
In-Memory Mirroring: Cloning Without Reading
Simranjeet Singh∗‡, Ankit Bende‡, Chandan Kumar Jha§, Vikas Rana‡,

Rolf Drechsler§¶, Sachin Patkar∗, Farhad Merchant†
∗IIT Bombay, India, ‡Forschungszentrum Jülich GmbH, Germany,

§University of Bremen, Germany, ¶DFKI GmbH, Germany, †Newcastle University, UK
{simranjeet, patkar}@ee.iitb.ac.in, {a.bende, v.rana}@fz-juelich.de,

{chajha, drechsler}@uni-bremen.de, farhad.merchant@newcastle.ac.uk

Abstract—In-memory computing (IMC) has gained signifi-
cant attention recently as it attempts to reduce the impact of
memory bottlenecks. Numerous schemes for digital IMC are
presented in the literature, focusing on logic operations. Often,
an application’s description has data dependencies that must
be resolved. Contemporary IMC architectures perform read
followed by write operations for this purpose, which results in
performance and energy penalties. To solve this fundamental
problem, this paper presents in-memory mirroring (IMM). IMM
eliminates the need for read and write-back steps, thus avoiding
energy and performance penalties. Instead, we perform data
movement within memory, involving row-wise and column-wise
data transfers. Additionally, the IMM scheme enables parallel
cloning of entire row (word) with a complexity of O(1). Moreover,
we analyzed the energy consumption of the proposed technique
on an RRAM crossbar with an experimentally validated JART
VCM v1b model. The IMM increases energy efficiency and shows
2× performance improvement compared to conventional data
movement methods.

Index Terms—RRAM, cloning, data dependency, energy effi-
ciency, performance

I. INTRODUCTION

The gap between the processing unit and memory leads to
speed limitations known as the memory wall. This challenge
is addressed by processing data within the memory and
has emerged as a solution to alleviate memory bottleneck
issues [1]. One solution is to design the logic-in-memory
(LiM). The fundamental approach in LiM involves storing
input logical states in memory cells, with the computed
output remaining in memory as a logical state. Various mem-
ory technologies, including resistive random access memory
(RRAM), phase change memory (PCM), and spin-transfer
torque magnetic random access memory (STT-RAM), have
been utilized to implement LiM.

Among these technologies, RRAM stands out as a con-
tender for LiM, where logical states are represented by the
resistive state of the device, enabling computation within the
memory [2]. Several schemes of LiM using RRAM devices
have been demonstrated, such as MAGIC [3], IMPLY [4],
FELIX [5], and Majority [6], and so on [7]. Fig. 1(a) shows
the schematic to implement the MAGIC OR gate in the
crossbar given in Fig. 1(b). Furthermore, experimental demon-
strations of some schemes have been conducted, validating the
schemes [8]–[10].

Various architectures have been proposed to map the logic
on the crossbar to compute serially and in parallel. Considering
the area and latency constraint, parallel mapping has been
proposed, such as CONTRA [11] and SIMPLE [12]. These
schemes allow the mapping of the logic function in parallel,

Fig. 1: (a) schematic for implementing the OR operation
within the crossbar architecture, utilizing three memristors.
Two memristors are designated as inputs, while the third is
output storage. (b) The crossbar architecture demonstrates the
parallel execution of the same operation. (c) The challenge of
data dependency and proposes a solution by transferring data
between devices within rows and/or columns.

where both the rows are columns considered. However, data
dependencies arise in many cases, particularly when the oper-
ations are performed in multiple columns. Fig. 1(c) presents a
scenario where three operations need to be performed, with
operation T dependent on data from P and Q (left code
snippet). Currently, these dependencies are handled by copying
the data from the current cell to the required cell, which either
requires a read and write-back cycle [12] or two complement
operations [13], thereby resulting in increasing the overall
energy and latency of the computation.

This paper proposes an in-memory mirroring (IMM) tech-
nique to mitigate data dependency by facilitating data cloning
within the memory, thereby eliminating the need for energy-
intensive read and write-back operations. Unlike previous ap-
proaches, inspired by the RowClone methods for DRAM [14],
IMM operates directly within the crossbar memory and does
not require a read cycle, improving the overall computation la-
tency. Furthermore, IMM introduces the capability for parallel
cloning of entire rows with a one-cycle latency, further enhanc-
ing its efficiency and scalability. To the best of our knowledge,
our paper represents the first pioneering demonstration of IMM
using an experimentally validated device model. The following
are the contributions of this paper:

• Concept of cloning: bit cloning and word cloning.
• Simulation analysis and validation using JART VCM

v1b [15] SPICE model aims to demonstrate the cloning
data in rows, columns, and in parallel.

