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Abstract—Approximate divider designs have been extensively
explored as they are widely used in image processing applications.
The design of approximate dividers is predominantly accom-
plished through the use of functional approximation, where the
Boolean functions of the subtractor sub-blocks in the dividers
are approximated by replacing them with a different Boolean
function. However, the prior works have explored only a few
Boolean approximations and evaluated the error metrics using
uniform distributions. This does not effectively explore the design
space and leads to suboptimal approximate divider designs. In
this work, we alleviate the limitations of prior works as follows:
Firstly, we perform an extensive and systematic design space
exploration to identify the Pareto-optimal approximate divider
designs, where each sub-block has been reduced through exact
minimization. Secondly, we do this for three input distributions,
namely uniform, normal, and exponential distributions. Lastly,
we also evaluate the design on the widely used image processing
applications for approximate dividers, namely background re-
moval and change detection. We aim to make the Pareto-optimal
approximate divider designs available as open-source to stimulate
further research.

Index Terms—Approximate Computing, Restoring Array Di-
vider, Input Distribution, Arithmetic Circuits, Synthesis

I. INTRODUCTION

Dividers are one of the most expensive designs in terms
of area, power, and delay [1]]. Hence, there have been several
efforts to reduce the cost of the divider design [2]]. One of
the methods to optimize the divider’s design for error-resilient
applications is by the introduction of approximation in the
divider designs [3]], [4]. The approximation is used as a trade-
off to obtain benefits in area, power, and delay with little
loss in the error-resilient application’s output quality [5], [6].
The prior works have shown that functional approximation
can be used to obtain approximate divider designs resulting in
significant benefits as compared to the exact dividers.

In [3]], the authors were one of the first to introduce the
design of approximate dividers. The authors used Pass Transis-
tor Logic (PTL) based designs to implement the approximate
divider design at the transistor level. The authors presented
cell-level and array-level approximation techniques, as well
as applications that can benefit from divider approximation.
In [7]], the authors proposed three approximate subtractors,
which were used to build the approximate divider designs.
The authors showed that they were able to reduce the power
and delay by a third as compared to the exact divider. In [4],
[8l, the approximate subtractors were optimized using K-
Maps and were to be used for designing the approximate
subtractors. In [8]], the authors achieved 60% less power and
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Figure 1: Restoring Array Divider

40% less delay for their best approximate divider design.
In [4], the authors showed that PTL-based designs consume a
large amount of energy and have a larger delay. The authors
proposed CMOS-based approximate dividers that consumed
50% less energy than the exact dividers.

Recently, approximate dividers based on Logic-in-Memory
(LiM) using memristors were proposed. In [9], the authors
systematically explored the design space of functional ap-
proximation to generate the Pareto-optimal divider designs.
However, this work focused on tailoring the divider designs for
LiM, and only explored one input distribution, namely uniform
distribution for error computation. In recent works [10]-
[12], it has been shown that approximate circuits that are not
tailored for a specific input distribution can lead to larger-than-
expected deterioration in the output quality. It is also shown
that better designs can be obtained if the approximate designs
are tailored for the application’s input distribution [|13[]—[15].
Input distribution-aware approximate adders and multiplier
designs have been recently explored [[16]-[18]]. However, none
of the prior works have explored input distribution-aware ap-
proximate divider designs. The following are the contributions
of our work:

1) We obtain Pareto-optimal approximate divider designs us-
ing systematic functional approximation for three different
input distributions.

2) The sub-block of the approximate divider designs has been
reduced through exact minimization.

3) We show that, compared to prior works, we achieve better
Pareto-optimal approximate divider designs and also use
these designs in two image processing applications.

