Preserving Design Hierarchy Information for
Polynomial Formal Verification

Rolf Drechsler!:2

Alireza Mahzoon?

Unstitute of Computer Science, University of Bremen, Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
{drechsle, mahzoon} @uni-bremen.de

Abstract—With the growing complexity of digital circuits,
formal verification has become a crucial task after the design
in order to ensure the correctness of a circuit. Many existing
verification methods suffer from unpredictability in their perfor-
mance. It is not clear whether they have to be run for seconds,
hours, or days to return the verification results or whether they
fail in the end. The unpredictability can only be resolved by
ensuring complexity bounds. To guarantee scalability we are in
particular interested in Polynomial Formal Verification (PFV),
where the space and time complexities have polynomial bounds
with respect to the size of the circuit.

The information about the design hierarchy is usually vital for
PFV. Complex digital circuits consist of several components that
cannot be verified with an individual verification technique in
polynomial space and time. However, with additional knowledge
about the boundaries of components, PFV becomes possible
through the step-wise verification of sub-components and the use
of different formal proof engines. In this paper, we first introduce
PFV and clarify its importance. We consider the verification of
several flattened gate-level arithmetic circuits and illustrate the
challenges of PFV when no design hierarchy is available. Then,
we show how these challenges can be overcome by preserving
design hierarchy information including the boundaries of the
components.

I. INTRODUCTION

In the last 30 years, the verification community has achieved
many successes in proving the correctness of a wide variety of
digital circuits. Several formal methods based on equivalence
checking, model checking, and theorem proving have been
proposed to verify both combinational and sequential circuits.
Particularly, the formal verification of arithmetic circuits has
gotten a lot of attention due to the high complexity and big
size of these circuits: (a) Binary Decision Diagram (BDD) [1]
and SAT-based [2], [3] verification methods report very good
results for different types of adder architectures, (b) Mul-
tiplicative Binary Moment Diagrams (*BMDs) [4], [5] are
used to verify structurally simple multipliers, and (c) Symbolic
Computer Algebra (SCA) [6], [7], [8] is employed to verify
structurally complex multipliers and dividers.

However, the main shortcoming of these techniques is
unpredictability in performance, leading to several verification
problems:

« It cannot be predicted before actually invoking the veri-
fication tool whether it will successfully terminate or run
for an indefinite amount of time.

o The scalability of these techniques remains unknown,
i.e., it is not predictable how much the run-time and the

required memory increase when the size of the circuit
Srows.

o It is not possible to compare the performance of verifi-
cation methods for a specific design and choose the best
one.

In order to resolve the unpredictability of a verification
method, its time and space complexities have to be calculated.
Knowing the complexity bounds for a verification technique
alleviates the three aforementioned verification problems. We
are particularly interested in space and time complexities with
the smallest possible polynomial order, i.e. O(n¢), where n is
a circuit parameter (e.g. the number of input bits) and c is a
positive number. The concept of Polynomial Formal Verifica-
tion (PFV) was first introduced in [9]. A formal verification
method with a polynomial complexity (time and space), where
the exponent in the polynomial is not too high, is scalable and
can be carried out successfully for different circuit sizes.

In many cases, it is impossible to ensure the polynomial
bounds for a pure gate-level circuit without any design in-
formation. Complex digital circuits usually consist of several
sub-components that cannot be verified with an individual
formal method in polynomial space and time. Unfortunately,
the boundaries of these sub-components are lost during the
synthesis to the gate-level netlist. However, we can overcome
the verification challenge by preserving design hierarchy infor-
mation, including boundaries of sub-components. Thus, PFV
becomes possible through the step-wise verification of sub-
components and the use of different formal techniques.

In this paper, we illustrate how preserving the design
hierarchy information helps with PFV of complex arithmetic
circuits consisting of multiplication and addition operations,
e.g., A x B+ C x D. We first demonstrate the challenges
of verifying a complex arithmetic circuit when no design
hierarchy information is available. Then, we propose a hy-
brid technique based on SCA and BDDs to verify complex
arithmetic circuits in polynomial space and time when the
design hierarchy information, including the boundaries be-
tween stages and components, is at hand. We also calculate the
upper-bound space and time complexities for our case study,
ie.,, AXx B+ C x D, consisting of 2 multiplication and one
addition operations. The experimental results confirm that our
hybrid method can verify A x B + C x D arithmetic circuits
with up to 256-bit per input.