• Finally, energy and latency calculations during the
cloning operation are conducted, and the results are
compared with those found in the literature.

II. BACKGROUND AND RELATED WORK

A. Memristive Devices

Memristive devices have emerged as a significant advance-
ment in non-volatile memory technology. Initially proposed as
a concept by Leon Chua in 1971 [16], memristive devices have
gained prominence due to their unique ability to store data by
modulating resistance states [17]. One such device is RRAM,
where resistance modulation is achieved by applying a voltage
across these device terminals. In response, the resistance of
the devices changes based on the magnitude and direction of
the current flow. Typically, these memristive devices can be
interconnected to form a crossbar structure. However, issues
related to forming and sneak-path currents can arise when
individual memristive devices are connected without a CMOS
transistor in series. To mitigate these concerns, memristive
devices are fabricated with a CMOS transistor in series,
resulting in what is known as a 1T1R cell.

A memristive 1T1R cell possesses at least two distinct
states: high resistive state (HRS) and low resistive state
(LRS) that are mapped to Boolean logic ‘0’ and ‘1’ for
LiM implementation. To simulate the characteristics of RRAM
cells, several models have been introduced in the literature
for characterization at the SPICE level [18]. Among all the
models, JART VCM v1b is particularly noteworthy as an open-
source model that is based on experimental data from devices
fabricated at Forschungszentrum Jülich GmbH, Germany [15].
Moreover, the logic gate using the MAGIC design style has
been experimentally validated, resembling the device from the
JART VCM 1b model [9]. So, in this study, JART VCM
v1b has been used to conceptualize and conduct simulation
analyses.

B. Related Work

Previous attempts to handle the energy and latency during
data dependency for LiM have been focused on synthesizing
the logic function to reduce the number of copy opera-
tions [12]. However, the problem remains the same: computa-
tion still requires some copy operations that are expensive in
energy and latency. Another approach that has been recently
used is performing the two-time complement operation to copy
within the memory [13]. Even though this scheme still does
not require a read cycle, the copy operation needs two cycles,
leading to latency and energy inefficiency. Another approach
for copying using the IMPLY logic style has been demon-
strated with passive devices, requiring an extra Rs resistor and
an additional isolation voltage. Adding Rs and addressing the
sneak path problem in the passive crossbar makes this method
impractical in real crossbar implementations [19].

Although previous literature provides limited evidence of
copy operations, typically performed using four devices in
series [20] or a passive devices, a comprehensive analysis of
this approach is lacking. To the best of our knowledge, our
paper represents the first pioneering demonstration of IMM
using an experimentally validated device model.

Fig. 2: (a) RRAM schematic
for cloning. (b) the approxi-
mate equivalent circuit.

TABLE I: Parameters (JART)
Params Value

LRS (ROn) ≈ 3.5− 4.5KΩ
HRS (ROff) ≈ 65− 70KΩ

VSet 1V
VReset >2.0V
VRead 0.5V
VC 1.5V
Vg 2.5V

III. OPERATING PRINCIPLE OF CLONING

The IMM process utilizes just two memristors for cloning; one
holds the data to be cloned, while the second is the target for
cloning. Initially, all devices are considered to be in the HRS
state. Fig. 2(a) shows the schematic for one-bit cloning, where
two cells named Cell A and Cell B have been used. Cell A
contains the data to be cloned into Cell B, which begins in the
HRS state. An equivalent representation of Fig. 2(a) is shown
in Fig 2(b) using the simple resistors. The resistance of Cell A
is marked as RA; similarly, the resistance of Cell B is marked
as RB . Two possible values of RA and RB could be either
HRS or LRS.

In the cloning operation, a positive voltage VC is applied
across Cell B, while Cell A is connected to the ground.
Throughout this process, the gates of both transistors are fully
open, and devices sharing the common line are kept open (r0).
This establishes a pathway between Cells A and B, where RA

and RB are connected in series. The parameters list used for
the analysis is shown in Table I. This creates a potential drop
at r0, which can be calculated according to the Equation 1.
The cloning voltage (VC) is chosen to be slightly greater than
the Set threshold voltage (VSet) of the memristive cell. In this
case, 1.5V as VC has been chosen for a successful cloning
operation.