4) The Pareto-optimal designs are available at https://github.
com/agra-uni-bremen/diviac| as open source.


https://github.com/agra-uni-bremen/diviac
https://github.com/agra-uni-bremen/diviac

II. PRELIMINARIES AND TERMINOLOGIES

In this section, we discuss the design of the Restoring Array
Divider (RAD) and the terminologies we use to describe the
Boolean function throughout this paper. The RAD design is
shown in Fig. It is an 8 by 4 divider, i.e., the dividend
is 8 bits and the divisor is 4 bits. The result of the division,
i.e., the quotient and the remainder, is 4 bits each. The basic
block of the RAD is a Controlled Subtractor (CS) as shown
in Fig. [I] The CS consists of a subtractor followed by a MUX
that selects between the result of the subtraction and the bit of
the dividend. The overflow is prevented when the n most sig-
nificant bits (MSBs) of the dividend are less than the divisor.
This condition ensures that the quotient requires up to 4 bits.
Repeated subtraction is used to perform the division operation.
The truth table values for the borrow bit are "01110001"
(113), and for the difference bits are "01101001" (105)
when written as a bit vector. The naming scheme used in
this work follows the scheme Borrow_Difference using
the decimal values of the truth table values to identify a
specific divider circuit. Hence, the exact design is determined
by 113_105.

In this work, the mode of approximation is functional
approximation, i.e., the Boolean function of the subtractor
is replaced with another function. For example, one typical
approximation can be to approximate both the borrow and
the difference outputs for an input value of 000 to 1. Then,
the approximated Boolean functions for borrow and differ-
ence will be "11110001" and "11101001", respectively.
According to our naming scheme, the approximated design
will be 241_233. For designing the approximate divider,
the subtractor block in the CS is functionally approximated.
Depending upon the approximation scheme, different numbers
of CS blocks are selected for approximation.

III. FRAMEWORK FOR INPUT-AWARE DIVIDERS

In this section, we discuss the systematic design space
exploration in detail. Fig. 2| shows an overview of the flow;
we refer to the circled numbers for each step (N)) from Fig.
while explaining the flow of DIVIAC.

First, we choose a divider circuit suitable for approximation,
and identify the basic blocks which are subject to approxima-
tion (step (1)). For RAD, we systematically approximate a 16-
by-8 RAD with 8-bit outputs, by replacing rows, columns, and
the triangular section of the divider with approximate basic
blocks (step (2)). These approximation methodologies have
been shown to give the best benefits in the RAD design [J3]],
[4], 19]. In a RAD, the basic block is a subtractor with three
input bits and two output bits. By approximating each output
bit for all possible input bit combinations, we obtain 65536
(256 x 256) distinctively different approximate basic blocks.
These approximated basic blocks are applied to the RAD in
the previously mentioned row, column, and triangular scheme.
This scheme is applied with an approximation amount Ngpprox
of the values 2, 4, and 6. For example, when approximating
a RAD in the row scheme for N0, being 6, the six rows
of the divider are replaced with all of the 65 536 approximate
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Figure 2: Overview of DIVIAC Flow

basic blocks one at a time for every approximated basic block.
This is repeated for every available amount of approximation,
ie., 2, 4, and 6, leading to 196 608 approximate dividers per
approximation scheme (65 536 x 3). Across all approximation
schemes, i.e., row, column, and triangular, a total of 589 824
(196608 x 3) approximate RAD are obtained for design
space exploration. Next, error metrics are obtained through
simulation with Verilator [[19] and design metrics are obtained
through synthesis with Cadence Genus tool using ASAP7
7nm open-source PDK [20] (step (3)). For the design metrics,
we consider area, power, and delay of the divider circuits in
the mentioned PDK. For the error metrics, we consider Mean
Absolute Error (MAE) and Mean Square Error (MSE) as error
metrics, although any other error metric can be utilized. Recent
work showed a distinct difference when utilizing different
input distributions for input samples, other than uniformly
generated random input samples [[16]]. Hence, we perform the
error simulations with inputs sampled from different input
distributions. By utilizing exponential and normal distribu-
tions, next to the uniform distribution, we consider this recent
parameter in the design space of approximate computing.
We performed exact minimization of the approximate basic
blocks before obtaining design metrics. Because the basic
blocks in the approximate circuits are small, performing exact
minimization leads to different netlists with different area,
power, or delay.

