
PolyEMAC: Polynomial Error Metrics Analysis in
Approximate Computing

Mohamed Nadeem⋓, Chandan Kumar Jha⋓, Rolf Drechsler⋓,†
University of Bremen, Bremen, Germany⋓

DFKI GmbH, Bremen, Germany†
mnadeem@uni-bremen.de, chajha@uni-bremen.de, drechsler@uni-bremen.de

Abstract—Approximate Computing (AC) is a design paradigm
widely used in error-resilient applications. The goal of AC is to
gain benefits over exact designs by trading some accuracy for
a reduction in power, delay, and area. Varying error metrics
are used to assess the degree of approximation. Several formal
methods exist for computing these error metrics. However, these
methods often fail to provide theoretical bounds on computational
resources and are mostly limited to single error metrics. In
this work, we address the limitations of the prior methods by
introducing PolyEMAC, a novel approach that combines Cutwidth
Partitioning and Answer Set Programming (ASP) to compute
several error metrics for approximate circuits with constant
cutwidth in polynomial time w.r.t. circuit size and the number
of approximations. We evaluate several approximate adders in
terms of cutwidth, memory consumption, and computation time
to highlight the efficacy of the proposed methodology.

Index Terms—Approximate Computing, Polynomial Error
Analysis, Logic Synthesis, Answer Set Programming, Cutwidth.

I. INTRODUCTION

In the context of digital system design, Approximate Com-
puting (AC) is an emerging design paradigm, which is widely
used in error-resilient applications such as image process-
ing and machine learning [1]. By replacing exact Boolean
functions with approximate ones of acceptable quality, AC
circuits offer advantages over exact circuits in terms of power,
performance, and area [2]. The tolerance to approximation in
the error-resilient applications can vary widely, hence one of
the major tasks in AC is evaluating the error metrics during
the AC circuit design process.

Several error metrics such as Worst Case Error (WCE), Av-
erage Case Error (ACE), Error Rate (ER), and Mean Squared
Error (MSE) have been introduced [3] for the approximate de-
signs. These are obtained by evaluating the difference between
the exact outputs and the approximate outputs to check whether
the error is below the desired limit. Naive simulation-based
methods have exponential complexity and are impractical for
computing errors over all input combinations. Hence, in recent
years, formal methods have been studied to provide formal
error metric evaluation for arithmetic circuits, including Binary
Decision Diagram (BDD) [4], Symbolic Compute Algebra
(SCA) [5], and Boolean Satisfiability (SAT) [6]. However, these
methods face two main challenges. First, as design complexity
continuously increases, these approaches fail to establish the-
oretical upper bounds on the overall error computation time
(e.g., the NP-hard SAT problem [7]). Second, they are limited
to specific error metrics (e.g., [4] is limited to WCE, ER, and
ACE). The approach proposed in [8] introduces the use of

This work was supported by the German Research Foundation (DFG) within
the Reinhart Koselleck Project PolyVer (DR 287/36-1), and by the Data Science
Center of the University of Bremen, funded by the State of Bremen.

SCA to evaluate various error metrics. However, this method
also suffers from exponential complexity.

In prior works, several formal methods have been employed
in the area of Polynomial Formal Verification (PFV) [9]–[11]
to show that approximate circuits can be verified in polynomial
time using BDD [12]. Recently, it has been shown that approx-
imate circuits can be verified more efficiently using ASP [13].
More precisely, Cutwidth Partitioning has been employed with
ASP to show that approximate circuits with constant cutwidth
can be verified in linear time [14], [15], where cutwidth
is defined as a structural property of And-Inverter Graph
(AIG) [16], representing to the minimum number of edge-cuts
required to partition the circuit into subcircuits. However, there
is no prior work that addresses the issue of obtaining the error
metrics within a polynomial resource and time bound.

In this work, we address these limitations, and the fol-
lowing are the contributions: A) We introduce PolyEMAC, a
novel approach for computing error metrics using cutwidth
partitioning and ASP. B) We prove that error metrics of
approximate circuits with constant cutwidth can be computed
in polynomial time. C) We conduct experimental evaluations
on various approximate adder architectures of different sizes
to show the efficacy of our proposed methodology.

The approach relies on cutwidth to partition the circuit
into subcircuits. Each subcircuit is then solved using ASP,
and the probability of errors is computed w.r.t. the exact
specification functions within each subcircuit. The intermediate
nodes between the subcircuits are stored along with their error
probabilities and passed to other subcircuits. This ensures that
the number of input patterns in each subcircuit is bounded
by the cutwidth of the circuit. Consequently, the overall com-
plexity of computing the error metrics is also bounded by the
cutwidth of the circuit.

