Minimizing the Number of One-Pathsin BDDs by an Evolutionary Algorithm

Mario Hilgemeier

Nicole Drechsler

Rolf Drechsler

Institute of Computer Science
University of Bremen
28359 Bremen, Germany
{mh,nd,rd} @informatik.uni-bremen.de

Abstract- Ordered binary decision diagrams (BDDs) are
used in VLSI CAD, especially for the canonical repre-
sentation of Boolean functions. In the last decade, the
method of choice for optimizing this data structure was
minimizing the number of nodes in the associated graph.
However, recent works have shown that the number of
paths is also important.

In this work, minimizing the number of one-paths
of BDDs is accomplished by an evolutionary algorithm
(EA) acting on the permutation of variables. The opti-
mal operator weights for the EA were determined by a
parameter study. Experimental results demonstrate the
efficiency of our approach.

1 Introduction

Ordered binary decision diagrams (BDDs) are known to
be canonical representations of Boolean functions by a di-
rected graph [3, 4]. One-paths are those routes through the
BDD that start at a root and terminate in a logical 1.

In most cases, the minimal number of nodes is the op-
timization objective. However, one-paths are important for
certain applications in the field of VLSI CAD. These appli-
cations include:

e Formal verification using SAT-solving: The number of
steps necessary to solve a SAT problem is directly re-
lated to the number of paths in the corresponding BDD
[14].

e Logic synthesis: The number of paths influences
the minimization process [12, 17]. A minimized
disjoint-sum-of-product representation can directly be
extracted from the BDD [9] and leads to smaller cir-
cuits.

Currently applied typical heuristic methods for minimiz-
ing the number of one-paths like modified sifting (MS) [8]
run very fast on certain Boolean functions. But MS can be
surpassed by evolutionary algorithms if one is willing to in-
vest more computing time.

Evolutionary algorithms (EAs) excel in problem areas
where no straightforward solution method with low compu-
tational complexity is known. EAs use a population of solu-
tions that can evolve by producing new offspring using mu-
tation and genetic recombination. The best individuals of
that population survive and can have new offspring. Thus a
convergence towards good solutions is attained. For exam-
ple, EAs were successful in VLSICAD [5] and embedded
system design [6].

The one-path minimization problem in a BDD is a com-
putationally hard problem that can be attacked by an EA.

That EA searches for an optimal permutation of the vari-
able order in the BDD. This work shows that an EA can
substantially reduce the number of one-paths in BDDs.

The paper is structured as follows: Section 2 explains
BDDs and the MS algorithm. The EA is described in detail
in Section 3. In Section 4, three promising operator combi-
nations of a standard EA are selected. The most successful
of these three is then compared to the results of MS. Sec-
tion 5 concludes the paper and summarizes the results.

2 Preliminaries

This section introduces some basics concerning BDDs, one-
paths, and reviews a state-of-the-art heuristic to minimize
the number of one-paths that will be used later for compar-
ison with the EA.

2.1 Binary Decision Diagrams

BDDs [3] are directed acyclic graphs where a Shannon
decomposition is carried out in each node. Each node
has a Boolean variable attached to it from the correspond-
ing logical expression that describes the Boolean function
f + B™ — B™ . Depending on the value of the variable,
the path is chosen; in Figures 1 and 2, a dashed line repre-
sents a logical 0 value and a logical 1 is shown as a straight
line. In these examples, n = 5 and m = 1. Note that there
are m root nodes. In the case of m > 1, one speaks of a
shared BDD because f = (f1, ..., fm) IS composed of m
functions f; : B® — B, 1<i<m.

If a BDD contains no isomorphic sub-graphs and no ver-
tices with both outgoing edges pointing to the same node,
that BDD is called reduced. Following an ordered BDD
down from its root node, each Boolean variable value is met
at most once and in the same order along each path.

Typically, a variable is ascribed to more than one node.
In this paper, we restrict “BDD” to mean reduced ordered
binary decision diagrams. It follows that the nodes belong-
ing to the same variable can be arranged in horizontal levels.

The BDDs terminate either in logical 0 or 1. One-paths
are those routes through the BDD that start at the root and
terminate in the node representing logical 1.

The number of nodes necessary to represent the BDD for
the Boolean function is dependent on the variable (i.e. level)
order. The following example will show the effects of vari-
able ordering on the number of nodes of a BDD and espe-
cially the number of one-paths. The number of one-paths is
denoted by P, the number of zero-paths by P;.

Example 1. Consider the BDDs in Figures 1 and 2
[7]. Both BDDs represent the same Boolean function

Figure 1: BDD of f with minimized nodes

f(l‘l, xr9,23,T4, 1'5) which is defined by
f=x1(xg @ x5) + T2(x4 ® x5) + 123 + TraaT3 .
Figure 1 shows 11 nodes. This BDD corresponds to the
variable order (x4, 5,22, x3,21); it has Py = 8 and
P, = 12. The logically equivalent BDD in Figure 2 has
the variable order (xs,z3, x4, x5, 21). It has more nodes
(12), but only 9 one-paths and 5 zero-paths.
In the above example it has been demonstrated that the
number of one-paths does not have to be minimal when the
number of nodes is minimized and vice versa.

