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Abstract— The design of complex systems is largely

ruled by the time needed for verification. Even though
formal methods can provide higher reliability, in prac-
tice often simulation based verification is used. Large
testbenches are created and if the design produces the
correct output for all stimuli it is said to be correct.
But there is no guarantee that the testbench is com-
plete in the sense that it contains test-cases for all
“important” situations.
We propose an approach to detect “gaps” in test-
benches, i.e. behavior that is not tested. The approach
relies on automatic generation of properties from the
testbench in terms of a formal property language. By
construction the properties are valid within the test-
bench. A model checker proves the validity of the
property on the design. If this proof succeeds, the
testbench covers all possible situations for given sig-
nals. In case of failure counter-examples are produced.
These counter-examples represent behavior that is not
tested, i.e. a gap in the testbench. The feasibility of
the approach is underlined by experiments.

I. INTRODUCTION

Verification is a major issue in the design of integrated
circuits and systems. According to Moore’s law the num-
ber of elements in a manufacturable circuit doubles every
18 months. But the design productivity increases at a
lower rate. Resulting is a design and verification gap. On
the other hand verification of circuits is becoming even
more important as circuits are applied in a variety of sys-
tems concerned with security issues. Even the use of fast
simulators for simulation of several million clock cycles
can not ensure functional correctness. Only a fraction of
the state space of a design can be explored by simulation,
and by this is far from being completely covered. Also ap-
plying coverage metrics (e.g. statement or state coverage)
and achieving 100% coverage with respect to a certain
metric by simulation can not guarantee correctness.

Formal verification methods on the opposite guarantee
completeness under any input sequence and in any state
of the design. The compliance of a design with the spec-
ification is formally verified by model checking [7]. The
concept of Bounded Model Checking (BMC) [1] and the
improvements on engines to proof properties, i.e. SAT-
solvers [6, 8], allow to formally verify large parts of a de-
sign. Nonetheless, due to familiarity of designers with
simulation and the fact that whole systems can not be
handled by property checking due to the complexity, sim-
ulation is still widely used to check the correctness of a
system. For this, large testbenches are created.

Techniques to gather information about the reliability
of the verification mostly rely on coverage metrics. Sim-
ulation based approaches use monitors during simulation
to determine the amount of coverage. Formal approaches
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Fig. 1. Integration in the verification flow

are defined for model checking, i.e. they give a notion of
coverage achieved by a given set of properties (e.g. [4, 5]).

Here, we propose a method to formally analyze a test-
bench and to check which parts of the functional behavior
of a design are not tested. This is done by automatically
generating properties in terms of a formal property lan-
guage from a given simulation trace. Figure 1 shows how
this approach is facilitated in the simulation based veri-
fication flow. PropGen is our tool to generate properties
from the testbench. While usually only the simulator is
available to check the design by means of the testbench,
our tool is employed to analyze the testbench. An in-
valid property leads to a counter-example produced by
the model checker. This counter-example exhibits the be-
havior that is not examined by the testbench, i.e. a gap in
the set of stimuli provided by the testbench. This know-
ledge can be used, e.g. to extend the testbench. The in-
tegration of PropGen and the model checker results in an
easy to use push-button tool for analyzing a testbench.
The user does not have to know anything about the un-
derlying formal techniques. In summary a crosscheck of
testbench and design is established by our method.

Additionally a mechanism to generate more focused
properties is provided. The generation of properties show-
ing all dependencies between a certain signals can lead to
properties that are too general. By applying restrictions
PropGen can be guided to find properties for certain sit-
uations, e.g. a particular operation mode of the design.

As a side effect the method provides insight into the
design for a verification engineer. Instead of going through
the code for a portion of the design, the designer can select
some signals and extract their relation automatically from
the testbench. Afterwards the engineer has to decide if the
property should be valid for the design or not. Then, by
means of a property checker the correctness of the design
can be checked.

Experimental results show the efficiency of our ap-
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Fig. 2. 1-bit-shift-register

proach: Even generating a property from traces of more
than 1 million clock cycles took at most 6 minutes, but
usually less than 10 seconds.

II. PRELIMINARIES

This section introduces the necessary basic notions to
make the paper self-contained. These are circuits, traces,
the type of properties considered and in short the concept
of BMC.

A circuit has n primary inputs (i1 ...4,), m state bits
(s1...8m, e.g. flip-flops) and p primary outputs (o1 ... 0p).
A value of an input, output or state bit at time ¢ is indi-
cated by [t], e.g. the value of input i; at time ¢ is indicated
by i;[t]. The values of outputs and state bits are deter-
mined by Boolean functions that depend on the values of
inputs and state bits at the previous time step.