II. RELATED WORKS

In the last few years, researchers have come up with various
PFV methods to resolve the verification unpredictability. It in-
cludes 1) proving the polynomial bounds for existing verifica-
tion methods and 2) improving and extending existing formal
methods to obtain polynomial upper-bound complexities.

PolyAdd [9] for the first time proved that the formal
verification of three adder architectures (i.e., ripple carry
adder, conditional sum adder, and carry look-ahead adder) is
possible in polynomial time using BDDs. The proof is based
on the fact that underlying BDDs remain polynomial during
the whole construction process. However, PolyAdd did not
provide the upper-bound complexities. The authors of [10]
and [11] extended PolyAdd by obtaining the upper-bound
time complexities of conditional sum adder and parallel prefix
adders (i.e., serial prefix adder, Ladner-Fischer adder, and
Kogge-Stine adder). They calculated the time complexities by
adding up the computational complexity of If-Then-Else (ITE)
operation in each step of the symbolic simulation. Formal
verification of Al-generated prefix adders in polynomial time
was investigated in [12]. The authors of [13] proved that
PFV of a simple Arithmetic Logic Unit (ALU), consisting of
arithmetic and logic operations, is possible. Authors of [14]
focused on PFV of approximate adders. They proved that
the upper-bound time complexities of verifying approximate
ripple carry adder, conditional sum adder, and carry look-
ahead adder, as well as handcrafted approximate adders, are
polynomial using BDDs.

The work of [15] considered PFV of a multiplier for the
first time. The authors demonstrated that the verification of a
Wallace-like multiplier can be carried out in polynomial space
and time using *BMDs. The proof was extended by [16] to
arithmetic circuits consisting of multiplication and addition
operations. Moreover, the authors showed that PFV can be also
performed using SCA. The authors of [17] proved that SCA-
based methods have exponential upper-bound complexities
when it comes to verifying structurally complex multipliers.
Then, they came up with a hybrid formal method based on
SCA and BDDs to achieve polynomial bounds.

In addition to arithmetic circuits, there have been some
efforts to make PFV possible for other types of circuits. The
authors of [18] and [19] prove that proving the correctness of
totally symmetric functions and tree-like circuits is possible
in polynomial space and time using BDDs. The work of [20]
proposed two methods to generate polynomially verifiable
circuits for an approximate function.

While there has been significant progress in PFV of various
circuit types, the importance of design information has not
been yet fully investigated. In this paper, we illustrate the
necessity of preserving design hierarchy information in PFV
of complex arithmetic circuits.

III. BACKGROUND

In this section, we first explain the structure of a circuit
consisting of multiplication and addition operations. Then, we
review the SCA- and BDD-based verification techniques.

Multiplier Multiplicand

Partial Product Generator

Tl i1

Partial Product Accumulator
(PPA)

! !

Final Stage Adder

SP: Simple Partial Product Generator
BP: Booth Partial Product Generator

AR: Array

CT: Compressor Tree
DT: Dadda Tree

WT: Wallace Tree
coe

RC: Ripple Carry adder
BK: Brent-Kung adder

(FSA) LF: Lander-Fischer adder
CL: Carry Look-ahead adder
Product
Fig. 1. General multiplier structure

A. Arithmetic Circuits Structure

Fig. 1 shows an integer multiplier consisting of three stages:
(1) Partial Product Generator (PPG), which generates partial
products from two inputs, (2) Partial Product Accumulator
(PPA), which reduces partial products using multi-operand
adders and computes their sums, and (3) Final Stage Adder
(FSA), which converts these sums to the corresponding binary
output. There are several architectures for each stage of a
multiplier. These architectures are chosen with respect to the
design goals, e.g. small area, low delay, and the small number
of wiring tracks. The architectures for the PPA stage are
usually made of half-adders and full-adders. However, the only
FSA architecture which consists of half-adders and full-adders
is the ripple carry adder. The other existing FSA architectures
have some extra logic in addition to half-adders and full-
adders.

