
FARAD: Automated Formal Verification of
Approximate Restoring Array Dividers

Chandan Kumar Jha⋓, Khushboo Qayyum†, Muhammad Hassan⋓,†, and Rolf Drechsler⋓,†
⋓ Institute of Computer Science, University of Bremen, Germany

† Cyber-Physical Systems, DFKI GmbH, Germany
{chajha, hassan, drechsler}@uni-bremen.de, khushboo.qayyum@dfki.de

Abstract—Approximate circuits have shown immense poten-
tial in the area of error-resilient applications. These circuits
have tailored specifications depending on the resilience of an
application towards the introduction of approximation. Formal
verification is essential to guarantee the approximate circuit
matches its tailored specifications. Hence, formal verification
of approximate circuits has gained traction in recent years.
However, most prior works focused on relaxed equivalence
checking, i.e., only ensuring that the approximate circuits are
within a specified error bound of the exact circuit. Recently, it
was shown that formal error analysis is insufficient to ensure the
approximate circuit matches its tailored functional specifications.
However, this work was only limited to adders and multipliers.
Hence, in this work, we propose a method called FARAD, that
guarantees the approximate restoring array divider matches its
functional specification. We use the functional specification of the
approximate divider to generate the correctors. These correctors
are then inserted in the approximate divider to generate the
corrected divider. The corrected divider can then be formally
verified by performing equivalence checking against a golden
reference exact divider. If the corrected divider is equivalent to
the golden reference divider, the approximate divider matches its
functional specification. We generated more than half a million
approximate dividers and verified them using FARAD.

Index Terms—formal verification, combinational equivalence
checking, approximate computing, restoring array dividers

I. INTRODUCTION

Formal verification is essential to guarantee the correctness
of a hardware design [1]. Given the ubiquitous use of approx-
imate circuits, researchers have started focusing on using for-
mal verification methodologies to ensure their correctness [2]–
[4]. The correctness of an approximate circuit can be defined
in two ways a) the approximate circuit’s output is within a
desired error bound, or b) the approximate circuit matches
its functional specification. The verification technique that
guarantees the error bound is also called Relaxed Equivalence
Checking (REC) [5]–[7]. Error metrics like maximum error,
mean absolute error, and mean square error are used to
perform REC [8]. The second approach deals with ensuring
that the functional specification of the approximate circuit is
met. This approach is called the Combinational Equivalence
Checking (CEC) for approximate circuits. This requires that
the number of approximated blocks, the Boolean function of
the approximated blocks, and the Boolean function of the exact
blocks exactly match their specification [7].

While REC has received much attention and is suitable for
designs where only error bound is a requirement, recently it
was shown that the method is unsuitable, especially when the

input data is skewed [7]. REC can allow multiple designs
with different functional specifications to meet the criteria as
it only checks for the error bound. However, for the same
error bounds, multiple designs meeting the criteria can lead
to larger-than-expected output errors, especially in skewed
input data distributions. To cater to the skewed input data
distributions the approximate circuits are tailored for some
particular specification [9]–[11]. We explain this with the
example of a Full Adder (FA). If the input data is sparse
most of the time, the input seen by the FA is 000. Thus the
approximate circuit designer will not approximate for the case
when the input is 000. However, for REC, the input pattern
for which the data is approximated is immaterial, the error
values only depend on the number of input patterns for which
the FA can be approximated. So if as a result of the bug the
approximation is for input pattern 111 instead of 000, the REC
will not be able to detect this bug. In [7], it was shown that
this can lead to a deterioration of 20 dB in the output quality.

Hence, there has been some recent investigations into
developing CEC based methodologies for approximate cir-
cuits [7], [12]. In [12], Answer Set Programming (ASP)
based formal verification of three types of approximate adders
namely Ripple Carry Adder, Carry Save Adder, and Carry
Look-ahead Adders was shown. However, this work has the
following limitations a) this method requires implementing the
specifications that are used as the golden reference, and b)
the approach is limited to circuits having a constant cutwidth.
Since Restoring Array Divider (RAD) does not have a constant
cutwidth this approach cannot be used. In [7], a method was
shown that relied on structural preservation, i.e., the location
of the approximated blocks was known. This was used to
correct these blocks using the same functional specification of
the approximation. The reason behind correcting the design
is that the exact design can be used as a golden reference
for verification. However, they only showed their approach on
Ripple Carry Adders and Dadda Tree Multipliers [13].