To obtain and analyze the Pareto-optimal dividers (step
(4)), firstly, we determine every Pareto-optimal set for each
combination of the error metric, input distribution, and design
metric, leading to 18 different Pareto-optimal sets (2 x 3 X
3). Secondly, we analyze the Pareto-optimal sets that have the
same error metric and design metric pair (e.g., Area and MSE)
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Figure 3: Comparison of all Pareto optimal solutions for each input distribution for 8 and 16 bit exsy. Each row shows the designs for both

error metrics (MSE and MAE) for each bit width respectively.

with different input distributions. In this way, the impact of
the different input distributions for all dividers in the Pareto-
optimal sets can be compared. As a last step of the framework,
the dividers from the Pareto-optimal sets are utilized in appli-
cation case studies, such as background removal and change
detection for images (step @). By obtaining output quality
metrics like Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM), the Pareto-optimal sets can
be compared on real applications beyond error simulations.
This additional analysis enables the input distribution-aware
error simulation in the context of related works.

IV. EVALUATION
A. Experimental Setup

Following the framework illustrated in Section [[II} we
performed the design space exploration of approximate RAD
across 589 824 approximate dividers. For the error simulation,
input samples were generated from exponential, normal, and
uniform distributions, respectively. We generated 10 000 input
pairs for the divider for each input distribution. Through a
parallelized flow based on Verilator, every error simulation was
compiled and simulated in a total run time of 4716 min (78.6 h
or approx. 3 days). Hence, the error simulation was performed
with a speed of 0.479s per design. To evaluate and compare
each design against one another, we synthesized the designs
and evaluated them in terms of their power consumption (W),
delay (ps), and area (um?). To synthesize the designs, we
processed 16 parallel batches, each containing 256 designs,
to accelerate the synthesis process. On average, each design
required 9s for synthesis. The use of 16 parallel batches was
constrained by the limited Genus tool licenses; with more

licenses and sufficiently powerful machines, additional batches
could be run in parallel.

The Pareto-optimal sets for each triplet of design metric,
error metric, and input distribution were determined in a paral-
lel manner, and were performed utilizing the py-paretoarchive
library [21]], [22] in Python. Through parallelization, the deter-
mination of the Pareto-optimal designs took 99 s in total, hence
processing one Pareto-optimal set every 2.75s. The synthesis
was performed on an AMD EPYC 7302P 16-Core Processor
with 3 GHz and 512 GB of memory. The simulations and
determination of Pareto-optimal sets were performed on an
Intel(R) Xeon(R) Gold 6240 36-Core Processor with 2.6 GHz
and 376 GB of memory. The presentation and discussion of the
results are structured into three parts: 1) showing the impact
of input distributions on the Pareto-optimal dividers, then 2)
showing the results of the ablation with and without exact
synthesis pre-optimization, and 3) showing the results of the
quality metrics obtained for the application case study with
background removal and change detection.

B. Results and Discussion

a) Impact of input distributions on the Pareto-optimal
dividers: Fig. [3| shows the results of each pair of design
metric and error metric evaluated, each containing the Pareto-
optimal set for the respective pair for inputs sampled from an
exponential distribution (blue, ), a normal distribution (green,
x), and a uniform distribution (yellow, +). The subplots
are arranged in two rows and three columns. The top row
contains the MSE error metric pairs (Figs. [3a] to 3, the
bottom row contains the MAE error metric pairs (Figs.
to [3f). The first column contains the area design metric pairs



Table I: Comparison of dividers from prior works. Each divider of
the compared works is encoded with their approximate borrow (B)
and difference (D) functions. If a divider from a prior work is part
of any Pareto-optimal set, its marked with v/, else X. Furthermore,
the parameter column shows the design space parameter, for which
the divider is in a Pareto-optimal set. N/A = Not Applicable.