Vr0 =
RA

(RA +RB)
× VC (1)

Based on the values of RA and RB , there are two scenarios
to consider: (1) when the input data (RA) is logic ‘0’ (HRS),
and (2) when the input data (RA) is in LRS or logic ‘1’.
The IMM technique allows for a change of the state of RB

according to the state of RA.

A. Case 1: Cloning Logic ‘1’

In this case, Cell A contains logic ‘1’, which needs to be
cloned in Cell B and is initialized to logic ‘0’ (HRS). When
the VC is applied, the Vr0, according to Equation 1, becomes
very less because the RA << RB . As the (VC−Vr0) ≈ VC is
greater than the Set voltage (> VSet), it generates a sufficient
voltage across Cell B, enabling it to transition from HRS to
LRS. Cell B will switch from HRS to LRS in accordance with
the data in Cell A, eventually cloning the Cell A data into Cell
B. Due to the high reset-to-set ratio (≈ 2) in this model, Cell
A will retain its original state.

Fig. 3: Different configurations of crossbar architectures. In (a), the vertical crossbar layout is presented, wherein the gates of
transistors are connected vertically. (b) Bit-cloning in the vertical crossbar. (c) Horizontal crossbar, characterized by horizontally
connected transistor gates. (d) Bit-cloning in horizontal crossbar

B. Case 2: Cloning Logic ‘0’

In this scenario, Cell A is in the logic ‘0’, and the target cell
(Cell B) is already in the HRS state. According to Equation 1,
the voltage across the row will be evenly distributed (RA =
RB), and voltage at r0 will be ≈ VC/2. The voltage across
Cell B, (VC − Vr0) ≈ VC/2 is not sufficient to switch the
state (< VSet). Thus, Cell B will maintain its original state of
HRS, which is the same as the state of Cell A.

IV. THE PROPOSED METHODOLOGY

RRAM often adopts a crossbar structure, which is known for
its ability to facilitate dense memory. In its simplest form,
the array consists of horizontal and vertical lines, where each
RRAM cell is connected at each junction. There are multiple
ways to connect the RRAM cell at the junction. Fig. 3 shows
the vertical and horizontal crossbar structure for m× n (rows
× columns) size. In a vertical crossbar structure, as shown
in 3(a), the vertical lines are connected to the electrode of
the device, and horizontal lines are connected to the transistor
source. The gate of all the transistors is connected horizontally.
On the other hand, in the horizontal crossbar, as shown in
Fig. 3(d), horizontal lines are connected to the electrode of the
RRAM cell while the vertical lines are connected to a source
of the transistors. Moreover, the gate of transistors is shorted
horizontally. An appropriate voltage at horizontal and vertical
lines is applied to write (0 or 1) and read an individual cell in
the crossbar. In Fig. 3, Vr,x and Vc,y represent the voltage at
row and column lines, respectively, where |0 ≤ x < m| and
|0 ≤ y < n|. Vs,z is the gate switch voltage, which is given
as |0 ≤ z < n| for vertical and |0 ≤ z < m| for horizontal
crossbar.

In this work, the data is copied from one cell to another
without performing the read operation called cloning or mir-
roring. Initialization of both input and output follows a stan-
dard memory write operation procedure, and the data cloning
process aligns closely with this write operation method. To
integrate a cloning operation within a crossbar array, two
requirements must be fulfilled: the structure of the crossbar
and the connections of the memristive cells configured within
the array as shown in 3. Additionally, the logical state of
the memristive cell should be represented as resistance. Fig. 3

Fig. 4: (a) 3x3 crossbar array structure sketch. The gray
arrow exemplifies the voltage source. The colored circle at the
junction represents different memristors’ states. (b) Method of
bit cloning in the same row, where the data is marked as “A,”
which will be moved according to the representation of the
green arrow. (c) Row-wise bit operations and the dotted blocks
show the unselected rows and columns. (d) Column-wise bit
operation where only one-bit value will be moved is marked
in the green arrow. (e) Selected voltage source and devices
to perform the column-wise bit cloning. (f) Representation of
full column movement where the first complete row word will
move to the third row in parallel. (g) Selection of the required
cell to perform word cloning. (h) final state after performing
all operations from (a) to (g) in a sequence

shows the memristive crossbar structure with the necessary
connections. While the crossbar architecture allows for various
other connection configurations, this study focuses on demon-
strating cloning within the structures depicted in both Fig. 3(a)
and Fig. 3(d).