A simulation trace of t.y. clock cycles is denoted by an

array of vectors v!, ... viewe. Each v[t] records the values
of inputs, state bits and outputs at time ¢:

o[t] = (i1[t], - -, inlt], s1lt], - - - smt], 01[t], - - - 0p[t])

For example consider the waveforms in Figure 2(a). This
can directly be mapped into the vector notion that is
shown in Figure 2(b). Thus, necessary data can be gener-
ated from any simulation trace e.g. the widely used VCD-
format.

Note, that internal signals can not be considered us-
ing this notation, but the extension is straightforward.
Further note, that by this simulation method outputs are
modeled as flip-flops. In the following signal refers to an
input, output or state bit.

In this work a property for a circuit is considered to be a
propositional formula. Variables are the inputs, state bits
and outputs of the circuit associated to a certain time
step. The length of the window for a property is given
by the largest time step referenced by any variable plus
one (the first time step is considered to be zero). The
property is shifted to an arbitrary time step ¢ by adding ¢
to each time reference. A property is valid for a circuit, if
it holds for any simulation trace at any time step for this
circuit.

Example 1. Consider the circuit in Figure 2. This is a
1-bit-shift-register with 2 state registers s1, s and a reg-
istered output o1. The shift-register has two modes of
operation: keep the current value (ia = 1) and shifting

PropGen(I, tmaz, v[1],. .., v[teye])
(0) foreach time relation T'

1) p(T)=0

(2) foreach time step 1 <t < teye

(3) pat= getPattern(I,Tv,t);

(4) addPattern(p(T), pat);

(5) end
(6) end

Fig. 3. Sketch of the property generation

(i = 0). During shifting the value of input iy is shifted
wnto the register. Therefore after three clock cycles the
value is observed at the output o1.

This behavior is described by the property “If io is zero
on three consecutive time steps, the value of i1 in the first
time step equals o1 in the fourth time step” which can be
written as a formula:

iolt] -dalt + 1] it +2] — (i1[t] = o1[t +3]) (1)
The length of the window for this property is 4.

This notion of a property is also used by industrial
model checking tools (e.g. [2]). Having a window for the
property is not a restriction in practice. Very often the
length of the window corresponds to a particular number
of cycles needed for an operation in the design. In case
of the shift-register this is the number of cycles needed to
bring an input value to the output. For a sophisticated de-
sign like a processor this can be the depth of the pipeline,
i.e. the number of cycles to process an instruction.

Bounded Model Checking (BMC) allows to reduce the
sequential problem of proving a property to a combina-
tional one (for details see e.g. [1]). Given a property with a
window of length [ the design is unrolled [ times: [ copies
are connected in sequential order. Next state bits of a
previous copy become state bits for the next copy. The
property is proven on the resulting combinational circuit.

I1I. GENERATING PROPERTIES

The generation of properties is based upon pattern
search in a simulation trace. A particular pattern in the
trace shows a relationship between signals and by this in-
dicates an underlying property. By taking into account
all patterns that occurred the property is generated.

This section introduces the basic procedure for Prop-
Gen, how “useful” properties are chosen and how the gen-
eration of properties can be guided.

The basic procedure is given in Figure 3: Given is a
tuple of signals I and a maximal window t,,,, for the
properties to be generated as well as a simulation trace
v. In the property a particular time step in the window
is assigned to each signal; this time step is not given in
advance. An assignment of time steps to signals is called
time relation in the following. The iteration of all possible
time relations T is the outer loop (line 0). At the begin-
ning nothing is known about the property, it is initialized
to the constant function 0. Then, at each time step of the
trace the behavior of the signals is determined in terms
of a pattern (line 3) and included in the property (line
4). The property for a particular time relation 7' is valid
within the trace by construction, because all occurring
patterns are considered.

A pattern is the vector that gives the values of signals
at the time steps determined by the time relation. The



time relation 7' assigns to a signal sig € I the time off-
set within the property T'(sig). For a window starting at
time ¢ the value inserted for signal sig is sig[t + T'(sig)],
thus the pattern is determined by the trace. This assign-
ment of values for a pattern is done by getPattern. Then,
the behavior reflected by the pattern is included in the
property by addPattern. This is achieved by rewriting
the pattern as a conjunction of literals of the variables in
I at the time steps determined by 7. For a value of 0 in
the pattern the negative literal is used, for the value 1 the
positive literal is used. This cube determines one valid
assignment to the signals, the sum of all these cubes leads
to the property p(T).

Example 2. Consider the trace given in Figures 2(a)
and 2(b). Let the tuple of signals I be (iz,i1,81). And
let T(iz) = T(i1) =0 and T(s1) = 1. Now, for each time
step t the pattern is given by (ia[t], i1[t], s1[t+1]). At time
stepsb(),l and 2 a pattern is found, each of which leads to
a cube:

1) (0,1,1) — 42[0] - 31 [0] - s1[1]
2) (0,0,0) — i2[0] - 41[0] - 51 [1]

No other patterns are found at later time steps. The re-
sulting property is the sum of the cubes, i.e.

p(T) = i2[0] - i1[0] - 51[1] +42[0] - 71 [0] - 51 [1].