II. PRELIMINARIES

A. Error Metrics

Fig. 1: Error Miter

To compute the error metrics, an Error Miter of Fig. 1 is
introduced [17] that takes as input an exact circuit with inputs
PI and outputs PO and an approximate circuit with inputs
PI ′ and outputs PO′, where PI = PI ′ and PO = PO′. Let
f : BPI 7→ BPO and f̂ : BPI 7→ BPO represent the output
functions of the exact and approximate circuits, respectively,

mapping binary primary inputs PI to binary primary outputs
PO. The outputs f and f̂ are compared, and the distance unit
is used to calculate the corresponding error metric ξ(f, f̂) (e.g.,
ER). Let int(f(x)) be the integer induced by the binary output
function f(x) w.r.t. the input pattern x. We provide a brief
overview of the error metrics considered in this work:

1) WCE represents the maximum error difference the ap-
proximate design may produce:

wce(f, f̂) = max
x∈BPI

{|int(f(x))− int(f̂(x))|}. (1)

2) ACE represents the average error in the approximate
design:

ace(f, f̂) =

∑
x∈BPI |int(f(x))− int(f̂(x))|

2PI
(2)

3) ER represents the probability that the approximate output
differs from the exact output:

er(f, f̂) =

∑
x∈BPI int(f(x)) ̸= int(f̂(x))

2PI
(3)

4) MSE represents the average squared error in the approx-
imate design:

mse(f, f̂) =

∑
x∈BPI (int(f(x))− int(f̂(x)))2

2PI
(4)

B. Cutwidth Partitioning

(a) G (b) G0 (c) G1

Fig. 2: Nodes highlighted in red and green correspond to inputs
and outputs, respectively. Solid circles represent inverter gates.

For a circuit design A, an AIG is a gate-level representation
consisting of two-input AND gates AND (encoded as even
literals l ≥ 2), inverters INV , primary inputs PI , and primary
outputs PO. A gate (also referred to as a node) can have
at most two incoming edges. The primary inputs PI have
no incoming edges, while the primary outputs PO have no
outgoing edges. The AIG graph G can be defined as follows:

Definition 1 (AIG): Given a circuit A, the AIG G = (V,E)
is constructed such that:

• V = AND ∪ INV ∪ PI ∪ PO.
• E = {(v, v′) | v, v′ ∈ V, v is an input of v′}.

The cutwidth partitioning of G with outputs O0, . . . , On ∈ PO
corresponds to the minimum number of edges required to
be removed to partition G into disjoint subgraphs G0 =
(V0, E0), . . . , Gn = (Vn, En) such that each subgraph Gi

contains the output Oi and its dependency. It starts from
an output Oi and recursively traverses all nodes that do not
appear in other previous subgraphs O0, . . . , Oi−1 to inputs,
where 0 ≤ i ≤ n. To ensure the number of removed edges
is minimum, the subgraph Gi goes from the inputs to the
output Oi to add any node v such that its inputs appear in
Gi. Given the AIG of Fig. 2(a) with the outputs S0, C0 ∈ PO,
the subgraphs G0 and G1 are constructed as shown in Fig. 2(b)
and Fig. 2(c), respectively.

We refer by COi and CIi to the set of out-going (also
called non-primary outputs) and in-going nodes (also called
non-primary Inputs) such that COi contains nodes in Gi that
are passed to other subgraphs Gi+1, . . . Gn, and CIi contains

Algorithm 1: PolyEMAC Approach
Input : Approx AIG GA and exact AIG GE of the same size.
Output: Error Metrics ER, WCE, ACE, and MSE.

1 Miter Graph G = (V,E)← constructMiter(GA, GE)
2 Partition G into G0, . . . , Gn w.r.t. cutwidth partitioning
3 for i← 0 to n do
4 if CIi ̸= ∅ then
5 (X (CIi), Pi−1, Di−1)← (Xi−1, Pi−1, Di−1) ⋊⋉ . . . ⋊⋉

(X0, P0, D0)
6 Q(INi)← Q(PIi) ⋊⋉ X (CIi)
7 else
8 Q(INi)← Q(PIi)
9 end if

10 Πi ← ASP encoding w.r.t. Gi = (Vi, Ei) and Q(INi)
11 Xi ← Validate Πi using Clingo solver
12 if i = 0 then
13 Pi ←

|Xi|
2|INi|

; // Unconditional Probability

14 else
15 Pi ←

|Xi|∩|X(CIi)|
|X(CIi)|

; // Conditional Probability
16 end if
17 end for
18 ER, WCE, ACE, MSE← ComputeMetrics((Xn, Pn, Dn))
19 return ER, WCE, ACE, MSE

nodes that are evaluated in one of the previous subgraphs
G0, . . . , Gi−1. We refer by INi = PIi ∪ CIi to the input
nodes appearing in Gi, consisting of the primary inputs PIi
and the in-going nodes CIi. For the subgraph G0 of Fig. 2(b),
we have CO0 = {12}, CI0 = ∅, and PI0 = A,B, while for
the subgraph G1 of Fig. 2(c), we have CO1 = ∅, CI1 = {12},
and PI1 = ∅ (for further details, see [14], [18]).

C. Answer Set Programming

ASP is a widely used declarative programming framework
well-suited for solving combinatorial problems. It is primarily
used for tackling NP-hard search problems by reducing them
to the task of computing answer sets [19] (for more details,
see [20]).

In the context of Electronic Design Automation (EDA), the
basic idea of ASP is to encode the graph G as a logic program
Π, together with its specification functions. Then, a query x
(represented by a set of facts) that defines an input pattern is
added to the program Π (resulting in Πx). The Clingo [21]
solver is used to check whether an answer set of Πx exists. If
an answer set exists, then the graph G matches the specification
functions under the input pattern x (i.e., x is a valid input).
Otherwise, the input x is invalid, and consequently, the distance
ξ(f, f̂) is computed to derive the corresponding error metric.