In this work, we develop an automated methodology based
on the approach of correcting the approximate RAD from
functional specification and then using the exact RAD as a
golden reference for formal verification. The key idea behind
this is the correction is only done for the cases that have been
approximated. Hence, after correction, if the design does not
match the exact golden reference, there is a bug in the approx-
imate design. One of the most popular methods of designing
Approximate RAD has been using functional approximation.

Fig. 1: Exact Restoring Array Divider

In functional approximation, the Boolean function of the exact
subtractor in the Controlled Subtractor (CS) is replaced with
the Boolean function of the approximate subtractor to generate
Approximate Controlled Subtractor (ACS) [14], [15]. There
are different works based on the design of the approximate
RAD [14]–[17]. Each of these works has three or four different
Boolean functions for the approximate subtractors. In recent
work, all possible Boolean functions were exhaustively gen-
erated for the approximate subtractors [15]. Since our goal in
this work is to develop an automated verification methodology
for the approximate RAD, we will show that our methodology
works for any possible Boolean function approximation as
long as the structure is preserved. Unlike prior works which
focus on adders and multipliers [7], in dividers, we do not
have direct access to the output of the approximated block.
However, we will show how the Boolean function of the
approximate subtractor is enough to generate the corrector for
the entire ACS, and how the correction for the approximate
subtractor is done without direct access to its output. Following
are the contributions of our work:

• We propose an automated formal verification methodol-
ogy for structurally preserved and functionally approxi-
mated RAD called FARAD.

• FARAD is based on automatically correcting the ap-
proximate RAD and then uses combinational equivalence
checking to formally verify it using the exact RAD as the
golden reference.

• We show how generating the corrector for the approxi-
mate subtractor is equivalent to generating the corrector
for the ACS.

• We generated and verified more than half a million
approximate RAD designs thus showing the efficacy of
FARAD.

The rest of the paper is organized as follows. In Sec-
tion Section II, we discuss the necessary background required
for the paper. In Section III, we explain the overall FARAD
methodology in detail. In Section IV, we discuss the results
obtained using the FARAD methodology. We conclude the
paper in Section V.

II. PRELIMINARIES

In this section, we discuss the necessary background re-
quired for the paper. We will discuss RAD, functional ap-

Fig. 2: Controlled Subtractor

proximation, approximate RAD, and formal verification.

A. Restoring Array Dividers
The block diagram of the 8 by 4 RAD is shown in Fig. 1.

The dividend is the 8-bit input X[7:0] (shown in blue) and
the divisor is the 4-bit input Y[3:0] (shown in green). The
condition to prevent the overflow in the result of a 2N by N
RAD is that the N most significant bit of the input, i.e., X[7:4]
must be less than Y[3:0] [18]. This ensures that the results,
i.e., the quotient (Q[3:0]) and the remainder (R[3:0]) can be
represented using 4 bits. The 8 by 4 RAD contains 16 CSs
with 4 in each row as shown in Fig. 1. CS is a subtractor
with the multiplexer selecting between the subtracted result
and one of the inputs as shown in Fig. 2. The CS has four
inputs namely X, Y, Bin, and Sel. It has two outputs namely
Bout and CSout. The multiplexer allows the subtracted result
to pass to the output in two cases, i.e., for these two cases
the Selector Line (Sel) has a value of 1. i) When the Most
Significant Bits (MSBs), that are obtained at each stage either
form the bits of X or the result of the previous stage controlled
subtraction is a 1, or ii) the MSB of the subtraction result is
a 0, i.e., the result of the sub is a positive number. In all the
other cases the Sel has the value 0, and the input is copied to
the output as shown in Fig. 2. The Sel at each stage gives the
quotient value and after the N stages the remainder is obtained
from the last controlled subtraction.