A general arithmetic circuit performs a polynomial oper-
ation on its inputs by using multiplications and additions,
eg, Z=AxB+CxDand Z=A2xD+AxB?>+C
are the examples of arithmetic circuits with A, B, C, and D
as inputs and Z as output. There are two possible ways to
generate arithmetic circuits:

o The partial products for all multiplication operations are
generated; then, they are reduced to only two rows of
partial products using multi-operand adders in the PPA
stage. Finally, the two rows of partial products are added
up using the FSA stage to generate the final product.
Fig. 2 shows the structure of an arithmetic circuit that
performs Z = A x B + C' x D operation.

o The multiplication and addition operations are imple-
mented individually; then, they are connected in a way
to correctly implement the circuit function. Fig. 3 de-
picts the structure of an arithmetic circuit that performs
Z = A x B+ C x D operation by combining individual
multiplication and addition blocks.

In this paper, we use Z = A x B+ C x D as our case study
and investigate its PFV. Nevertheless, the proposed techniques
can be easily used for other arithmetic circuits.

Ay By C§ Dy
PPG

XX Y
s 00000 AXxB
Xy

[]
coo o000
.:.:.. CxD

Y
PPA

Y
FSA

zy

Fig. 2. Z = A x B+ C x D implementation in three stages
I ¢ D
Mult Mult
I |
!
Add
z|
Fig. 3. Z = A x B+ C x D implementation using individual blocks

B. Verification using SCA
We briefly summarize some basics of SCA:

o Monomial: power product of the variables, i.e.
M = z{'z3? ... x% where a; > 0.

« Polynomial: finite sum of monomials, i.e. P = ¢y M7 +
-+ + ¢;M; with coefficients in field k.

« Division: Assuming p is a polynomial and F' is a set of
polynomials, the division of p by F'is denoted by p EiN r,

where r is called remainder.

The goal of SCA-based verification is to formally prove that
all signal assignments consistent with the gate-level or AND
Inverter Graph (AIG) representation evaluate the Specification
Polynomial (SP) to 0. The SP determines the function of
an arithmetic circuit based on its inputs and outputs, e.g. for
the 2 x 2 multiplier of Fig. 4 SP = 8735 4+ 475 + 277 +
Zo — (2A1 + Ao)(231 + Bo), where 823 + 4Z2 + 221 + ZQ
represents the word-level representation of the 4-bit output,
and (241 + Ag)(2B; + By) represents the product of the 2-bit
inputs.

Before verification, the nodes of an AIG (or gates of a
gate-level representation) should be modeled as polynomials
describing the relation between inputs and outputs. Based on

SP =875+ 42, + 22, + Zo— Ax B

SP L% SPy = 8y, + 47 + 27 + Zo — Ax B

SPy L7 8Py = 80y + A — dnyy + 22, + Zg— Ax B

SPy 22, §Py = 8nyy + dng + dnyg — Angnyg + 27y + Zy — A x B

P,
SPy =" SPy = 8nany + 4dng + dnyg — dnonio + 221 + Zo — A x B

SPu 255 SPuy = ny + na — (AoBo + AoBy)
Py
5Py~ SPrs =1 — (AoBo)
SPis 2 =0
Fig. 4. 2x2 mult Fig. 5. Backward rewriting steps

the type of nodes and edges, five different operations might
happen in an AIG. Assuming z is the output, and n; and n;
are the inputs of a node:

Z =N; = PN ‘= 2 — Ny,
zZ=n; Anj = pN =z — n;nj,
z=—m; = pN =z — 1+ n;,

z =—m; An; = pNy =z —nj + n;ny,

z=-m; A-nj = pN:=2z—1+n;+n; —n;n;. (1)

The extracted node polynomials are in the form Py = x —
tail(Py) where x is the node’s output, and tail(Py) is a
function based on the node’s inputs. Similarly, the polynomials
for the gates can be extracted in a gate-level representation
(see [21], [22]).

Based on the Grobner basis theory, all signal assignments
consistent with the AIG evaluate the specification polynomial
SP to 0, iff the remainder of dividing SP by the AIG node
polynomials is equal to 0 (see [7] for more details).