Example 1: Given the subgraph G0 of Fig. 2(b), the pro-
gram Π is constructed such that Π = {and2 ← (Aˆ1) ∧
(Bˆ1); and6 ← A ∧ B; . . .}. It is important to highlight that
Aˆ1 represents the complement of A. Considering the query
x = {A 7→ 0;B 7→ 1}, we have that the exact output f(x) = 1
represents the exact sum function and the approximate output
f̂(x) = 0 (i.e., S0). For the error metric WCE, we have
ξ(f, f̂) = |int(f(x))− int(f̂(x))| = |0− 1| = 1.

III. POLYEMAC APPROACH

A. Algorithm

The PolyEMAC approach is summarized in Algorithm 1,
which proposes a polynomial approach for calculating er-
ror metrics of circuits with constant cutwidth. The approach
takes an approximate circuit A and an exact circuit E of
the same size (i.e., |POA| = |POE |). Their corresponding
AIGs GA and GE are constructed using Yosys tool [22].

(a) Miter Circuit (b) G0 (c) G1 (d) G2

Fig. 3: The miter circuit (Fig. 3(a)) includes a 3-bit approximate circuit (gray, with the two least significant bits approximated),
an exact 3-bit Ripple Carry Adder (RCA) (light blue), and subgraphs G0, G1, and G2. Nodes in orange, green, blue, and
magenta correspond to outgoing nodes, approximate outputs, exact outputs, and XOR gates, respectively.

The miter Graph G is constructed by XOR gates such that
each XOR gate XORi connects an approximate output OA

i

and its corresponding exact output OE
i (line 1). Given the

approximate adder of size 3 with the two least significant
bits approximated (labeled as ”Approx”), and the exact RCA
adder (i.e., consisting of three Full Adder (FA) blocks), the
miter circuit is constructed as shown in Fig. 3(a). The cutwidth
partitioning (recall Section II-B) is then used to partition the
miter graph G into three subgraphs G0, G1, and G2 as shown
in Fig. 3(b), Fig. 3(c), and Fig. 3(d), respectively (line 2), such
that each subgraph Gi contains one sum output Si and its
dependencies.

In each subgraph Gi, the input patterns Q(INi) are con-
structed such that the in-going table X (CIi) is populated with
the primary inputs PIi (lines 4-8). For the first subgraph
G0, we have CI0 = ∅ and consequently, the input patterns
Q(IN0) consist only of the primary inputs PI0 (line 8). The
subgraph Gi and the input patterns are then encoded as an ASP
program Πi (line 10), and the out-going table Xi is computed
(line 11). To enable the computation of error metrics, the
probability Pi and the distance unit Di are computed w.r.t.
the table Xi, and the results are stored and passed to the next
subgraph Gi+1 (lines 12-16). For the first subgraph G0, we
have that X (CI0) = ∅. Therefore, an unconditional probability
is computed for the out-going table X0 (line 13). For subgraphs
Gi, where n ≥ i > 0, a conditional probability is computed for
Xi w.r.t. the in-going probability table (X (CIi), Pi−1, Di−1)
(line 15). After evaluating all subgraphs, the error metrics are
computed w.r.t. the probability of the last out-going probability
table (Xn, Pn, Dn) (line 18).

B. Information Passing

TABLE I: X0
x g(x)

A0 B0 56 SA
0 SE

0

0 0 0 0 0
0 1 0 0 1
1 0 0 1 1
1 1 1 0 0

TABLE II: (X0, P0, D0)
B0 56 SA

0 SE
0 D0 P0

0 0 0 0 0 1/4
1 0 0 1 1 1/4
0 0 1 1 0 1/4
1 1 0 0 0 1/4

To enable independent evaluation of each subgraph Gi, a
mapping function g : Q(INi) 7→ COUTi is introduced, which
maps every input pattern x ∈ Q(INi) to the values COUTi of
the outgoing nodes COi. Since error metrics are computed
w.r.t. the values of the approximate and exact outputs, the

outputs of both the approximate and exact circuits within the
subgraph Gi are included in COi.

For the subgraph G0, we have that CO0 =
{12, B0, S

A
0 , S

E
0 } and CI0 = ∅. Notably, B0 is also

considered as out-going node, since it appears as input for
a gate that does not appear in G0 (recall Section II-B).
The ASP program Π0 is constructed w.r.t. G0 and Q(IN0)
(i.e., IN0 = PI0 ∪ CI0 = {A0, B0}). The out-going table
Xi = {g(x) | x ∈ Q(INi)} is constructed such that it contains
the resulting values under all possible input patterns Q(IN0)
as shown in Table I. To enable computing error metrics within
the subgraph Gi, it is essential to compute the probability
of the error Pi, and the distance unit Di is computed such
that it contains the integer differences between the exact and
approximate outputs appearing in subgraph Gi. The distance
unit Di is computed as follows:

Di(Xi = g(x)) = Di−1(X (CIi) = x) +
(
(SE

i − SA
i) · 2i

)
+(

1 if OE
n+1 ̸= OA

n+1, else 0, OE
n+1, O

A
n+1 ∈ Gi

)
,with x ∈ Q(INi)