Design Space Parameter
(Synthesis, Approx. Scheme,
Napproz, Design Metric, Error
Metric, Distribution)

(ESY,Row,2,Area, MAE,E)
(ESY,Row,2,Area, MSE,E)
(HSY,Triangular,2,Area, MAE,E)
(HSY,Triangular,2,Area, MAE,N)
(HSY,Triangular,4,Area, MAE,U)
(HSY,Triangular,2,Area, MSE,E)
(HSY,Triangular,2,Area, MSE,N)
(HSY,Triangular,4,Area, MSE,U)
N/A

N/A

N/A

(HSY,Row,2,Delay, MAE,E)
(HSY,Row,2,Delay,MSE,E)
(HSY,Row,2,Area, MAE,E)
(HSY,Triangular,4,Area, MAE,N)
(HSY,Triangular,4,Area, MAE,U)
(HSY,Row,2,Area, MSE,E)
(HSY,Triangular,4,Area, MSE,N)
(HSY,Triangular,4,Area, MSE,U)
(HSY, Triangular,4,Power, MAE,E)
(HSY,Triangular,4,Power, MAE,N)
(HSY,Triangular,4,Power, MAE,U)
(HSY,Triangular,4,Power,MSE,E)
(HSY, Triangular,4,Power, MSE,N)
(HSY, Triangular,4,Power, MSE,U)
N/A

N/A

N/A

N/A

N/A

N/A
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(Figs. [3a] and [3d), the second column contains the power
design metric pairs (Figs. 3b] and [3¢]), and the third column
contains the delay design metric pairs (Figs. and [31).
Each plot in particular shows the design metric on the x-axis
(area, power, delay), and the error metric on the y-axis (MSE,
MAE). Across the different utilized input distributions, it can
be observed that dividers sampled through exponential and
normal distributions cover the dividers found through uniform
distributions, while additionally revealing further approximate
dividers that are not in the uniform Pareto-optimal set. These
additional dividers are important, as they enable engineers
to match specific requirements for error metrics and design
metrics better than only errors by utilizing a uniform input
distribution. Furthermore, the increased number of dividers in
the Pareto-optimal sets allows for further optimization to tailor
dividers for specific applications. To briefly highlight this, we
discuss some of the differences for particular metric pairs.

For the area design metric (Figs. and [3d), the Pareto-
optimal set of dividers reveals additional better dividers than
dividers in the Pareto-optimal sets of uniform or exponential
distribution. Particularly, for approximate dividers with around
10 pum and 5 um the normal distribution shows better dividers.
For a moderate amount of approximation that leads to dividers
with an area greater than 15um, some dividers from the
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Figure 4: Ablative comparison of ESY and HSY for exponential,
normal, and uniform input distributions.

Pareto-optimal set of the normal distribution are better than
the uniform and exponential distributions. Furthermore, the
gaps between two different points are also smaller when
considering normal and exponential distributions. We also
compared how dividers from prior works perform compared to
our obtained Pareto-optimal sets. Tab. [I| shows dividers from
prior works. The first column references the prior work a
divider is from, the second column specifies the borrow (B)
and difference (D) function used to approximate the dividers
basic blocks, the third column shows if the divider is found
in any Pareto-optimal set, and the last column shows the
particular design space parameters for which the respective
divider is in a Pareto-optimal set. While the first and third
dividers in Tab. E] from [4]] and [8]], respectively, are part
of our Pareto-optimal sets, all other dividers do not perform
good enough to be part of any Pareto-optimal set for any pair
of design metrics and error metrics. Particularly, introducing
higher errors in the divider without sufficient design space
exploration of other dividers leads to non-optimal approximate
dividers. As a reference, the basic block 113_105 specifies
the correct borrow and difference functions. For example, the
divider with the basic block 241_241 from [4] is not part
in any Pareto-optimal set, but in our work, we identified a
Pareto-optimal divider with the basic block 241_15 (the same
borrow function, although the difference function is another).
The divider 241_15 in our Pareto-optimal set for delay and
MAE has an area of 2122 me with a MAE of 0.185, while
any divider with the functions 241_241 has a higher area if
the MAE is comparable.

b) Ablation with and without exact synthesis pre-
optimization: As an additional design space parameter, we
considered a pre-optimization step before the actual design
synthesis. By applying Exact Synthesis (ESY) methods to the
basic blocks of the RAD, additional approximate dividers can
be revealed. As ESY methods are not scalable, they cannot be
applied to the whole approximate circuit without significantly
impacting the time to explore the design space efficiently.
Hence, we explored the divider designs with the additional pre-
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Figure 5: Application Images for change detection (CD) and back-
ground removal (BG).

optimization step, referred to as ESY, and without, referred
to as Heuristic Synthesis (HSY), for an ablative study. For
brevity, we illustrate the results for a particular pair of design
metric and error metric (delay and MAE), but the trends are
similar across the investigated metrics.

