is the widely accepted standard for the creation
of technical documentations in Germany4.

• Technical Documentation
According to [5], the technical documentation covers all
necessary information related to the product and its use.
This is recorded either on paper or on electronic media.
Furthermore, it is required that all information from the
very beginning of the project scheduling is collected and
stored. This continues during the entire product lifetime.

• Internal/External Documentation
The term of internal documentation comprises all in-
structions and information which are meant exclusively
for internal use by staff members. Examples for this
are product requirement specifications, construction and
production documents and quality assurance documents.
External documentation includes all product-related cus-
tomer information and instructions which are delivered
to the customer along with the product, i.e. the so-called
user information. Examples for this are manuals and
operating instructions (see e.g. [6]).

• Documentation Areas
According to [7] documentation can be subdivided into
four areas: project documentation, development docu-
mentation, product documentation and user documen-
tation. Technical documentation encompasses develop-
ment documentation, product documentation and user
documentation (see Figure 1), all of which are briefly
described in the following. The project documentation

4In the following we refer to the standard German textbooks on documen-
tation where needed. These books are given as further readings, but are not
essential for the understanding of the paper. Similar books can be found in
different languages as well.

User Documentation

Development Documentation

Product Documentation

Te
ch

ni
ca

l D
oc

um
en

ta
tio

n

Fig. 1. Documentation areas

will not be considered in the following as it is not part
of the technical documentation.

– Development Documentation
This part of the documentation is concerned
with describing problems and their solutions and
workarounds, respectively, as well as any additional
utilities that have been used for the above-mentioned
solutions.

– Product Documentation
This may contains e.g. an overview of the product as
well as a more detailed description, which includes
the program sequence and the underlying data model.

– User Documentation
It deals with instructions for operating the product,
e.g. in terms of user manuals, maintenance instruc-
tions, training course documents and sales documen-
tation.

• DIN EN 62079
In Germany for reasons of liability, producers, manufac-
turers and importers of technical systems are required by
law (e.g. product liability law) and various regulations
(VDE regulations, standards) to supply documentation for
their products. DIN EN 62079 contains a general basis
for the outline and creation of technical documentation.
The application range of the DIN EN 62079 standard
covers topics from instructions for small and simple
products (e.g. a jar of paint) to large and highly complex
products (e.g. industrial facilities) [8]. According to [8]
no universally valid standard can cover each individual
case that might arise. For this reason additional standards
pertaining specifically to the product in question must
be consulted previously to the creation of documentation
for that product. The DIN EN 62079 standard does
not provide any detailed information regarding specific
product ranges like software or hardware. Therefore, there
is no specialized basis for technical documentation in
these areas, like e.g. embedded systems.



System
Requirement

Software
Requirement

Analysis

Program 
Design

Coding

Operation

Testing

Fig. 2. Waterfall model

Additionally, the DIN EN 62079 standard also contains
a check list for analyzing instruction manuals. If used
correctly, this check list allows the evaluation and error
testing of manuals on a structural level. However, it does
not help with content-specific details related to hardware
or software.

III. SOFTWARE AND HARDWARE DEVELOPMENT

MODELS

The insufficient attention given to technical documentation
in software and hardware development models provide the
background for the reevaluation of these models. The goal of
the analysis in this section is to point out the above-mentioned
lack of consideration for documentation even in such models
which explicitly contain the production of documentation as
an integral component of their procedure. With regard to hard-
ware development, we discuss the generally used development
model which is described in [9]. Specifically, we present the
procedure given in [10] which is based on [9] and discusses
the classical workflow of development in phases.

According to [11] the Waterfall model [12] and the V-
model [13] belong to the class of documentation oriented
development models. In the following the Waterfall model and
the V-model given in [11] which is based on [13], are briefly
described.

The Waterfall model describes the production of software as
a sequential process including incremental development phases
(see Figure 2). The primary advantage of this model is that it
requires a minimal management effort for the development of
a product [11]. This is achieved by structuring the development
in such a way that one phase must be completed before
the next can start. Since the model is document-driven, each
phase results in documents, which then are carried along into
the following phase. Therefore, it is characteristic for the

System
Requirements

Component
Implementation

Test Cases

Application Scenarios

Test Cases

Test Cases

Acceptance 
Test

High Level 
Design

Modul Test

Integration
Test

System Test

Validation

Verfication

Low Level
Design

Fig. 3. V-model

Hardware
Description
(e.g. VHDL)

Specification

Logic Synthesis

Layout
Generation Production

Specification
that can be
simulated

Textual Descrtiption

main () {
...
}

ENTITY
...

Formalization

Fig. 4. Hardware model

Waterfall model that receiving and responding to feedback is
only possible in between the actual production phases.