(5)
To illustrate this, the distance unit Di adds the current integer

difference of the outputs in Gi to the accumulated difference
from Gi−1. Since the last subgraph Gn includes a carry Cn

(i.e., represented by On+1), we add 1 if OA
n+1 ̸= OE

n+1
and 0 otherwise. For the first subgraph G0, we have that
D−1(X (CI0) = x) = 0. This is because Q(IN0) contains
only input patterns from the primary inputs PI0. Also, as
CI0 = ∅, the unconditional probability is computed as follows:

Pi(Xi = g(x)) =
#{rows with Xi = g(x)}

|Q(INi)|
,where x ∈ Q(INi) (6)

Let (Xi, Pi, Di) be the resulting table (also called the out-
going probability table). Given the out-going table X0 of
Table I, the probability table (X0, P0, D0) is constructed as
shown in Table II. Since every row occurred only once, we
have that the probability per row is P0(X0 = x) = 1/4 = 0.25,
for every row x ∈ X0. The probability table (X0, P0, D0) is
passed to the next subgraph G1.

In subgraph G1 of Fig. 3(c), we have that CI1 =
{56}. To ensure the probabilities are computed correctly,
we add the previous outputs SA

i−1 and SE
i−1 to the in-

going nodes CIi. Hence, CI1 = {56, SA
0 , S

E
0 }. To compute

the values CIi, the out-going probability tables are joined
such that (X (CIi), Pi−1, Di−1) = (Xi−1, Pi−1, Di−1) ▷◁
. . . ▷◁ (X0, P0, D0), where ▷◁ denotes a relational join
between the tables. We refer by (X (CIi), Pi−1, Di−1) to
the in-going probability table. Given the subgraph G1

with CI1 = {56, SA
0 , S

E
0 }, the in-going probability table

(X (CI1), P0, D0) = (X0, P0, D0) is constructed as shown

in Table II. The input patterns Q(IN1) is constructed by
populating the primary inputs PI1 = {A1, B1} with the in-
going table (X (CI1), P0, D0). The subgraph G1 and the input
patterns Q(IN1) are encoded into an ASP program Π1. The
out-going table X1 is constructed as shown in Table III. The
rows highlighted in blue represent the errors induced by the
first output bit SA

0 and SE
0 , while the rows highlighted in red

denote the errors induced by the current output bit SA
1 and SE

1 .
TABLE III: X1 and (X1, P1, D1)
x g(x) Distance Unit

B0 56 SA
0 SE

0 38 72 SA
1 SE

1 D1 P0 P1

1 0 0 1 0 1 1 0 -1 1/4 1/16
1 0 0 1 1 1 1 1 1 1/4 1/16
1 0 0 1 1 1 0 1 3 1/4 1/16
1 0 0 1 1 0 1 0 -1 1/4 1/16
...

...
...

...
...

...
...

...
...

...
...

The next step is to compute the probability P1 and the
distance unit D1 w.r.t. X1. Since CI1 ̸= ∅, the conditional
probability is computed for X1 w.r.t. the in-going probabiltiy
table (X (CI1), P0, D0). Given a out-going table Xi and an
in-going probability table (X (CIi), Pi−1, Di−1), the uncondi-
tional probability is computed as follows:
Pi(Xi = g(x) | X (CIi) = x) =

(
#{rows with Xi = g(x) ∩ X (CIi) = x}

#{rows with X (CIi) = x}

)
·Pi−1(X (CIi) = x),where x ∈ Q(INi). (7)

To illustrate this, the incorrect input pattern A0 7→ 0 and
B0 7→ 1 is the only incorrect pattern w.r.t. the subgraph G0.
Therefore, its probability is P0(B0 7→ 1, 56 7→ 0, SA

0 7→
0, SE

0 7→ 1) = 1/4. However, as it is populated with new inputs
A1 and B1 of subgraph G1, the probability becomes 4/16 (i.e.,
the row B0 7→ 1, 56 7→ 0, SA

0 7→ 0, SE
0 7→ 1 is populated

with 2PI1 in the subgraph G1, where PI1 = {A1, B1}). By
doing so, it is ensured that the probability is computed correctly
over the subgraph G0, . . . , Gn. To illustrate the distance unit
computation, we have that D0(B0 7→ 1, 56 7→ 0, SA

0 7→
0, SE

0 7→ 1) = 1, and D1(38 7→ 1, 72 7→ 1, SA
1 7→ 0, SE

1 7→
1) = D0 + (1− 0) · 21 + 0 = 1 + 2 + 0 = 3.

The approach continues to compute the distance unit Di and
the probability Gi until it reaches the last subgraph Gn.