The step-wise division of S P by node polynomials is shown
in Fig. 5 for the 2 x 2 multiplier. Since the remainder is zero,
the circuit is bug-free. In arithmetic circuits, dividing SP; by
a node polynomial Py, = x; — tail(Py,) is equivalent to
substituting x; with tail(Py,) in SP;. For example, dividing
SP; by P,,, in Fig. 5 is equivalent to substituting n,; with
tail(Py,,) = nan7 in SPs. In the results, we always replace
powers z;* with a; > 1 by z;, since x; can only take values
from {0, 1}. In the theory, this corresponds to adding x? — x;
to the node polynomials. The process of step-wise division
(substitution) is called backward rewriting. We refer to this
intermediate polynomial as SP; in the rest of the paper.

C. Verification using BDDs

We briefly summarize some basics of BDD:

o Binary Decision Diagram (BDD): a directed, acyclic
graph whose nodes have two edges associated with the
values of the variables 0 and 1. A BDD contains two
terminal nodes (leaves) that are associated with the values
of the function O or 1.

e Ordered BDD (OBDD): a BDD, where the variables
occur in the same order in each path from the root to a
leaf.

e Reduced OBDD (ROBDD): an OBDD that contains a
minimum number of nodes for a given variable order.

Algorithm 1 If-Then-Else (ITE)
Input: f, g, h BDDs
Output: ITE BDD
1: if terminal case then
return result
else if computed-table has entry {f,g,h} then
return result
else
v = top variable for f, g, or h
t ::‘[jﬂl;(jbzzlagvzzla}lvzrl)
€= ITE(fU=07 Gv=0; hv=0)
r = FindOrAddUniqueTable(v, t, e)
10: InsertComputedTable({f,g,h},r)
11: return R

> General case

R A A T ol

We refer to ROBDD as BDD in the rest of the paper since
it is the canonical representation that is used in the verification
of arithmetic circuits.

The ITE operator (If-Then-Else) is used to calculate the
results of the logic operations in BDDs:

ITE(f,g,h) = (f Ag) V (f Ah),)

The basic binary operations can be presented using the ITE
operator:

fANg=1ITE(f,g,0),
f@g=1ITE(f,3,9),

ITE can be also used recursively in order to compute the
results:

ITE(fagah) = ITE(:CZEITE(fImgImhzi)vaE(ffi,gfivhf‘))7

(C))
where f,, (fz,) is the positive (negative) cofactor of f with
respect to x;, i.e., the result of replacing x; by the value 1 (0).

The algorithm for calculating ITE operations is presented
in Algorithm 1. The result is computed recursively based
on Eq. (4) in this algorithm. When calculating the results
of ITE operations for the f, g, h BDDs, the arguments for
subsequent calls to the ITE subroutine are the subdiagrams of
f> g and h. The algorithm employs two major data structures:
a Unique Table to guarantee the canonicity of the BDDs (see
Line 9), and a Computed Table to store results of previous
computations and avoid repetition (see Line 10). The number
of subdiagrams in a BDD is equivalent to the number of nodes.
For each of the three arguments, the sub-routine is called at
most once. Assuming that the search in the Unique Table is
performed at a constant time, the computational complexity
of the ITE algorithm, even in the worst-case, does not exceed
O(|f] - 19| - |h|), where |f|, |g| and |h| denote the size of the
BDDs in terms of the number of nodes [23].

In order to formally verify an adder, we need to have the
BDD representation of the outputs. Symbolic simulation helps
us to obtain the BDD for each primary output. In a simulation,
an input pattern is applied to a circuit, and the resulting output
values are observed to see whether they match the expected

fVvg=ITE(f,1,9),

f=1ITE(f,0,1). (3

180
160
140
120
100
80
60
40
20
0

SO DANOED DN DO DN N OO DA
DRSSP R PP L PSP P

#monomials

Substitution step
Fig. 6. Number of monomials at each step of substitution for (1) architecture

140000
120000
100000

80000

60000

40000

20000
S

#monomials

0
IR I A S

k(]

PETEORP P PSP
Substitution step

Fig. 7. Number of monomials at each step of substitution for (2) architecture

values. On the other hand, symbolic simulation verifies a set of
scalar tests (which usually covers the whole input space) with a
single symbolic test. Symbolic simulation using BDDs is done
by generating corresponding BDDs for the input signals. Then,
starting from primary inputs, the BDD for the output of a gate
(or a building block) is obtained using the ITE algorithm. This
process continues until we reach the primary outputs. Finally,
the output BDDs are evaluated to see whether they match the
BDDs of an adder.