B. Functional Approximation
Approximation can be introduced in a design in sev-

eral ways like truncation, voltage overscaling, overclocking,
etc [2]. In this work, we have used the designs that have
been functionally approximated [4], [19]. In functional approx-
imation, the Boolean function of the design is replaced with
another Boolean function. A typical example is used where
the XOR gate is replaced with an OR gate as occupies a
lesser area, has a lesser delay, and consumes less power [19].
Since the application that uses the approximate hardware is
known, the functional approximation is tailored to obtain the
best benefits while producing the least deterioration in the
output quality. It has been shown that for the same number
of ACS in an approximate RAD, the different approximate
Boolean functions produce very different deterioration in the
output quality. The functional approximation technique has
been widely used as the approximation strategy for the design
of approximate RAD.

Fig. 3: Approximate Controlled Subtractor

Fig. 4: Row Approximate Restoring Array Divider

C. Approximate Restoring Array Dividers

Approximate RADs are mostly designed using functional
approximation [14]–[17]. The Boolean function of the sub-
tractor in CS is replaced with the approximate subtractor
to generate the ACS as shown in Fig. 3. The ACS has
four inputs namely X, Y, Bin, and Sel. It has two outputs
namely Bout approx and CSout approx. In addition, which
of the CS needs to be approximated is decided based on the
application. There are three major approximation strategies
a) Row Approximation: All the CS in a row are replaced
with ACS (See Fig. 4), b) Column Approximation: All the
CS in a column are replaced with ACS (See Fig. 5), and
c) Triangular Approximation: All the CS are replaced with
ACS in a triangular fashion (See Fig. 6). As discussed in
Section I, we can see that the Sout approx is not directly
accessible as the primary outputs of the ACS are Bout approx
and CSout approx.

D. Formal Verification

Formal verification is used to guarantee that the Design Un-
der Verification (DUV) is equivalent to the Golden Reference
Design (GRD) or some specification. In this work, we use
CEC to perform formal verification using a miter circuit [20].
To build the miter circuit the inputs of the DUV and GRD
that have the same name are combined. The outputs having
the same name are fed as an input to the Exclusive OR (XOR)
gate and all the outputs of the XOR gate are then fed as input
to an OR gate. If the designs are equivalent for all the possible
combinations of the input the output of the miter is 0 [21].

Fig. 5: Column Approximate Restoring Array Divider

Fig. 6: Triangular Approximate Array Divider

III. FARAD METHODOLOGY

In this section, we discuss the steps involved in the FARAD
methodology. FARAD methodology consists of three major
steps. a) Generation, b) Correction, c) Verification as shown
in Fig. 7. We now discuss each of these steps in detail.

A. Generation of Approximate RAD

In the first step, we generate the approximate RAD. We
generated the approximate RAD by using as input a) the exact
RAD, b) the functional specification of the appropriate subtrac-
tor, i.e., the Boolean expression of the approximate subtractor,
and c) the type and the count of the approximation. The
generated approximate RAD have their structure preserved,
i.e., which of the RADs have been approximated are known.

In this work, we have generated the approximate divider for
all three types of approximation strategies namely a) row, b)
column, and c) triangular. We generated all possible Boolean
functions for the ACS. In the ACS the subtractor module
is approximated. Since the approximate subtractor has three
inputs (X, Y, and Bin) and two outputs (Bout approx and
Sout approx) as shown in Fig. 3, for each output the number
of possible Boolean functions is 22

3

, i.e., 256. Since there
are 256 combinations for each of the two outputs the total
possible Boolean functions are 256×256, i.e., 65536. We
chose the count of approximation to be 2, 4, and 6. For each
combination of the type and the count of approximation, we
generated 65536 ACS. These ACS were used to design 65536
approximate RAD for each combination.

Fig. 7: FARAD Verification Methodology

Fig. 8: Corrected ACS

TABLE I: Truth Table of the Approximate Subtractor

X Y Z Sout Bout Sout
approx

Bout
approx

0 0 0 0 0 1 1
0 0 1 1 1 1 1
0 1 0 1 1 1 1
0 1 1 0 1 0 1
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 1
1 1 1 1 1 1 1

B. Correction of the Approximate Divider

The approximate divider can be corrected by correcting the
Boolean function of all the ACS in the approximate RAD.
Since the approximate RADs structure is preserved we know
which of the CS has been changed to ACS. Hence, we can
correct each of the ACS. By correcting each of the ACS, the
overall approximate RAD can be corrected.