C. Error Metrics Computation
To compute the error metrics WCE, ACE, ER, and MSE,

we rely on the distance unit Dn and Pn. It is important to
highlight that every out-going probability table (Xi, Pi, Di)
contains the distance unit Di and the error probability Pi from
subgraph G0 to Gi, where 0 ≤ i ≤ n. The error metrics
can be computed w.r.t. the last out-going probability table
(Xn, Pn, Dn) as follows:

wce(Xn, Pn, Dn) = max
x∈Xn

(|Dn(x)|) (8)

ace(Xn, Pn, Dn) =
∑

x∈Xn

(Dn(x) · Pn(x)) (9)

mse(Xn, Pn, Dn) =
∑

x∈Xn

(
(Dn(x))

2 · Pn(x)
)

(10)

er(Xn, Pn, Dn) =
∑

x∈Xn

(e(x) · Pn(x)) ,

where e(x) =

{
1, if Dn(x) > 0
0, otherwise (11)

Given the miter graph G of Fig. 3, we have wce = 7,
ace = 1.84, mse = 7.25, and er = 0.6875 w.r.t. the table
(X3, P3, D3). We refer by cwin = max(IN0, . . . , INn) to the
in-going cutwidth, indicating the maximum number of input

patterns that need to be checked in any subgraph G0, . . . , Gn.
Similarly, cwout = max(CO0, . . . , COn) to the out-going
cutwidth, indicating the maximum number of values that need
to be stored and passed to other subgraphs G0, . . . , Gn. We
can see that the overall complexity is reduced from 2PI to be
a function of the in-going cutwidth cwin and the out-going
cutwidth cwout.

IV. COMPLEXITY ANALYSIS

Let G be a miter graph constructed w.r.t. an approximate
AIG GA = (V A, EA) and an exact AIG GE = (V E , EE). Let
Gi be a subgraph of G constructed using cutwidth partitioning
(recall Section II-B). The time complexity of validating Gi

and computing its probability Pi and distance unit Di can be
characterized as follows:

Lemma 4.1: Let Gi = (Vi, Ei) be a subgraph of the
miter graph G. Then, the evaluation of the program Πi w.r.t.
Gi has a computational complexity of O(2|INi| · (2|COi| ·
|(X (CI)i, Pi−1, Di−1)|).

Proof: Let Gi = (Vi, Ei) be a subgraph of G with
in-going nodes CIi and out-going nodes COi (recall Sec-
tion II-B). Then, the Horn ASP program Πi is constructed
w.r.t. Gi [14]. Let Q(INi) be the input patterns constructed
w.r.t. X (CIi) and the primary inputs Πi. For every input
pattern x ∈ Q(INi), the program Πi is evaluated under x
and the values g(x) of the out-going nodes COi are obtained.
Since Πi is a horn program, then evaluating one input pattern
x ∈ Q(INi) can be achieved in linear time w.r.t. the program
size [23] (recall Section II-C). Since the size of Q(INi) is
bounded by 2|INi| (i.e., |Q(INi)| ≤ 2|INi|), evaluating Πi

under all possible input patterns is achieved in O(2|INi|).
Consequently, Xi can be obtained w.r.t. all input patterns.

To enable the computation of error metrics, constructing the
out-going probability table (Xi, Pi, Di) is essential. Computing
the probability Pi requires joining the in-going probability
table (X (CIi), Pi−1, Di−1) with the out-going table Xi (re-
call Equation (III-B)). Since the in-going probability table is
bounded by |(X (CIi), Pi−1, Di−1)| and the out-going table
Xi is bounded by 2|COi|, the worst case requires performing a
cross-join between the two tables (i.e., checking every row in
one table with every row in the other table). Hence, computing
the out-going probability table (Xi, Pi, Di) can be achieved
in O(2|COi| · |(X (CIi), Pi−1, Di−1)|). For the subgraph G0,
we have that CI0 = ∅. Therefore, unconditional probability
is computed (recall Equation (6)). Therefore, evaluating the
subgraph Gi has a computational complexity of O(2|COi| ·
|(X (CIi), Pi−1, Di−1)|).

Since the out-going probability table (Xi, Pi, Di) contains
binary values representing the out-going nodes COi and integer
values representing the integer distance Di between the exact
outputs and the approximate outputs appearing in Gi, the size
of the table can be larger than 2|COi|. In fact, the size of the
table is bounded by 2|COi| · Si, where Si is the size of the
unique values of Di w.r.t. Gi (i.e., Si = |{Di}|). The size Si is
bounded by the index of the output bit (i.e., −2i+1+1 ≤ Di ≤
2i+1 − 1). This is because the distance Di between the exact
output and the approximate output can be positive or negative,
appearing in Gi. For instance, the subgraph G1 of Fig. 3(c),
the distance D1 can have any value between −3 and 3 (i.e.,

TABLE IV: Overall computation time for approximate circuits w.r.t. different approaches.

Type Size #Approx #Gates #Levels cwin cwout ER WCE
[log] ACE MSE

[log]
PolyEMAC Simulation

Memory Wall Time

AHA1 8 4 170 27 6 4 68.36 2.41 6.67 2.89 1.93 1.01 2.01
AHA2 8 4 158 23 6 4 100.0 1.18 5.38 1.70 2.48 0.97 2.01
AHA3 8 4 194 27 6 4 100.0 2.40 10.80 2.91 2.49 1.08 2.00
MA1 8 4 146 27 6 4 73.44 2.41 5.47 2.90 2.49 1.05 2.00
MA2 8 4 158 23 6 4 68.36 1.18 3.62 1.45 1.94 1.00 2.00
MA3 8 4 158 27 6 4 86.72 2.41 7.44 2.90 2.49 1.08 2.02
MA4 8 4 146 24 6 4 86.72 2.41 7.89 3.00 2.49 1.13 2.01