IV. VERIFICATION CHALLENGES

It has been shown in [17] that the SCA-based verification
method reports very good results for the multipliers whose
second and third stages are only made of half-adders and
full-adders. However, if there are some extra gates/nodes in
addition to half-adders and full-adders, an explosion happens
in the size of intermediate polynomials during backward
rewriting. The same behavior can be also observed for the
verification of general arithmetic circuits.

We provide the experimental evidence for the verification
of Z = Ax B+ C x D with 8 x 8 input size when two
different architectures are used to implement the function.
These architectures are:

1) The implementation is done based on Fig. 3. The archi-
tecture for the 8-bit multipliers is simple partial product
generator o dadda o ripple carry adder (SPoDToRC).
The 16-bit adder has ripple carry adder architecture.

2) The implementation is done based on Fig. 3. The
architecture for the 8-bit multipliers is simple partial
product generator o dadda o carry look-ahead adder

(SPoDToCL). The 16-bit adder has carry look-ahead
adder architecture.

Fig. 6 and Fig. 7 depicts the size of the intermediate
polynomial at each step of backward rewriting for the (1)
and (2) architectures, respectively. There is a slight increase
in the number of monomials during the verification of the
(1) architecture in Fig. 6, and then it decreases until the
zero polynomial is obtained. Thus, the SCA-based verification
is carried out successfully. On the other hand, there is an
explanation in the number of monomials during the verification
of the (2) architecture in Fig. 7. As a result, the verification
process cannot be completed. This explosion can be observed
during the verification of arithmetic circuits whose adder
architectures contain extra gates/nodes in addition to half-
adders and full-adders, e.g., carry look-ahead adder. In the
next section, we show that if the design hierarchy information
is available, we can overcome the verification challenge by
introducing a hybrid verification technique based on SCA and
BDDs.

V. PFV WITH DESIGN HIERARCHY INFORMATION

In this section, we first introduce our hybrid technique
based on SCA and BDDs to verify general arithmetic circuits
when the design hierarchy information is available. Then, we
prove that the proposed technique has polynomial upper-bound
complexities.

A. Methodology

It has been shown in [6], [17] that the adder circuits are the
main challenge during the SCA-based verification of complex
multipliers. The only adder which can be successfully handled
by the SCA-based method is the ripple carry adder since it is
only made of half-adders and full-adders. It is also the case
for the verification of general arithmetic circuits. If only ripple
carry adders are used in the circuit, it can be verified using
the SCA-based method (see Fig. 6). Otherwise, an explosion
happens during backward rewriting (see Fig. 7). We overcome
this challenge by introducing a hybrid verification technique
in the presence of design hierarchy information. Our proposed
method consists of three steps:

1) replacing adder circuits with ripple carry adders,
2) verifying original adders using BDDs, and
3) verifying the new arithmetic circuit using SCA.

If the arithmetic circuit is implemented using the three-
stage structure of Fig. 2, the only adder circuit is the FSA.
Since the design hierarchy information is available, we can
simply replace it with a ripple carry adder. On the other hand,
it is possible that the arithmetic circuit is implemented by
individual blocks as shown in Fig. 3. Thus, we replace the
FSA stage of each multiplier block with a ripple carry adder.
In addition, we also replace the individual adder blocks with
ripple carry adders.

We now prove that for our case study, ie., Z = A X
B + C x D arithmetic circuit, the whole verification is
polynomially bounded when the design hierarchy information

is available. The proof can be then easily extended to other
general arithmetic circuits.

B. Polynomial BDD-based Verification of Arithmetic Circuit

After replacing adders with ripple carry adders, the complex
arithmetic circuit is now converted into a structurally simple
circuit since, except for the PPG architecture, the rest of
the circuit is only made of half-adders and full-adders. We
now calculate the space and time complexity of SCA-based
verification when it comes to our case study, ie., Z =
A x B+ C x D. We focus on the implementation in Fig. 3
while it can be also extended to Fig. 2 implementation.