The vertical crossbar structure has a connection that is
similar to the connection depicted in Fig. 2(a) for bit cloning.
The VC is applied to the vertical lines connected to the
electrodes of the memristors. For instance, to execute the
clone operation on the first two devices in a row, VC is
applied at Vc,1 while ground is applied at Vc,0. Gate voltages
Vs,0 and Vs,1 are applied to open both transistors (>2V in

this case). The first row (Vr,0) remains floating, facilitating
cloning as illustrated in Fig. 2(b), effectively transferring data
from the first device to the second. Similarly, voltages can be
applied to rows, columns, and gates of a horizontal crossbar,
as depicted in Fig. 3(d), to execute the cloning operation.
Fig. 3(c) illustrates the implementation of the bit cloning
operation in the horizontal crossbar. It is noteworthy that
the operation conducted on the row-wise vertical crossbar
resembles the operation in the horizontal crossbar for the
column due to crossbar connections. The voltage sequence
in various configurations enables data to be cloned bit-wise
and column-wise, and even the entire word can be cloned to
another word. Subsequently, we delve into the specifics of each
operation. It is important to note that we exclusively focus on
the vertical crossbar as similar operations can be performed
on the horizontal crossbar.

A. Bit Cloning

In bit cloning, a single bit of data is moved either within
the same row or column, although it can be transferred to
any location within the same row or column. Row-wise and
column-wise operations require distinct voltage schemes. A
3 × 3 crossbar structure elucidates the cloning methodology
shown in Fig. 4. The device in operation is highlighted using
a solid line, while the dashed line indicates the unselected
devices for that specific operation. Fig. 4(a) presents the states
of devices in a 3x3 crossbar, where ‘A’ represents the LRS cell
while all other cells are in HRS.

1) Row-Wise
In row-wise bit operation, ‘A’ has to be moved within the

same row, as depicted in Fig. 4(b). The voltage applied to the
device follows the configuration shown in Fig. 3(b), selecting
the first two devices connected in r, 0. The gates of selected
devices are connected to Vs,(0,1) = Vg while other devices are
deselected by applying 0V to their gates. During the cloning
phase, VC is applied at Vc,1 and Vc,0 is connected to GND. The
r, 0 line remains floating, while other row lines are connected
to a voltage, Vr,x = VC/2, which is due to shared Vs,z , where
1 ≤ x < m and 0 ≤ z < 2. This results in proper device
selection, which is shown in Fig. 4(c), and clone ‘A’ to the
desired cell. It’s important to note that VC is applied across
the output device during the row-wise cloning phase.

2) Column-Wise
Similar to row-wise bit cloning, column-wise bit cloning

allows data to be cloned within the column, requiring a distinct
voltage configuration in the opposite direction compared to
row-wise bit cloning. Fig. 4(d) displays the current state of
devices after bit-wise cloning and the subsequent operation
with the green arrow. Fig. 4(e) shows the selected and uns-
elected cells for operation. In column-wise cloning, a single
gate line is shared among the devices in the column, with the
commonly shared line being a row line rather than a column
line, as in row-wise bit cloning. The required voltages are
applied to the column side. To select the cell as shown in
Fig. 4(d), Vs,0 is connected to Vg , while all other gates are
connected to 0V. During the cloning phase, Vr,0 is connected

Fig. 5: (a) 1T1R cell schematic, (b) material stacks of mem-
ristor, (c) I-V characteristics for 100 cycles

to VC , and Vr,1 is connected to the ground, while all other row
voltages are connected to VC/2. The column-wise operation
requires VC at the input device, which creates a positive
voltage drop at the device electrode, resulting in state change
for the output device. The applied voltage terminal is opposite
to the operation during row-wise cloning, where the VC is
applied at the output device.