SESA2 8 4 107 23 6 4 93.75 1.18 7.50 1.89 2.49 0.98 2.00
SESA3 8 4 206 23 6 4 93.75 1.18 7.50 1.89 2.49 0.99 2.02
AHA1 16 8 338 55 6 4 89.99 4.82 106.73 6.45 2.51 1.85 T.O.
AHA2 16 8 314 47 6 4 100.0 2.41 75.41 4.04 2.50 1.94 T.O.
AHA3 16 8 386 55 6 4 100.0 4.82 167.27 6.45 2.53 2.27 T.O.
MA1 16 8 290 55 6 4 85.91 4.82 77.65 6.45 2.51 1.90 T.O.
MA2 16 8 314 47 6 4 89.99 2.41 59.69 3.86 2.51 1.79 T.O.
MA3 16 8 314 55 6 4 97.56 4.82 114.35 6.45 2.51 2.07 T.O.
MA4 16 8 290 48 6 4 97.56 4.82 130.06 6.62 2.52 2.13 T.O.

SESA2 16 8 211 47 6 4 99.61 2.41 127.50 4.34 2.50 1.48 T.O.
SESA3 16 8 410 47 6 4 99.61 2.41 127.50 4.34 2.50 1.54 T.O.
AHA1 32 16 674 111 6 4 99.00 9.63 27306.74 13.67 10.62 275.59 T.O.
AHA2 32 16 626 95 6 4 100.00 4.82 19115.42 8.85 6.94 156.42 T.O.
AHA3 32 16 770 111 6 4 100.00 9.63 42715.84 13.67 18.05 550.43 T.O.
MA1 32 16 578 111 6 4 96.03 9.63 19734.68 13.67 11.88 333.38 T.O.
MA2 32 16 626 95 6 4 99.00 4.82 15291.73 8.68 10.73 306.33 T.O.
MA3 32 16 626 111 6 4 99.92 9.63 29190.85 13.67 13.28 422.84 T.O.
MA4 32 16 578 96 6 4 99.92 9.63 33367.14 13.85 13.43 412.66 T.O.

SESA2 32 16 419 95 6 4 100.00 4.82 32767.50 9.16 7.00 155.66 T.O.
SESA3 32 16 818 95 6 4 100.00 4.82 32767.50 9.16 6.81 156.61 T.O.

−22 +1 ≤ Di ≤ 22 − 1). Hence, Si ≤ 2 · (2i+1 − 1) + 1. The
upper bound for Si keeps increasing based on the number of
approximate bits appearing in the approximate circuit CA. We
rely on the upper bound of Si in computing the complexity
of the PolyEMAC approach. The overall complexity can be
characterized in the following theorem:

Theorem 4.2: Let G = (V,E) be a miter graph constructed
w.r.t. the approximate AIG GA = (V A, EA) with A approx-
imate bits and the exact AIG GE = (V E , EE). Then, the
PolyEMAC approach for computing error metrics has a time
complexity of O(n · 2|cwin| · (2|cwout| · S)), where cwin =
max(|IN0|, . . . , |INn|), cwout = max(|CO0|, . . . , |COn|),
S = 2 · (2A+1 − 1) + 1, and n is the number of subgraphs.

Proof: Let G = (V,E) be a miter graph with n + 1
outputs. The subgraphs G0, . . . , Gn are constructed using the
cutwidth partitioning w.r.t. G (recall Section II-B). For each
subgraph Gi, two tasks are performed. First is to compute the
in-going probability table (X (CIi), Pi−1, Di−1). We assume
that (X (CIi), Pi−1, Di−1) can be computed in constant time.
This is because the search operation of a table may take linear
time in the worst case [24]. Second is to encode Gi together
with the input patterns Q(INi) as the horn ASP program Πi

and compute the out-going table Xi. Since evaluating one input
pattern x ∈ Q(INi) can be achieved in linear time for a horn
ASP program Πi [23], the complexity for evaluating Πi under
all possible patterns x ∈ Q(INi) is bounded by O(2|Q(INi)|).
As the size of Q(INi) is bounded by the in-going nodes 2|CIi|,
evaluating Πi can be achieved in time O(2|CIi|).

Finally, the out-going probability table (Xi, Pi, Di) has
to be constructed for X w.r.t. the in-going probability
table (X (CIi), Pi−1, Di−1). It can be achieved in time
O(2|COi| · |(X (CIi), Pi−1, Di−1)|) (recall Lemma 4.1). As
|(X (CIi), Pi−1, Di−1)| = 2|CIi| · Si, where Si = 2 · (2i+1 −
1)+1 denotes the size of all possible values of the distance unit
Di, the worst case complexity for computing (Xi, Pi, Di) is
O(2|COi| · (2|CIi| ·Si)). The overall complexity for evaluating
all subgraphs G0, . . . , Gn can be characterized as follows:

Complexity(G) = O
(

n∑
i=0

2|INi| +
(
2|COi| · (2|CIi| · Si)

))
(12)