For the correction process, the Boolean function of the
approximate subtractor can be obtained from its functional
specification. The corrector takes in five inputs, three of which
come from the inputs of the ACS (X, Y, and Bin) and two from
the outputs of the ACS (Bout approx and CSout approx).
The block diagram of the corrector is shown in Fig. 8. The
corrector uses the functional specification and the inputs to
generate the corrected CSout and Bout. The corrector only
corrects the output for which the CS has been approximated.
The cases for which the approximation needs to be done are
identified from the difference in the functional specification
of the exact subtractor and the approximate subtractor, i.e.,
for which they produce different outputs. The correction is

1 module ApproxControlledSubtractor(X, Y, Bin, Sel,
CSout_approx, Bout_approx);

2 input X, Y, Bin, Sel;
3 output CSout_approx, Bout_approx;
4 wire Sout_approx;
5 assign Bout_approx = (˜X & ˜Y & ˜Bin) | (˜X & ˜Y & Bin) |

(˜X & Y & ˜Bin) | (˜X & Y & Bin) | (X & Y & ˜Bin) | (X
& Y & Bin) ;

6 assign Sout_approx = (˜X & ˜Y & ˜Bin) | (˜X & ˜Y & Bin) |
(˜X & Y & ˜Bin) | (X & Y & Bin) ;

7 assign CSout_approx = Sel?Sout_approx:X ;
8 endmodule

Listing 1: Verilog Code of 1-bit ACS Generated From
Functional Specification in the form of a Truth Table

done by inverting the output for the cases that have been
approximated. Since in approximation 1 is changed to 0 and
vice versa, inverting the output is the same as correcting it.
Once all the ACS are corrected the overall approximate RAD
is also corrected.

To further explain this, we take an example where the
approximate subtractor truth table as shown in Table I. While
we have taken the example of a truth table, the functional
specification can be given in any other format. In the truth
table, we can see that the Borrow output (Bout) has been
approximated for input values of 000 and 110 to generate
the Bout approx. Similarly, we see that the difference output
(Sout) has been approximated for the input values of 000 and
100 to generate the Sout approx. The Verilog code of the ACS,
generated from the truth table of the approximate subtractor
is shown in Listing 1. One crucial thing to observe here is
the approximation is introduced in the approximate subtractor
inside the ACS [14]–[17]. Thus, for correction of the ACS, we
only need to correct the approximate subtractor. However, we
do not have access to the Sout approx output and can only
access the CSout approx as can be seen from Listing 1. We
will now show how we can use the CSout approx to correct
the ACS even when we cannot access Sout approx directly.

We can see that the Sel input is only dependent on the
Bout approx and the input X as can be seen from Fig. 1. Hence
Bout approx can be separately corrected, as Bout approx is
not dependent on Sout approx as also shown in Listing 1.
However, when the Bout approx is corrected the Sel input is
also corrected. Since Bout approx has been corrected to Bout,
this ensures that Sel is also correct. We will now show how
this helps in the correction of the approximate subtractor inside

1 module CorrectedApproximateControlledSubtractor (X, Y, Bin,
Sel, Sout_approx, Bout_approx, CSout, Bout);

2 input X, Y, Bin, Sel, CSout_approx, Bout_approx;
3 output CSout, Bout;
4 wire Sout;
5 assign Bout = (˜X & ˜Y & ˜Bin & ˜Bout_approx) | (˜X & ˜Y &

Bin & Bout_approx) | (˜X & Y & ˜Bin & Bout_approx) | (˜
X & Y & Bin & Bout_approx) | (X & ˜Y & ˜Bin &
Bout_approx) | (X & ˜Y & Bin & Bout_approx) | (X & Y &
˜Bin & ˜Bout_approx) | (X & Y & Bin & Bout_approx) ;