B. Word Cloning

As in a vertical crossbar, the gates are shared vertically
(refer Fig. 3(a)); it’s possible to do the operation in parallel by
opening the gate of all the lines connected vertically, allowing
for the complete row to be cloned to another row. As depicted
in Fig. 4(f), the example involves moving the first row to the
last row (marked by the green arrow). The first Row contains
two ‘A’ cells. For word cloning operation, Vs,z is connected
to Vg , where 0 ≤ z < n, and Vr,0 is connected to VC , Vr,1 is
connected to ground, while Vc,x remains floating, where 0 ≤
x < n. The unselected rows are connected to VC/2. Fig. 4(g)
depicts the selected and unselected devices after applying the
specified voltages across the row and column lines. This allows
the complete row to be moved to another row, as each clone
operation can be performed in parallel with a complexity of
one cycle only. The operation is similar to the column-wise
operation, where all column operations happen simultaneously.
Fig. 4(h) illustrates the final state after all operations.

All operations are depicted with respect to the vertical
crossbar structure. Nevertheless, similar operations can also
be conducted on the horizontal crossbar. Additionally, due to
the crossbar structure, the operations interchange between row-
wise and column-wise. Furthermore, in the vertical crossbar,
word cloning conducted row-wise will transition to column-
wise word cloning. The voltage required for the basic clone
operation will remain the same.

V. RESULTS
This section unveils the outcomes derived from SPICE level
simulation using the Cadence spectre. The JART VCM v1b
model has been used as an RRAM and the gpdk 45nm
technology node for CMOS integration. This section also
provides insights into the energy consumption associated with
cloning operations.

A. 1T1R RRAM Switching Characteristics

The 1T1R cell design comprises a single memristor and
one NMOS transistor, forming the 1T1R structure. Fig. 5(a)

Fig. 6: (a) Schematic for bit-wise cloning in the same row. In the schematic, we have four voltage sources, Vc,0, Vc,1, Vr,0,
Vr,1, and currents in the memristors are marked in colors. (b) The simulation results’ waveform shows each cycle marked on
the top of the graphs. The last Read cycle shows the state of both devices. (c) Column-wise bit operation. The voltage sources
are at r0 and r1 along with c0 instead of c0 and c1. (d) Waveform during the column-wise bit operation.

illustrates the cell design alongside the equivalent stack of
the memristor depicted in Fig. 5(b). The memristor model
utilized in this investigation is experimentally validated and
consists of a Pt/Ti/TiOx/HfO2/Pt material stack known for its
favorable electroforming voltage and thermal stability. The I-
V characteristics of the 1T1R cell are depicted in Fig. 5(c),
which shows Set and Reset voltages marked with the red lines,
with the Set voltage approximately 1V, and the Reset voltage
approximately 2V. Any voltage between the Set and Reset
voltages can be employed for the Read operation, with 0.5V
utilized in this study to read the device state. Throughout the
I-V characteristics, the gate of the transistors is maintained
at 2.5V.

B. Cloning Implementation

The schematic depicting row-wise cloning in the vertical
crossbar structure is presented in Fig. 6(a). Initially, all devices
are set to HRS by default. To validate the cloning operation, d0
is initialized to LRS/HRS by applying the necessary voltage
at Vc,0. Fig. 6(b) has the waveform applied to Vc,0 and Vc,1,
along with the current flowing through devices d0 and d1,
denoted as Id0 and Id1, respectively. A Read pulse of 0.5V is
initially applied across both devices to ascertain their current
state. Subsequently, a Set voltage is applied to Vc,0 to transition
device d0 to LRS, as indicated in the subsequent read cycle.
The ‘Mov’ pulse marked in Fig. 6(b) signifies the clone
operation pulse. During the clone operation, Vc,0 = 0V/GND
and Vc,1 = VC are applied, while r0 remains floating. The final
read operation verifies the state of both devices, confirming
that both are in LRS, thus validating the clone operation.

Fig. 6(c) shows the simulated schematic for column-wise bit
cloning. Similar to row-wise cloning, all devices are initially in
HRS. However, the voltage scheme differs due to the crossbar
connection. After Set and Read pulses, the clone operation
is executed by applying Vr,0 = VC while Vr,1 = 0V . The
column line Vc,0 remains floating during the operation. The
final Read cycle confirms the successful cloning of d0 data to
d1, as shown in Fig. 6(d).