The number of time relations is large, since each of the
signals can be assigned to any time step from 0 to ;42 — 1.

This leads to tnlll,w time relations. But the search space
can be pruned by using the following rules:

1. At least one time reference must be zero, otherwise
the same time relation is considered more than once
with a constant offset.

2. No signal is considered twice in the same time step.
If a signal occurs more than once in I, different time
steps are assigned to the different instantiations of
the signal.

3. An input has no influence on a state bit or output, if
it occurs at the last time step of the window.

Another observation helps to further reduce the search

space. Given |I| there can occur at most 2/l possible
patterns with respect to a particular time relation. If all
the possible patterns occur, the sum of the cubes returns
the constant function 1 as a property, i.e. a property that
is always valid. Thus, this time relation does not lead to
a useful property and further scanning is skipped.

Currently the algorithm considers only one time rela-
tion for property generation. As a result no property that
includes several time relations can be generated. This is
the case, e.g. for existential quantification: in the propo-
sitional property this breaks down to a disjunction of sev-
eral time relations.

The resulting property itself is represented by a Binary
Decision Diagram (BDD) [3]. This introduces some ab-
straction from the cube representation, e.g. don’t cares
are easily determined. Because |I| - the number of sig-
nals considered - is relatively small, BDDs are suitable to
represent the property.

Using the following observation a “useful” property is
chosen within the remaining time relations: If a time re-
lation does not reflect the behavior of the signals, the
occurring patterns seem randomly distributed - the num-

ber of different patterns is close to 2/I. If a time relation

exactly represents the behavior only a few patterns oc-
cur. Therefore those time relations with few patterns are
considered “useful”. Further pruning is based on this ob-
servation, only the time relations with the least number
of patterns survive. By this, the evaluation order of time
relations can lead to more or less efficient pruning. In this
context increasing and decreasing order are distinguished.
For the increasing order at first time step 0 is assigned to
all signals at first, then incrementally all time relations are
iterated until all signals get time step |tq. — 1| assigned.
Decreasing is the opposite order.

Furthermore the property generation can be guided by
restricting signals to certain time steps or values.

The techniques introduced in this section provide means
to generate properties from traces and to choose “useful”
properties. Improvements of these techniques lead to an
even higher quality of the analysis of the testbench. This
is focus of current work.

IV. EXPERIMENTAL RESULTS

The method is suitable for a tight integration of simu-
lation based verification methods with formal proof tech-
niques. Given a trace and a set of signals a number of
properties is generated. Each of these properties is valid
on the trace. If the whole testbench is used as the trace,
but the resulting property for some signals is not valid for
the design, a portion of the design was not yet tested.

In the following this is exemplarily shown for the small
shift-register from Section II. Then, results for increas-
ing length of the traces are shown in detail for one
larger benchmark. Finally, sequential benchmarks from
LGSynth93 are evaluated.

All experiments were carried out on an Athlon XP
2200+ system with 512MB RAM running Linux. Ini-
tially the properties were represented by cubes, these were
then converted into BDDs. A simple BDD-based bounded
model checker based upon CUDD [9] was used to check
the validity of the resulting properties. The initial rep-
resentation of properties by cubes is suitable because the
number of patterns can not exceed 2/, where the number
of signals |I] is small. Only the property with the fewest
patterns was retained as explained in Section III.

For the shift-register the signal tuple I = (i9, 41, $1, 1)
was used. The wanted property has to reflect the operat-
ing mode of “shift 4; into s;” and “keep the value of s1”,
i.e. the property as a propositional formula should be:

p=8af0] - (2[0] = s1[1]) + i2[0] - (51[0] = s [1])

Property generation was carried out for a trace of length
30 that was randomly generated. At first only 5 time
steps, then 10, 20 and finally the whole trace were con-
sidered. For these cases the generated property became
increasingly better as the trace covered more and more of
the functionality. For all trace lengths the correct time
relation was found, where i; and i3 were picked at time
step 0 and the two instantiations of s; at time 0 and 1.
teye = 5: Only the non-shifting-mode (i; = 0) was cov-
ered, but only for the case i; =0 and s; = O:

ps = 12[0] - 91[0] - 51 (0] - 51[1]

teye = 10: Both operation modes were covered, but only
for certain values of 77 and s7:

(41[0] - 51[1] +41[0] - s1[1] - 51[0])
3005100 - 51 [1]

i2[0]
+i2[0]

P1o =
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Fig. 4. Runs resulting in a valid property for 'misex3’

teye = 20: The shifting mode was covered completely, the
non-shifting mode only for certain values of ¢; and s;:

P20 = “(11[0] = s1[1])

«(i1[0] - 31[0] - 31 [1] + 51[0] - 1[1])

teye = 30: Both modes were covered completely and re-
sulting was the property as given above.