Fig. ] shows the Pareto-optimal sets for delay and MAE
across all three input distributions for divider designs syn-
thesized with our pre-optimization step (ESY) and without
the pre-optimization step (HSY). While in general, the di-
viders’ designs across the Pareto-optimal sets follow the same
trend, it can be seen that ESY and HSY can reveal different
approximate divider designs. For both ESY and HSY, the
different input distributions behave mostly consistently with
the observations for Fig. [3] The utilization of this design space
parameter revealed further divider designs, hidden without the
utilization of pre-optimization or different input distributions.

V. APPLICATION CASE-STUDY

In the last step, we illustrate the effectiveness of the obtained
approximate dividers in a case study, utilizing all Pareto-
optimal designs in two image processing applications. We
use Change Detection (CD) and Background Removal (BG)
applications from digital image processing, error-resilient ap-
plications in which approximate dividers can be used to obtain
a feasible output image quality with better circuit performance.
The input images for the CD applications are shown in Fig. 53]
and Fig. [5b} the output image is shown in Fig. [5c The input
images for the BG applications are shown in Fig. [5d| and
Fig. [5e} the output image is shown in Fig. [51]

For both applications, we perform the image processing
task for every available Pareto-optimal approximate divider.
The output image for a particular approximate divider is
compared against the results obtained with an exact divider.
This comparison is measured through the PSNR and SSIM
quality metrics. For brevity, we discuss the quality metrics for
the area design metric, but the trends are transferable to other
design metrics as well.

Fig. [6] shows four plots, with the first row (Figs. [6a] and [6b)
showing the results of the CD application and the second row
(Figs. [6| and [6d) showing the results of the BG application.
The first column contains the plots with the PSNR metric
(Figs. [6a] and [6c] while the second row shows the plots with
the SSIM metric (Figs. [6b] and [6d). For both applications, the
PSNR highlights the previously identified differences between
the utilized input distributions further. Additional approximate
dividers are revealed and available compared to the utiliza-
tion of uniform distribution alone, providing engineers with
more design choices to establish better performances for a
target PSNR. Particularly, for the BG application at PSNRs
between 30dB to 40dB shows a high density of Pareto-
optimal dividers, which are not established with a uniform
distribution. In the CD application and the same PSNR range,
approximate dividers with better PSNR metrics are seen for
exponential and normal distributions. Both of these trends can
be observed as well for the SSIM quality metric on both
applications. Here, a SSIM of 0.97 (for CD) and 0.95 (for
BG) show approximate dividers from exponential and normal
distributions, respectively.

The results of the evaluation can be summarized in three
points. 1) We showed how the input distributions impact the
design space exploration and the resulting Pareto-optimal sets,
in favor of the consideration of the input distribution as a
design space parameter. Utilization of exponential and normal
distributions reveals additional approximate divider designs
that are otherwise unidentified with the use of a uniform input
distribution. 2) Through ablation of our pre-optimization step,
additional designs were identified while confirming the trends
across input distributions. 3) The utilization of case-study
applications confirms the obtained Pareto-optimal approximate
divider sets for real-world examples like CD and BG.

VI. CONCLUSION

In this paper, we propose DIVIAC, an input distribution-
aware library of approximate RAD. We evaluated over half
a million designs to identify the Pareto-optimal designs for
various combinations of design and error metrics across three
input distributions. We performed exact minimization on the
basic subtractor blocks in the divider, and then performed
synthesis and compared it against heuristic-based synthesis.
We also then used the Pareto-optimal designs in two image
processing applications.
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