The primary goal of the V-model is to integrate a quality
assurance into the development process (see Figure 3). In
order to achieve this, the V-model includes verification and
validation concepts. In this context, verification is defined as
the examination of the correctness of the system, i.e. a system
is correct if it matches its specification. Similarly, validation
ensures that the result of the development process is a system
which deals in a suitable manner with the problem it was
meant to solve. Since both validation and verification are
non-discrete processes, which cover the whole duration of a
project’s lifetime, their requirements result in a break-up of
the strict temporal flow of phases as required by the Waterfall
model. Although the V-model is no longer hierarchical, its
phases still result in documents.

The established procedure in hardware development [9],
[10] is slightly different from the described software develop-
ment (see Figure 4). For hardware, the development process
starts with a textual specification, which is then formalized and
described in a programming language that allows simulation.
Typically, this is done in C or C++. Starting from this descrip-
tion the coding of the RTL model in a hardware description
language, like Verilog or VHDL, starts. The resulting code
is then translated automatically into a net list. The net list



Requirement Analysis

Maintenance

Planning

Design

Fig. 5. Documentation workflow

represents the starting point for the production of the chip.
This short summary of the development models already

shows that while the individual phases and their connections
are clearly defined, the technical documentation is neglected.

When we consider the software development models we
have discussed previously, it becomes obvious that while
both models mention the need for documentation, neither of
them explicitly indicates in which section of which phase the
technical documentation is to be created.

The classical hardware development model deals more
drastically with the technical documentation by “ignoring”
it. Also in verification orientated development models the
documentation is not explicitly addressed [14].

By this, we draw the conclusion that in general, the existing
software and hardware development models address technical
documentation only insufficiently.

IV. DOCUMENTATION WORKFLOW

In this section we construct a general documentation work-
flow based on empirical experience [15], [16], [17]. The
process is divided into four phases as shown in Figure 5. These
are characterized as follows.

• Requirement Analysis
Here, the project has to be analyzed with regard to any
requirements of the documentation. Then the target group
for any instruction material needs to be determined in
order to establish the level of detail necessary for the
material in question. If this group has little previous
knowledge in handling the product, the documentation
needs to be detailed accordingly.
As soon as these general parameters have been estab-
lished, the author of the documentation needs to gain
detailed knowledge of the product. This leads to a first
version of the product description which has to be coor-
dinated with all persons involved in the project, in order
to promptly determine and eliminate misunderstandings.
As a final step in this phase it is important to calculate

a complexity estimate, e.g. the number of pages or the
overall cost.

• Planning
In the planning phase, responsibilities are divided among
the participants of the project. Additionally, the layout,
the internal basic structure and the level of detail of
the documentation are precisely specified. This is also
the phase where the product itself is examined with
regard to compliance with any specific legal standards.
For example, it must be established whether the product
respects current safety standards, or whether its life cycle
matches any minimum warranty periods as prescribed by
law. The result of this phase is a complete structure and
a temporal operational sequence of the documentation.

• Design
The production phase consists of three documentation
releases: the alpha, the beta and the final version. The
respective versions of the documentation are created in
parallel to the corresponding implementation phase with
the assembly of the final product version. The alpha ver-
sion already contains descriptions for the entire function-
ality of the product and all its components, in accordance
with the previously established documentation plan. In
this phase all tools which will be employed in the creation
of the final documentation should also be tested, in order
to ascertain that they meet the requirements, too.
Once completed, the alpha version is verified by the staff
members responsible for the respective project parts. Any
comments, revision suggestions and improvements are
included, resulting in the next version. The beta version
will once again be presented to developers for repeated
examination. Additionally, in this release an evaluation
by external experts and end users should be carried out.
The result of this combined revision process is the final
documentation version.

• Maintenance
No matter how carefully a manual is put together, some
weaknesses and errors will always remain. These tend to
emerge gradually when the manual is widely used over
a predetermined period of time, and they cannot simply
be ignored. It becomes clear that, far from being static,
documentation is a continuous product which needs to be
revised constantly.

V. INTEGRATED APPROACH

We have shown in the previous sections that the lack of
accepted documentation procedures in development models
is a problem which needs to be solved. Our approach for a
solution integrates the documentation workflow we illustrated
in the previous section into the Waterfall model. In Figure
6 the resulting model is illustrated by lining up the original
model and our documentation extension and establishing the
connections between their respective phases.



System
Requirement

Software
Requirement

Analysis

Program
Design

Coding

Operation

Testing

Requirement Analysis

Maintenance

Planning

Design

Fig. 6. Initial model

On the right hand side of the illustration the workflow for
the documentation is displayed, which is extended by feedback
connections between the individual phases. These repeated
opportunities for feedback ensure that sufficient interaction
between phases can take place. They are represented by
dashed arrows connecting each phase with its predecessor.
An example for feedback is the possibility to go back from
“maintenance phase” to “design phase”. On the left hand side,
the Waterfall model is displayed.