This experiment shows how the amount of coverage
achieved by the testbench is reflected by the property.

Figure 4 shows results for 'misex3’. This circuit has 14
inputs and 14 outputs. Circuit 'misex3’ is combinational,
but still property generation has to figure out the correct
time relation. The diagram gives the number of runs re-
sulting in a valid property for traces of different lengths.
For each trace length 50 runs were carried out. As ex-
pected the number of runs resulting in a valid property in-
creases with the trace length, because a better functional
coverage is achieved. The time for property generation is
very moderate as Figure 5 shows. The figure shows “worst
case” (decreasing order of time relations) and “best case”
(increasing order) as explained in Section III. Up to 40000
cycles often invalid properties were generated. In this case
longer traces lead to better pruning of time relations (the
ones that have more patterns than previous ones). For
more than 40000 cycles onward mostly a valid property
was generated. From this point additional cycles in the
trace do not lead to more pruning, but to a linear increase
of the time needed for scanning the trace.

Table T shows results for sequential benchmarks. For
each circuit five runs were carried out. The parameter
tmax Was statically set to 4. For each run a random
trace of 1 million clock cycles was generated and for I
7 signals were randomly chosen. The whole process of
producing the random trace, generating the property and
model checking was limited to 15 minutes. The time for
property generation is shown for each run and also the re-
sult returned by the BDD-based model checker (v=valid,
i=invalid, u=undecided, 1=all patterns occurred).

Even for the large number of 1 million clock cycles to
be scanned for properties at most 420 seconds (’s838’) are
needed. Very often the runtime is even lower than 10
seconds. Especially runs resulting in valid properties are
very fast, e.g. Runs 2, 4 and 5 for 's838’ are much shorter
than Runs 1 and 3, that result in trivial properties. This
allows to use the tool on testbenches for large designs.
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Fig. 5. Time needed for property generation for 'misex3’

TABLE 1
SEQUENTIAL BENCHMARKS, tcye = 1000000
Circ. Run 1 Run 2 Run 3 Run 4 Run 5
dalo vl I1.03{v] 0.66][v] 0.95[|v] 4.10|v] 0.96
ged u|164.39|u|303.57 [u|331.01 1| 22.45|u|167.84
mmda |v| 3.12|v 1.64(1 6.15|v 3.24|v 2.83
mm9a |u| 86.25(1 1.30{u| 72.92(1| 26.35|1 7.31
mm9b |u| 31.91|u|131.40|u| 2.44|1| 48.90(1| 21.56
multl6a |1| 0.32|1| 0.08|v| 1.43|1| 0.13{1]| 0.09
multl6éb (1| 0.31[1 2.321 0.69{1| 0.39(1 1.09
phase d.|u| 22.65|u| 2.44|{u|103.00|u| 1.83|u|133.24
s1196 u| 7.32|u| 85.81|u| 71.55|u| 40.11|u| 11.91
s1238 u| 69.62|u| 2.44|u| 39.85|u| 55.42|u| 81.04
s1423 u|161.10 |u| 41.95|{u|216.33 |u|153.03|u| 29.7
s344 1| 831|v| 2.39]|1 1.563|1| 2.82|v| 4.26
s349 v 3.02|v 2.26|1 2.69]|1 1.32(1 1.55
s382 1{ 0.78]|1 1941 0.59{1| 0.49(1 1.28
s400 1{ 0.87]|1 1.09(1 1.98|1| 10.81|1| 0.47
s420.1 1 1.87(1| 34.88|v| 44.71|v| 24.96|1 7.23
s444 1| 31.02|1 7.04|1 1.85|1| 47.36|1| 76.04
$526 1 1.621 1.60[1 3.18]|1 1.07(1 0.93
s526n 1| 6.24|1|135.65]|1 1.52|1| 3.55|1| 53.39
s641 u| 35.29|u| 25.85|u| 88.86|u| 53.93|u| 7.46
s713 ul 78.50|u| 1.51]1 2.80|u| 0.88|u|118.19
s838.1 1| 8.48|1| 83.71]|1 2.46(1(290.97 (1 1.15
s838 1({416.28 |v| 1.32]1]|291.80|v| 1.25|v| 1.21
s953 vl 8.01|v| 8.22|v| 11.78|v| 8.64|v| 4.43
traffic vl 1.62|v| 1.85]|1 1.32|v| 1.65|v| 4.18
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