6 assign Sout = (˜X & ˜Y & ˜Bin & ˜CSout_approx) | (˜X & ˜Y
& Bin & CSout_approx) | (˜X & Y & ˜Bin & CSout_approx)
| (˜X & Y & Bin & CSout_approx) | (X & ˜Y & ˜Bin & ˜
CSout_approx) | (X & ˜Y & Bin & CSout_approx) | (X & Y
& ˜Bin & CSout_approx) | (X & Y & Bin & CSout_approx) ;

7 assign CSout = Sel?Sout:X;
8 endmodule

Listing 2: Verilog Code of 1-bit Corrected ACS Generated
From Functional Specification in the form of a Truth Table

1 ...
2 ApproxControlledSubtractor ACS1(X, Y, Bin, Sel,

CSout_approx, Bout_approx);
3 CorrectedApproximateControlledSubtractor CACS1(X, Y, Bin,

Sel, Sout_approx, Bout_approx, CSout, Bout);
4 ...

Listing 3: Sinppet of the Insertion of the ACS Corrector in the
Verilog Code

the ACS using CSout approx.
The CSout approx can either be X or Sout approx depend-

ing upon the value of the Sel as shown in Fig. 8 and Listing 1.
We will explain each of the two cases separately.

Case 1: Sel = 0
The corrector uses the same Sel input as the ACS. When

CSout approx is X, the corrector also needs to give the
output as X, as no approximation has been done for this case.
However, we saw that correcting Bout approx corrects the Sel
output. Hence, this also ensures that the corrected Sout has the
value X.

Case 2: Sel = 1:
The second case is when the CSout approx becomes the

same as Sout approx because Sel has a value of 1. For this
case correction is required. However, we see that for this
case correcting Sout approx becomes the same as correcting
CSout approx. Hence, we can use the functional specification
of the approximate subtractor, specifically of Sout approx, to
correct CSout approx.

Thus, we see that even though we do not have access to
Sout approx, we can use the specification of the approximate
subtractor to correct the ACS. The overall Verilog code of
the corrected ACS is shown in Listing 2. We also show the
snippet of the Verilog code where the corrector is inserted in
Listing 3.

C. Formal Verification

In the previous stage, we corrected the outputs of all the
ACS in the approximate RAD to generate the corrected RAD.
Hence, the corrected RAD can now be verified by comparing

it against a golden reference divider. The golden reference
divider can be verified through exhaustive simulation or by
using tailored verification techniques for RAD [22]. We use
the golden reference RAD that has been formally verified and
convert it to an And-Inverter Graph (AIG) using the Yosys
synthesis tool [23]. AIG is a representation that consists of
AND and NOT gates [24]. This representation is required by
the ABC tool for the CEC [25]. Similarly, we convert the
corrected RAD to AIG using the Yosys Synthesis tool. We give
the AIG of the corrected RAD to be checked for equivalence
against the golden reference RAD to the ABC tool. The CEC
is done using the &cec command [20]. The ABC tool gives as
output as equivalent if the corrected RAD is the same as that of
the golden reference design. Since the corrected RAD matches
the golden reference divider, this ensures that the approximate
RAD also matches its functional specification.

IV. RESULTS AND DISCUSSIONS

In this work, we have done the formal verification of
the 16 by 8 approximate RAD as it is the most widely
approximated RAD. The results obtained using the FARAD
methodology are shown in Table II. The first column shows
the approximate RAD bitwidth. The second column gives the
type of approximation, i.e., row, column, and triangular. The
third column gives the count of the approximation, i.e., how
many rows, columns, or the size of the triangle as discussed in
Section II. We have used the count of 2, 4, and 6 in this work.
The primary inputs and primary outputs denote the sum of the
input and output bit widths. Since the input dividend has a bit
width of 16 and the divisor has a bit width of 8 the number
of primary inputs is 24. The output quotient and remainder
are each of bit width 8, hence the number of primary outputs
is 16. The next column gives the number of 2-input AND
gates in the corrected divider design. We want to highlight
that there were no optimizations performed while converting
the corrected RAD into the AIG. This is because we do not
require an optimized circuit for the formal verification using
CEC. We have added this value to give an idea of the size
of the corrected RAD. The next column gives the number
of levels in the corrected RAD. The last two columns show
whether the designs were found to be equivalent and the time
required for the verification.