The compound model shows explicitly where documenta-
tion needs to be integrated into the waterfall model. This
integration is symbolized by dashed arrows which connect
both workflows.

In the following description of our compound model we
only refer to those phases which have been extended by
additional documentation steps.

• Software Requirement
As the software requirements are established, it is crucial
that the general parameters for the documentation are
established with them. It is also necessary to determine
which target groups the manual will address. Conse-
quently an estimate for the level of detail required has
to be identified. This also holds for any subsequent
descriptions and manuals. Additionally, at this point the
type of the documentation must be determined, e.g. book,
compact disk, web format.

• Program Design and Coding
At the design phase, the software is modeled. This
provides an overview of the system’s architecture and
components. In the coding phase the designed model
is implemented. Documentation is integrated into both
phases, because the versions of the documentation (alpha,
beta and final) have to be composed simultaneously with
the product. As a result of the integration we derive a

Software Requirement

System Requirement

Program Design

Design 
(Alpha-Version)

Analysis

Coding

Design
(Beta-Version)
(Final-Version)

Testing

Operation

Maintenance

Planning

Requirement
Analysis

Fig. 7. Merged model



Requirement Analysis

Maintenance

Planning

Design

Requirement

Operation

Design

Coding

Fig. 8. Universal model

synergy between the processes of production and docu-
mentation. Updates in the design will be directly echoed
in the documentation, so that the documentation always
reflects the status quo.

• Operation
Some errors will only be found when the product is
operated. As soon as they are fixed in the software, the
documentation will also have to be altered.

Our approach of the overall compound model can be seen in
Figure 7. The documentation steps have been merged into the
Waterfall model for a better view of how the new development
process is structured.

On the basis of the combined model it is obvious that
not all phases of the development workflow are supplemented
by documentation. Therefore, Figure 8 displays those phases
which explicitly include documentation steps, disregarding the
others.

VI. CONCLUSION

In this paper we evaluated the integration of documentation
into software and hardware models that form the process
for embedded system development. In order to deal with
this, we presented the necessary background information. This
part ranged from on overview of the individual areas of
documentation to the DIN EN 62079 standard to an analysis of
the currently established software and hardware development
models. This analysis resulted in the conclusion that technical
documentation for software and hardware is treated superfi-
cially and insufficiently in the DIN EN 62079 standard as
well as in the development models we evaluated.

We described a documentation flow and discussed it in
the context of the Waterfall model. An integration has been
presented. By this, we gave a framework for a documentation
flow for embedded system design.

The focus of the current work is to extend the approach to
other models, like the V-model discussed above.

REFERENCES

[1] P. Marwedel, Embedded System Design. Kluwer, 2003.
[2] M. Keating and P. Bricaud, Reuse Methodology Manual: For System-

on-a-Chip Design. Kluwer, 2002.
[3] B. Bentley, “Validating the Intel Pentium 4 microprocessor,” in Design

Automation Conf., 2001, pp. 244–248.
[4] C. Lennard, “Industrially Proving the SPIRIT Consortium Specifications

for Design Chain Integration,” in DATE Design Automation and Test in
Europe, 2006, pp. 142–147.

[5] C. Krings, Wissenschaftliche Grundlagen der Technischen Kommunika-
tion. Gunter Narr, 1996.

[6] G. Pötter, Die Anleitung zur Anleitung: Leitfaden zur Erstellung techni-
scher Dokumentationen. Vogel, 1994.

[7] H. Scheibl, Wie dokumentiere ich ein DV-Projekt?: Dokumentationsver-
fahren in Theorie und Praxis. expert, 1985.

[8] DIN EN 62079, Erstellen von Anleitungen: Gliederung, Inhalt und
Darstellung. VDE, 2000.

[9] G. DeMicheli, Synthesis and optimization of digital circuits. McGraw-
Hill, 1994.

[10] R. Drechsler and A. Breiter, “Hardware project management - what we
can learn from the software development process for hardware design,”
in 4th Conference of Informatics and Information Technologies, 2003.

[11] H. Balzert, Lehrbuch der Softwaretechnik: Software-Management
Software-Qualitätssicherung Unternehmensmodellierung. Spektrum,
1998.

[12] B. Boehm, Software-Engineering Economics. Englewood Cliffs: Pren-
tice Hall, 1981.

[13] IABG Information Technology, V-Model: Lifecycle Process Model.
www.v-modell.iabg.de/kurzb/vm/k vm e.doc, 1993.

[14] L. Bening, Principles of Verifiable RTL design. Kluwer, 2002.
[15] T. Barker, Writing Software Documentation: A Task-Oriented Approach.

Longman, 2003.
[16] A. Sikora and R. Drechsler, Software-Engineering und Hardware-

Design: Eine systematische Einführung. Hanser, 2002.
[17] J. Price and H. Korman, How to Communicate Technical Information: A

Handbook of Software and Hardware Documentation. Addison-Wesley,
1993.