Let cwin = max(|IN0|, . . . , |INn|), cwout =
max(|CO0|, . . . , |COn|), and S = max(S0, . . . , Sn) be

the in-going cutwidth, the out-going cutwidth, and the
maximum size of all possible values any distance unit
D0, . . . , Dn can have. Hence, the PolyEMAC approach can
run in time O(2|cwin| · (2|cwout| · S)). It is important to
highlight that the range of the values Di can only increase up
to the number of approximate bits A w.r.t. G = (V A, EA).
Hence, the value of S is bounded by S = 2 · (2A+1 − 1) + 1
(i.e., −2A + 1 ≤ S ≤ 2A − 1). For the non-approximate
subgraphs GA+1, . . . , Gn, the distance unit Di does not
change. Hence, for a subgraph Gj , we have Sj ≤ Si, where
0 ≤ i ≤ A < j ≤ n. We conclude that PolyEMAC runs in
time O(2|cwin| · (2|cwout| · (2 · (2A+1 − 1) + 1))).
By the previous theorem, for approximate circuits with constant
cutwidth (i.e., cwin and cwout do not change over different
circuit size) with a fixed number of approximate bits A, it holds
that PolyEMAC scales polynomially w.r.t. the circuit size.

V. EXPERIMENTAL WORK

To check the feasibility of the PolyEMAC approach, we have
implemented the ASP framework in Python. The framework
takes an input approximate circuit and an exact circuit in the
standard AIGER format [16]. We evaluate Approximate Hybrid
Adders (i.e., AHA1, AHA2, and AHA3) [25], Approximate
Mirror Adders (i.e., MA1, MA2, MA3, and MA4) [26], and
Single Exact Single Approximate Adders (i.e., SESA2, and
SESA3) [27] of different sizes n up to 64, and different numbers
of approximate bits between 1 and n−1. It has been shown that
these circuits exhibit constant cutwidth [14]. We compare the
PolyEMAC approach with the simulation approach in terms
of overall wall time (seconds). Due to the page limit, we
only show the comparison for circuits with different sizes n
up to 64 with n/2 approximate bits. All experiments were
performed on an Intel(R) Core(TM) i7-11370 with 3.30 GHz,
where the timeout and available RAM per instance are set to
1800 seconds and 16 GB, respectively.

A. Experimental Results

Table IV shows the results for approximate circuits with
n/2 approximate bits, comparing the PolyEMAC and sim-

TABLE V: Overall computation time of PolyEMAC for 64-bit approximate circuits under different approximation bits.

Type Size #Approx #Gates #Levels ER WCE [log] ACE MSE [log] Memory Wall Time

AHA1 64 4 842 139 68.36 2.71 3.75 3.40 2.50 3.34
MA2 64 4 830 135 68.36 2.71 3.62 3.33 2.50 2.96
MA4 64 4 782 130 48.44 44.36 0.75 43.67 2.50 2.90

SESA3 64 4 878 135 93.75 2.71 7.50 4.35 2.50 2.88
AHA1 64 8 715 151 53.28 44.36 38.30 46.22 2.56 6.64
MA2 64 8 717 143 82.66 5.54 29.85 8.20 2.55 6.58
MA4 64 8 694 144 90.46 5.54 33.15 8.27 2.58 8.53

SESA3 64 8 746 143 99.61 5.54 127.5 9.99 2.53 4.83
AHA1 64 12 759 163 96.83 8.32 1023.75 14.56 3.48 56.92
MA2 64 12 761 151 96.83 8.32 955.72 14.44 3.53 63.82
MA4 64 12 726 152 96.10 8.32 530.71 13.82 3.77 85.52

SESA3 64 12 806 151 50.12 8.32 1023.75 14.84 3.03 33.64

ulation approaches. It shows the approximate circuit type,
size, number of approximate bits (#Approx), number of gates
(#Gates), circuit depth (#Levels), in-going cutwidth (cwin),
out-going cutwidth (cwout), error rate (ER), worst-case error
[log] (WCE), average-case error (ACE), mean squared error
[log] (MSE), memory consumption (Memory) for PolyEMAC,
computation time (Wall Time) for PolyEMAC, and compu-
tation time for the simulation approach (Simulation). T.O.
denotes a timeout (i.e., the approach exceeded the time limit
of 1800 seconds). We observe that the PolyEMAC approach
outperforms the simulation approach across all circuit sizes and
under different approximate bits. Also, the simulation approach
exceeded the time limit starting from approximate circuits of
sizes 16, while the PolyEMAC approach was able to solve
all instances. Additionally, memory consumption is primarily
influenced by the number of approximate bits. For instance,
for AHA1 with size 8 and 4 approximate bits, the memory
consumption is 1.93, whereas for size 16 and 8 approximate
bits, it increases to 2.51. This aligns with our theoretical find-
ings that PolyEMAC runs in time O(n ·2|cwin| · (2|cwout| ·S)),
where S is bounded by the approximate bits A = n/2 (recall
Theorem 4.2). As these circuits exhibit constant cutwidth, the
PolyEMAC computes the error metrics in polynomial time.