We now select row number 5 as an example to explain
Table II. The RAD dividend and divisor are 16 bits and 8
bits respectively, hence it is a 16 by 8 RAD. The type of
approximation is column approximation as shown in Fig. 5.
The count of approximation is 4, i.e., four columns have been
approximated. There are 65536 different approximate RAD
designs. The number of primary inputs is 24 (16-bit input
for dividend and 8-bit for divisor). The number of primary
outputs is 16 (8-bit for quotient and 8-bit for remainder). We
have shown the average number of 2 input AND gates and the
number of levels in the 65536 designs. The average count of
2-input AND gate is 1822 and the average level is 418. Please
note that we did not perform any optimizations to reduce the
size of the designs while converting them. Hence, the numbers

TABLE II: Experimental Results of the Formal Verification of 16 by 8 Approximate RAD

Bitwidth Type Count Number of
Designs

Primary
Inputs

Primary
Outputs AND2 Levels Equivalence Check

Result
Verification
Time (sec)

1

16 by 8

Row
2 65536 24 16 1325 293 Equivalent 0.06

2 4 65536 24 16 1915 431 Equivalent 0.16
3 6 65536 24 16 2505 568 Equivalent 0.24
4

Column
2 65536 24 16 1185 272 Equivalent 0.08

5 4 65536 24 16 1822 418 Equivalent 0.15
6 6 65536 24 16 2458 564 Equivalent 0.24
7

Triangular
2 65536 24 16 808 176 Equivalent 0.04

8 4 65536 24 16 1040 231 Equivalent 0.06
9 6 65536 24 16 1431 323 Equivalent 0.11

shown are of un-optimized corrected RAD. However, this has
little impact on the verification time as our verification times
are very fast. All the designs were found to be equivalent.
The worst-case verification time was around 0.15 seconds. The
reason behind the fast verification time is after correction the
corrected RAD has a similar structure as the golden reference
RAD. The ABC tool &cec command exploits this property
very effectively, thus the time taken for verification is low.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a methodology for the automated
formal verification of the approximate RAD called FARAD.
FARAD guarantees that the approximate RAD matches its
functional specifications. FARAD is based on the idea of
correcting the ACS using the functional specification and then
verifying it against a golden reference exact RAD. We verified
more than half a million approximate RAD designs with
different approximation strategies namely row approximation,
column approximation, and triangular approximation. In the
future, we plan to extend FARAD to structural independent
approximate RAD.

ACKNOWLEDGEMENTS

This work was supported in part by the German Research
Foundation (DFG) within the project VerA (DR 297/37-1).

REFERENCES

[1] R. Drechsler, Advanced formal verification. Springer, 2004, vol. 122.
[2] H. Jiang, F. J. H. Santiago, H. Mo, L. Liu, and J. Han, “Approximate

arithmetic circuits: A survey, characterization, and recent applications,”
Proceedings of the IEEE, vol. 108, no. 12, pp. 2108–2135, 2020.

[3] A. Chandrasekharan, M. Soeken, D. Große, and R. Drechsler,
“Approximation-aware rewriting of aigs for error tolerant applications,”
in 2016 IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD). IEEE, 2016, pp. 1–8.

[4] C. K. Jha, A. Nandi, and J. Mekie, “Single exact single approximate
adders and single exact dual approximate adders,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 31, no. 7, pp.
907–916, 2023.

[5] Z. Vasicek, “Formal methods for exact analysis of approximate circuits,”
IEEE Access, vol. 7, pp. 177 309–177 331, 2019.

[6] M. Schnieber, S. Froehlich, and R. Drechsler, “Polynomial formal
verification of approximate adders,” in 2022 25th Euromicro Conference
on Digital System Design (DSD). IEEE, 2022, pp. 761–768.

[7] C. K. Jha, M. Hassan, and R. Drechsler, “cecapprox: Enabling automated
combinational equivalence checking for approximate circuits,” IEEE
Transactions on Circuits and Systems I: Regular Papers, 2024.

[8] S. Froehlich, D. Große, and R. Drechsler, “One method-all error-metrics:
a three-stage approach for error-metric evaluation in approximate com-
puting,” in 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2019, pp. 284–287.