The main operation during backward rewriting is the substi-
tution of gates/atomic blocks polynomials in SP;. In order to
calculate the time complexity of the whole backward rewriting
process, we first have to obtain the complexity of a single
substitution step. Assume that in step ¢ of backward rewriting,
the variable v is substituted by polynomial f in SP;. The
detailed substitution steps are as follows:

1) SP; is searched for all occurrences of variable v,

2) all occurrences of variable v are substituted by f,

3) the multiplications between f and the monomials are
performed and the newly generated monomials are
added to SP;, and

4) it is checked whether the newly generated monomials
can be simplified with the existing monomials; if yes,
the coefficients are updated.

The time complexity of a single substitution is calculated
by adding up the computational complexity of each step. The
computational complexity of steps 1 and 4 are dependent
on the size of SP, before and after substitution since the
polynomial has to be traversed in both cases. On the other
hand, the computational complexity of steps 2 and 4 relies
on the number of variable v occurrences in SP;. During
backward rewriting of structurally simple arithmetic circuits,
there is always one occurrence of variable v in each step.
Moreover, the size of polynomial f, and consequently the
number of multiplications are constant. Therefore, steps 2 and
3 of substitution have constant computational complexity. On
the other hand, for finding variable v in SP; in step 1 and
simplifying the newly generated monomials in step 4, we have
to go through all variables in S P;. Hence, the complexity of
steps 1 and 4 depends on the size of SP; with respect to the
number of variables. We conclude that the time complexity of
each substation step relies on the size of the current polynomial
SP;. The overall time complexity of backward rewriting is
obtained by adding up the complexity of each step.

The second and third stages of the two multipliers and the
adder in Fig. 3 are only made of atomic blocks (i.e., half-
adders and full-adders). There is always a simple word-level
function that describes the relationship between inputs and
outputs of an atomic block. The word-level functions for a
half-adder and a full-adder are as follows:

HA(in: X,Y out:C,S) =
FA(Gn: X,Y,Z out:C,S) =

20+ S=X+Y
204+ S=X+Y + Z. 5)

Eq. (5) shows that if during backward rewriting, the outputs
of an atomic block are substituted by their polynomials, the
size of SP; increases by k, where k < 1. For the arithmetic
circuit in Fig. 3, the number of atomic blocks in the Add
and Mult blocks are n and n?, respectively. Thus, the total
number of atomic blocks is O(n?). Similarly, the size of the
specification polynomial (i.e. SP := Z — Ax B —C x D)
is O(n?). After substitution of atomic blocks in the ADD and
Mult blocks, the size of SP; increases by O(n?).

The first stages of two Mult blocks contain 2 x n? AND
gates. Substitution of AND gates polynomials reduces the size
of SP; by 4 since a cancellation happens between the new
monomials with 2 variables and the monomials in SP. Due
to the fact that time complexity depends on the size of SP;,
we can calculate the time complexity of verifying the Z =
A x B+ C x D arithmetic circuit in Fig. 3 as follows:

2n24n—1 2n?—1
ST OSP4 i)+ S (1Pl — 45) = O(n*). (©)
i=0 §=0

atomic blocks Ist stage of multipliers

The first part of Eq. (6) is related to the size of SP; during
the substitution of atomic blocks polynomials in ADD and
Mult blocks. Thus, each substitution step increases the size
of SP; by a maximum of one variable. The second part of
Eq. (6) is related to the size of SP; during the substitution
of AND gates polynomials in the first stages of Mult blocks.
Please note that the specification polynomial size |SP| and the
maximum size of intermediate polynomial after substituting
atomic blocks |S Py, | has O(n?) complexity. Thus, the time
complexity of the backward rewriting process is O(n*). Thus,
PFV of the arithmetic circuit is possible after the adders
substitution.

C. Polynomial BDD-based Verification of Adders

The next phase of our method is the verification of the
original adders. The verification method based on BDD reports
very good results when it comes to the verification of integer
adders. However, in order to ensure PFV, the time complexity
has to be obtained. The polynomial complexity of symbolic
simulation has been proven for three adders in [9]. The authors
of [10] and [11] calculated the time complexity of symbolic
simulation for conditional sum adders and parallel prefix
adders, respectively. It has been shown in these research works
that the upper bound complexity does not exceed O(n?).
Thus, PFV of adder architectures is possible using BDDs. The
calculations are done based on the computational complexity
of ITE operation at each step of the symbolic simulation.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the efficiency of our verification
method when the design hierarchy information is available.
Our method has been implemented in C++. The experiments
have been carried out on an Intel(R) Xeon(R) CPU E3-1270 v3
3.50 GHz with 32 GByte of main memory. We have generated