To demonstrate that our approach scales to large circuit
sizes, Table V presents the results for AHA1, MA2, MA4,
and SESA3 of size 64 under 4, 8, and 12 approximate bits.
We observe that varying the number of approximate bits for
the same circuit size has a significant impact on both wall
time and memory consumption. For MA2, we observe that
the memory consumption is 2.50 and the wall time is 2.96
with 4 approximate bits. In contrast, with 12 approximate bits,
the memory consumption increases to 3.48 and the wall time
to 63.82. This demonstrates that, for circuits with constant
cutwidth, the number of approximate bits has a significant
practical impact on both memory usage and overall com-
putation time. This is because S = 2 · (2A+1 − 1) + 1
(recall Theorem 4.2), meaning that increasing the number of
approximate bits directly increases the value of S.

VI. CONCLUSION

In this paper, we introduced the PolyEMAC approach for
computing error metrics in approximate circuits with con-
stant cutwidth. Moreover, we proved that these metrics can
be computed in polynomial time w.r.t. both the circuit size
and the number of approximate bits. Finally, our experimen-
tal evaluation demonstrated that PolyEMAC outperforms the

simulation-based approach across various circuit sizes and
different approximate bits. In future work, we aim to extend
our approach to compute additional error metrics in polynomial
time. We also plan to investigate different approximate circuit
architectures, especially those with non-constant cutwidth.

REFERENCES

[1] J. Han et al., “Approximate computing: An emerging paradigm for energy-
efficient design,” in 2013 18th IEEE European Test Symposium (ETS), 2013.

[2] W. Liu et al., “A retrospective and prospective view of approximate comput-
ing,” Proceedings of the IEEE, vol. 108, no. 3, pp. 394–399, 2020.

[3] V. Mrazek et al., “Evoapproxlib: Extended library of approximate arithmetic
circuits,” in Proc. Workshop Open-Source EDA Technol.(WOSET), 2019.

[4] M. Soeken et al., “BDD minimization for approximate computing,” in ASP-
DAC, 2016, pp. 474–479.

[5] S. Froehlich et al., “Approximate hardware generation using symbolic
computer algebra employing Gröbner basis,” in DATE, 2018, pp. 889–892.

[6] C. Meng et al., “Mecals: A maximum error checking technique for approx-
imate logic synthesis,” in 2023 DATE, 2023, pp. 1–6.

[7] S. A. Cook, “The complexity of theorem proving procedures,” in 3. ACM
Symposium on Theory of Computing, 1971, pp. 151–158.

[8] S. Froehlich et al., “One method - all error-metrics: A three-stage approach
for error-metric evaluation in approximate computing,” in 2019 DATE, 2019,
pp. 284–287.

[9] R. Drechsler, “PolyAdd: Polynomial formal verification of adder circuits,”
in DDECS, 2021, pp. 99–104.

[10] R. Drechsler et al., “Polynomial formal verification: Ensuring correctness
under resource constraints,” in ICCAD, 2022, pp. 70:1–70:9.

[11] M. Schnieber et al., “Polynomial formal verification of approximate func-
tions,” in ISVLSI, 2022.

[12] M. Schnieber et al., “Polynomial formal verification of approximate adders,”
in 2022 25th Euromicro Conference on Digital System Design (DSD), 2022.

[13] A. Provetti et al., “Answer set programming: Towards efficient and scalable
knowledge representation and reasoning,” in Proceedings of the 1st Intl.
ASP’01 Workshop, 2001.

[14] M. Nadeem et al., “Polynomial formal verification of approximate adders
with constant cutwidth,” in Proceedings of 2024 IEEE European Test
Symposium (ETS), 2024.

[15] M. Nadeem et al., “Polynomial formal verification of multi-valued approxi-
mate circuits within constant cutwidth,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 72, no. 3, pp. 1411–1424, 2025.

[16] A. Biere, “The AIGER And-Inverter Graph (AIG) format version
20071012,” Institute for Formal Models and Verification, Johannes Kepler
University, Tech. Rep., 2007.

[17] R. Venkatesan et al., “Macaco: Modeling and analysis of circuits for
approximate computing,” in 2011 IEEE/ACM ICCAD, 2011, pp. 667–673.

[18] M. Nadeem et al., “Polynomial formal verification exploiting constant
cutwidth,” in Proceedings of the 34th International Workshop on Rapid
System Prototyping. Association for Computing Machinery, 2024.

[19] T. Sato, “Completed logic programs and their consistency,” The Journal of
Logic Programming, vol. 9, no. 1, pp. 33–44, 1990.

[20] “Logic programs with stable model semantics as a constraint programming
paradigm,” Annals of Mathematics and Artificial Intelligence, 1999.

[21] M. Gebser et al., “Advances in gringo series 3,” in LPNMR, 2011.
[22] C. Wolf, “Yosys open synthesis suite,” https://yosyshq.net/yosys/.
[23] J. K. Fichte et al., “Backdoors to tractable answer set programming,”

Artificial Intelligence, vol. 220, pp. 64–103, 2015.
[24] R. Sedgewick et al., Algorithms, 4th Edition. Addison-Wesley, 2011.
[25] C. K. Jha et al., “Energy and error analysis framework for approximate

computing in mobile applications,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 67, no. 2, pp. 385–389, 2020.

[26] V. Gupta et al., “Low-power digital signal processing using approximate
adders,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, pp. 124–137, 2013.

[27] C. K. Jha et al., “Single exact single approximate adders and single exact
dual approximate adders,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 31, no. 7, pp. 907–916, 2023.