Finally, word cloning on a 2x2 crossbar structure is depicted
in Fig. 7. Similar to column-wise bit cloning, multiple columns
share the same gate and row lines in the vertical crossbar,

Fig. 7: (a) Schematic for word cloning, showing 2x2 crossbar,
where the data in d0 and d1 will be cloned to d2 and d3,
respectively. The current flowing from each device is marked
in colors. (b) Waveform for the cloning “10”

enabling parallel data cloning. As shown in Fig. 7(a), the same
Vr,0 is applied to devices d0 and d2, while similarly, Vr,1 is
applied to devices d1 and d3. Since Vs,0 and Vs,1 are shared for
devices connected in r0 and r1, respectively, both column lines
c0 and c1 are kept floating during the ‘Mov’ cycle. Fig. 7(b)
shows the waveforms for performing word cloning. Devices d0
and d1 are programmed to logic ‘1’ and logic ‘0’, respectively.
The state of d0 and d1 after the clone cycle (Mov) can be
observed in the final Read operation, reflecting the transfer of
d0 and d1 states to d2 and d3, respectively.

TABLE II: Energy consumption for cloning
Device operations Cloning

Operation Voltage
V

Energy
(pJ) Operation Voltage

V
Energy

(pJ)
Reset 2.25 15.54 Bit (1) 1.5 9.52
Set 1.5 20.17 Bit (0) 1.5 0.71

Read (0 & 1) 0.5 3.1 Word (2-bit) 1.5 11.28

C. Energy and Latency Calculations
Comparing energy consumption and latency of existing

methods with the IMM approach is essential for assessing
efficiency. Table II outlines energy usage during device oper-
ations such as Set, Reset, Read, and cloning, classified as bit
and word cloning. The energy is obtained by multiplying the
voltage waveforms with the sensed current and then integrating
the product over the measurement time as per

∫ t

0
v(t)×i(t) dt,

where t is the pulse time. In existing computing, copying
operations typically require two cycles: read and writeback,
consuming approximately 18 pJ and 23 pJ for copying logic
‘0’ and logic ‘1’, respectively, in the worst case. In terms
of latency, the literature shows the two cycles for copying;
in [11], one for reading and another for writeback, and in [10],
two NOT operations to copy. In contrast, the proposed IMM
scheme enables data cloning within the memory in one cycle,
requiring around 10 (9.52 + 0.71) pJ for bit cloning. An aver-
age 2-bit word cloning consumes only 11.28 pJ of energy. The
proposed scheme reduces overall energy consumption by the
sum of the energy expended during a read operation and the
energy consumed by the peripheral during that operation. This
reduction is particularly significant in large-scale applications.
Additionally, it achieves a 2× improvement in latency.

VI. DISCUSSION
This study demonstrates a technique for cloning data within
memory without reading. Table II shows that bit-wise (‘0’ &
‘1’) cloning consumes approximately 10.2 pJ, as the output
cell is in a HRS, limiting switching current and reducing
energy consumption. For 2-bit word cloning, the average
energy is dominated by the “11” combination at around 22 pJ,
while “00” consumes 0.7 pJ, and “01 & 10” consumes 11.11
pJ. These energy values are based on the operational voltage,
which can be adjusted for optimization. However, it is assumed
that all devices are in an HRS, similar to the logic operation
implementation. If the cell has been previously utilized, it must
be switched to HRS before the cloning operation, necessitating
an additional cycle. This procedure is similar to handling a
reused cell and initializing the output cell to HRS. For output
devices in use or unknown states, dependencies can be verified
at the compiler level and initialized with the output device
for logic operations, like regular memory write operations.
Since the voltage requirements are compatible with other logic
operations, the area needed for the control circuit for cloning
will remain the same.

CONCLUSION
This paper introduced the concept of IMM in RRAM memory
crossbars, enabling data cloning without reading the state
within a single cycle. IMM facilitates efficient data cloning
within the memory, eliminating the necessity for read and
write-back cycles and resulting in substantial energy savings.
Moreover, the scheme supports bit-wise data movement in
both columns and rows while enabling parallel cloning of
entire columns with the complexity of a single cycle. The
effectiveness of the IMM concept has been demonstrated
through SPICE-level simulation analysis with an experimen-
tally validated RRAM model. Furthermore, we have thor-

oughly examined the energy consumption and latency associ-
ated with our proposed technique. The IMM scheme exhibits
energy efficiency and is 2× faster than the existing method
of copying data in the RRAM crossbar. Moving forward, we
plan to validate the proposed scheme experimentally using a
fabricated RRAM crossbar.