[9] C. K. Jha, S. Ahmadi-Pour, and R. Drechsler, “Input distribution aware
library of approximate adders based on memristor-aided logic,” in
2024 37th International Conference on VLSI Design and 2024 23rd
International Conference on Embedded Systems (VLSID). IEEE, 2024,
pp. 577–582.

[10] Z. Li, S. Zheng, J. Zhang, Y. Lu, J. Gao, J. Tao, and L. Wang, “Adaptable
approximate multiplier design based on input distribution and polarity,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 30, no. 12, pp. 1813–1826, 2022.

[11] C. K. Jha, I. Doshi, and J. Mekie, “Analysis of worst-case data dependent
temporal approximation in floating point units,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 68, no. 2, pp. 767–771,
2020.

[12] M. Nadeem, C. K. Jha, and R. Drechsler, “Polynomial formal verifi-
cation of approximate adders with constant cutwidth,” in 2024 IEEE
European Test Symposium (ETS). IEEE, 2024, pp. 1–6.

[13] D. Goldberg, “Computer arithmetic,” Computer Arch itecture: A Quan-
titative Approach, David Patterson and John L. Hennessy, Eds. Morgan
Kaufmann, Los Altos, Calif., Appendix A, 1990.

[14] C. Jha and J. Mekie, “Design of novel cmos based inexact subtractors
and dividers for approximate computing: an in-depth comparison with ptl
based designs,” in 2019 22nd Euromicro Conference on Digital System
Design (DSD). IEEE, 2019, pp. 174–181.

[15] C. K. Jha, S. Ahmadi-Pour, and R. Drechsler, “Maradiv: Library of
magic-based approximate restoring array divider benchmark circuits for
in-memory computing using memristors,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 70, no. 7, pp. 2635–2639, 2023.

[16] K. M. Reddy, M. Vasantha, Y. N. Kumar, and D. Dwivedi, “Design of
approximate dividers for error tolerant applications,” in 2018 IEEE 61st
International Midwest Symposium on Circuits and Systems (MWSCAS).
IEEE, 2018, pp. 496–499.

[17] E. Adams, S. Venkatachalam, and S.-B. Ko, “Approximate restoring
dividers using inexact cells and estimation from partial remainders,”
IEEE Transactions on Computers, vol. 69, no. 4, pp. 468–474, 2019.

[18] A. Gardiner and J. Hont, “Comparison of restoring and nonrestoring
cellular-array dividers,” Electronics Letters, vol. 7, no. 8, pp. 172–173,
1971.

[19] A. Dalloo, A. Najafi, and A. Garcia-Ortiz, “Systematic design of an
approximate adder: The optimized lower part constant-or adder,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26,
no. 8, pp. 1595–1599, 2018.

[20] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een, “Improvements
to combinational equivalence checking,” in Proceedings of the 2006
IEEE/ACM international conference on Computer-aided design, 2006,
pp. 836–843.

[21] D. Brand, “Verification of large synthesized designs,” in Proceedings
of 1993 International Conference on Computer Aided Design (ICCAD).
IEEE, 1993, pp. 534–537.

[22] J. Dasari and M. Ciesielski, “Formal verification of restoring dividers
made fast and simple,” in 2023 60th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2023, pp. 1–6.

[23] C. Wolf, J. Glaser, and J. Kepler, “Yosys-a free verilog synthesis suite,”
in Proceedings of the 21st Austrian Workshop on Microelectronics
(Austrochip), vol. 97, 2013.

[24] R. Brummayer, A. Cimatti, K. Claessen, N. Een, M. Herbstritt, H. Kim,
T. Jussila, K. McMillan, A. Mishchenko, F. Somenzi et al., “The aiger
and-inverter graph (aig) format version 20070427,” 2007.

[25] R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength
verification tool,” in Computer Aided Verification: 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings
22. Springer, 2010, pp. 24–40.

	Introduction
	Preliminaries
	Restoring Array Dividers
	Functional Approximation
	Approximate Restoring Array Dividers
	Formal Verification

	FARAD Methodology
	Generation of Approximate RAD
	Correction of the Approximate Divider
	Formal Verification

	Results and Discussions
	Conclusion and Future Work
	References