TABLE I
RESULT OF VERIFYING Z = A X B+ C X D ARITHMETIC CIRCUIT

Run-times (seconds)

Benchmark Size #Gates Ours | Commercial
Ladner-Fischer 7,192 0.07 74.00
Carry look-ahead 7,705 0.18 78.00
Kogge-Stone 7,509 0.11 70.00
Carry-skip 16 7,332 0.11 81.00
Ripple carry 6,821 0.14 75.00
Brent-Kung 7,155 0.09 70.00
Conditional sum 7,369 0.13 79.00
Carry select 7,212 0.11 74.00
Ladner-Fischer 25,688 0.44 TO
Carry look-ahead 30,487 0.68 TO
Kogge-Stone 28,570 0.52 TO
Carry-skip 39 26,978 0.49 TO
Ripple carry 22,921 0.58 TO
Brent-Kung 25,120 0.42 TO
Conditional sum 27,044 0.47 TO
Carry select 25,701 0.45 TO
Ladner-Fischer 97,504 341 TO
Carry look-ahead 107,447 | 4.45 TO
Kogge-Stone 102,178 3.51 TO
Carry-skip 64 99,008 3.08 TO
Ripple carry 91,519 | 3.74 TO
Brent-Kung 97,274 4.03 TO
Conditional sum 99,486 3.29 TO
Carry select 98,236 3.44 TO
Ladner-Fischer 399,760 | 34.04 TO
Carry look-ahead 421,068 | 38.21 TO
Kogge-Stone 412,588 | 34.88 TO
Carry-skip 128 405,785 | 33.92 TO
Ripple carry 388,817 | 35.11 TO
Brent-Kung 399,114 | 32.78 TO
Conditional sum 402,576 | 32.85 TO
Carry select 400,567 | 34.50 TO

the Z = A x B+ C x D arithmetic circuits with various adder
architectures using a modified version of GenMul [24].

Table I reports the results of verifying the arithmetic cir-
cuits. The Time-Out (TO) has been set to 24 hours for all
experiments. The first column of Table I presents the adder
architecture used in the arithmetic circuit. The second column
Size shows the size of the arithmetic circuit based on the bits
per input. The third column #Gates gives number of gates.
The fourth column of Table I reports the run-times of our
method and a commercial verification tool. As can be seen,
our approach verifies the arithmetic circuits with various adder
architectures and different sizes while the commercial tool
only proves the correctness of 16-bit arithmetic circuits and
times-out for the other benchmarks.

The experimental evaluations confirm that our proposed
method can verify complex arithmetic circuits efficiently if

the design hierarchy information is available. The PFV method
can be also extended to support the verification of arithmetic
circuits with arbitrary functions.

VII. CONCLUSION

In this paper, we illustrated the importance of design hierar-
chy information in PFV. The complex designs usually consist
of many sub-components, which can be verified in polyno-
mial space and time using a suitable verification technique.
However, accessing these components is not always possible
after synthesizing the circuit into a gate-level netlist. This
problem can be alleviated by preserving the design hierarchy
information. We proposed a hybrid verification method to
verify general complex arithmetic circuits in polynomial space
and time when the design hierarchy information is available.

In future research, we plan to investigate the PFV of other
digital circuits (i.e., complex processors) when the design
hierarchy information is available.

ACKNOWLEDGEMENT

This work was supported by DFG within the Reinhart
Koselleck Project PolyVer (DR 287/36-1).

REFERENCES

[1] S.Malik, A. R. Wang, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“Logic verification using binary decision diagrams in a logic synthesis
environment,” in International Conference on Computer-Aided Design,
1988, pp. 6-9.

[2] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts and
heaps,” in Design Automation Conference, 1997, pp. 263-268.

[3] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG
rewriting a fresh look at combinational logic synthesis,” in Design
Automation Conference, 2006, pp. 532-535.

[4] K. Hamaguchi, A. Morita, and S. Yajima, “Efficient construction of bi-
nary moment diagrams for verifying arithmetic circuits,” in International
Conference on Computer-Aided Design, 1995, pp. 78-82.

[5] R. E. Bryant and Y. A. Chen, “Verification of arithmetic circuits with
binary moment diagrams,” in Design Automation Conference, 1995, pp.
535-541.