ACKNOWLEDGMENTS
This work was supported in part by the Federal Ministry of Ed-
ucation and Research (BMBF, Germany) in the project NEU-
ROTEC II under Project 16ME0398K, Project 16ME0399,
German Research Foundation (DFG) within the Project PLiM
(DR 287/35-2) and through Dr. Suhas Pai Donation Fund at
IIT Bombay.

REFERENCES
[1] A. Sebastian et al., “Memory devices and applications for in-memory

computing,” Nature nanotechnology, vol. 15, no. 7, pp. 529–544, 2020.
[2] R. Waser et al., “Redox-based resistive switching memories – nanoionic

mechanisms, prospects, and challenges,” Advanced Materials, vol. 21,
pp. 2632–2663, 07 2009.

[3] S. Kvatinsky et al., “MAGIC—Memristor-Aided Logic,” IEEE TCAS-II,
vol. 61, no. 11, pp. 895–899, Nov. 2014.

[4] S. Kvatinsky et al., “Memristor-based material implication (IMPLY)
logic: Design principles and methodologies,” IEEE TVLSI, vol. 22,
no. 10, pp. 2054–2066, 2013.

[5] S. Gupta et al., “Felix: Fast and energy-efficient logic in memory,” in
2018 IEEE/ACM ICCAD. IEEE, 2018, pp. 1–7.

[6] A. Deb et al., “Automated Equivalence Checking Method for Majority
based In-Memory Computing on ReRAM Crossbars,” in 2023 ASP-DAC,
Jan. 2023, pp. 19–25.

[7] S. Singh et al., “Should We Even Optimize for Execution Energy? Re-
thinking Mapping for MAGIC Design Style,” IEEE Embedded Systems
Letters, vol. 15, no. 4, pp. 230–233, 2023.

[8] B. Hoffer et al., “Experimental demonstration of memristor-aided logic
(MAGIC) using valence change memory (VCM),” IEEE TED, vol. 67,
no. 8, pp. 3115–3122, 2020.

[9] A. Bende et al., “Experimental Validation of Memristor-Aided Logic
Using 1T1R TaOx RRAM Crossbar Array,” in VLSID, 2024, pp. 565–
570.

[10] H. Padberg et al., “Experimental Demonstration of Non-Stateful In-
Memory Logic With 1T1R OxRAM Valence Change Mechanism Mem-
ristors,” IEEE TCAS II, vol. 71, no. 1, pp. 395–399, 2024.

[11] D. Bhattacharjee et al., “Contra: Area-constrained technology mapping
framework for memristive memory processing unit,” in 2020 IEEE/ACM
ICCAD, 2020, pp. 1–9.

[12] R. Ben Hur et al., “Simple magic: Synthesis and in-memory Mapping of
logic execution for memristor-aided logic,” in 2017 IEEE/ACM ICCAD,
2017, pp. 225–232.

[13] B. Perach et al., “Understanding Bulk-Bitwise Processing In-Memory
Through Database Analytics,” IEEE TETC, vol. 12, no. 1, p. 7–22, Jan.
2024.

[14] V. Seshadri et al., “RowClone: Fast and energy-efficient in-DRAM bulk
data copy and initialization,” in 2013 46th Annual IEEE/ACM MICRO,
2013, pp. 185–197.

[15] C. Bengel et al., “Variability-aware modeling of filamentary oxide-based
bipolar resistive switching cells using SPICE level compact models,”
IEEE TSCAS I, vol. 67, no. 12, pp. 4618–4630, 2020.

[16] L. Chua, “Memristor-The missing circuit elemet,” IEEE Transactions on
Circuit Theory, vol. 18, no. 5, pp. 507–519, 1971.

[17] D. Strukov et al., “The missing memristor found,” Nature, vol. 453, pp.
80–3, 06 2008.

[18] F. Staudigl et al., “A Survey of Neuromorphic Computing-in-Memory:
Architectures, Simulators, and Security,” DATE, vol. 39, no. 2, pp. 90–
99, 2022.

[19] L. Xie et al., “Fast boolean logic mapped on memristor crossbar,” in
2015 33rd IEEE International Conference on Computer Design (ICCD),
2015, pp. 335–342.

[20] L. Luo et al., “Reconfigurable stateful logic circuit with cu/cui/pt
memristors for in-memory computing,” IEEE TVLSI, vol. PP, pp. 1–13,
05 2024.