[6] A. Mahzoon, D. GroBle, and R. Drechsler, “RevSCA-2.0: SCA-based
formal verification of non-trivial multipliers using reverse engineering
and local vanishing removal,” IEEE Transactions on Computer Aided
Design of Circuits and Systems, pp. 1573-1586, 2022.

[7] D. Kaufmann, A. Biere, and M. Kauers, “Verifying large multipliers by

combining SAT and computer algebra,” in Formal Methods in Computer-

Aided Design, 2019, pp. 28-36.

M. Schnieber, S. Frohlich, and R. Drechsler, “Polynomial formal verifi-

cation of approximate adders,” in EUROMICRO Symposium on Digital

System Design, 2022.

[14]

[8]

[9]

(10]

(11]

[12]

[13]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

(22]

[23]

[24]

Eds.

C. Yu, W. Brown, D. Liu, A. Rossi, and M. Ciesielski, “Formal verifi-
cation of arithmetic circuits by function extraction,” IEEE Transactions
on Computer Aided Design of Circuits and Systems, vol. 35, no. 12, pp.
2131-2142, 2016.

R. Drechsler, “PolyAdd: Polynomial formal verification of adder cir-
cuits,” in [EEE Symposium on Design and Diagnostics of Electronic
Circuits and Systems, 2021, pp. 99-104.

A. Mahzoon and R. Drechsler, “Late breaking results: Polynomial formal
verification of fast adders,” in Design Automation Conference, 2021, pp.
1376-1377.

A. Mahzoon and R. Drechsler, “Polynomial formal verification of prefix
adders,” in Asian Test Symp., 2021, pp. 85-90.

R. Drechsler and A. Mahzoon, “Towards polynomial formal verification
of Al-generated arithmetic circuits,” in International Symposium on
Devices, Circuits and Systems, 2021.

R. Drechsler, A. Mahzoon, and L. Weingarten, “Polynomial formal
verification of arithmetic circuits,” in International Conference on Com-
putational Intelligence and Data Engineering, 2021, pp. 457-470.
M. Keim, R. Drechsler, B. Becker, M. Martin, and P. Molitor, “Poly-
nomial formal verification of multipliers,” Formal Methods in System
Design: An International Journal, vol. 22, no. 1, pp. 39-58, 2003.

M. Barhoush, A. Mahzoon, and R. Drechsler, “Polynomial word-
level verification of arithmetic circuits,” in ACM & IEEE International
Conference on Formal Methods and Models for Codesign, 2021, pp.
1-9.

R. Drechsler, A. Mahzoon, and M. Goli, “Towards polynomial formal
verification of complex arithmetic circuits,” in IEEE Symposium on
Design and Diagnostics of Electronic Circuits and Systems, 2022, pp.
1-6.

R. Drechsler and C. Dominik, “Edge verification: Ensuring correctness
under resource constraints,” in Symposium on Integrated Circuits and
System Design, 2021, pp. 1-6.

R. Drechsler, “Polynomial circuit verification using BDDs,” in Interna-
tional Conference on Electrical, Electronics, Communication, Computer
Technologies and Optimization Techniques, 2021, pp. 466-483.

M. Schnieber, S. Frohlich, and R. Drechsler, “Polynomial formal verifi-
cation of approximate functions,” in IEEE Annual Symposium on VLSI,
2022.

A. Sayed-Ahmed, D. GroBie, U. Kiihne, M. Soeken, and R. Drechsler,
“Formal verification of integer multipliers by combining Grobner basis
with logic reduction,” in Design, Automation and Test in Europe, 2016,
pp. 1048-1053.

A. Mahzoon, D. GroBe, and R. Drechsler, “PolyCleaner: clean your
polynomials before backward rewriting to verify million-gate multipli-
ers,” in International Conference on Computer-Aided Design, 2018, pp.
129:1-129:8.

K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation
of a BDD package,” in Design Automation Conference, 1990, pp. 40-45.
A. Mahzoon, D. Grofe, and R. Drechsler, “GenMul: Generating archi-
tecturally complex multipliers to challenge formal verification tools,” in

Recent Findings in Boolean Techniques, R. Drechsler and D. Grofe,
Springer, 2021, pp. 177-191.