2.2 Modified Sifting

Sifting [15] is a well-known algorithm for minimizing the
number of nodes in a BDD. It works the following way:
while the other variables remain in their positions, a single
variable is shifted to all possible positions. Then the best of
these positions - namely the one with the minimal number
of nodes - is accepted for that variable. This is done once
for all variables.

Modified sifting (MS) [8] works like the sifting algo-
rithm for minimizing the number of nodes, but in this case
the acceptance criterion is that P; has to be minimal.

3 Evolutionary Algorithm

In this section, the employed standard EA with sexual re-
production, recombination and mutation and its associated
operators is introduced. This standard EA is only modified
with respect to the probabilities of these operators.

The search for the minimal number of one-paths for the
BDD representations of a given Boolean function is analo-

Figure 2: BDD of f with minimized paths

gous to the search for a permutation of the node indices.
We will first give details of coding, fitness evaluation,
and operators. Then the evolutionary algorithm is sketched.

3.1 Coding and Fitness Evaluation

An individual of the population is described by a permuta-
tion of the variable indices of the BDD. For each individual,
this permutation is stored in an index list. This index list
constitutes the chromosome of the individual.

During the minimum search for a single Boolean func-
tion, P; is the fitness function for each individual.

3.2 Operators

We now briefly describe the operators that will be used by
the EA.

The reproduction includes crossover operators that are
specially designed for recombination of permutations. One-
point crossover does not work for permutations because this
leads to duplicates and omissions (except in the case where
both permutations contain the same set of variable indices
on corresponding sides of the cut). Therefore crossover
operators employ “repair mechanisms” that make sure that
the permutation remains valid or use algorithms that always
produce valid permutations. Typically, these operators pro-
duce two children from two parents.

After reproduction, a single mutation operator might be
applied according to the given probabilities. A mutation
operator acts on a single child. That is, the two children
from a reproduction may be mutated by different operators.

In other words, a new child might have been subject to
one crossover, to one mutation, or both.

0
z ///
.

\

——
.

\

7,

'
1[3]2 8

s
12 4
XX

7z
%% 42

Figure 3: Example for the MERGE operator

Reproduction and mutation are invoked according to the
given probabilities. Reproduction operators used are PMX,
CX, MERGE, INV and REP. Mutation operators include
MUTP1, MUTPZ2, and MUTPD. These operators will be de-
scribed now.

e PMX (partially matched crossover) [13] respects the
absolute position of each variable index. PMX sets two
“crossover points” in the permutation between which
the index order remains the same as in the parent.
For the other positions in the permutation, a substi-
tution mechanism guarantees that each variable index
appears exactly once in each permutation.

e CX (cycle crossover) [11] makes use of cycles in the
permutation to avoid double or missing variable in-
dices after the crossover.

e MERGE produces the first child in the following way.
Alternating between the parents, MERGE takes one
variable index from each parent (in the order they ap-
pear in the parents) until the permutation length is
reached. After doing this, MERGE checks from left

to right if an index has been used already. If this is the
case, that index number is removed.

The second child is produced by exchanging the in-
dices of even and odd positions in the child permuta-
tion (see Example 2 below).

e The inversion operator INV inverts the order of the in-
dex list for a randomly chosen part of the chromosome.
It produces one child from each parent.

e The reproduction operator REP reads the index list for-
ward. This means that no genetic change is introduced
by this operator. It only copies individuals. It produces
two children that are identical to their parents.

e The mutation operator MUTP1 selects two random po-
sitions in the list, and exchanges their contents.

e MUTP2 is MUTP1 applied twice to the same individ-
ual.

e MUTPD exchanges randomly chosen adjacent posi-
tions in the permutation.

All operators produce only valid offspring. As an exam-
ple for the MERGE operator, consider Figure 3.

Example 2. Let parent 1 be the permutation (1, 2, 3, 4)
and parent 2 be the permutation (3, 1, 2, 4) (see Figure
3). Now imagine these as the two parts of an open zipper.
When the zipper is closed, the two halves merge, yielding
(1,3,2,1,3,2,4,4).

Working from left to right, the redundant variable indices
are cancelled (boxes diagonally striked out in Figure 3). So
the first child becomes (1, 3, 2, 4).

Now the second child is generated by exchanging even
and odd positions (crossed arrows in Figure 3). Numbers 1
and 3 as well as 2 and 4 are exchanged, yielding (3, 1, 4, 2).

3.3 Algorithm

The flow of the EA is sketched in Figure 4. At the begin-
ning, individuals are initialized with random permutations
of the variable indices. The population size is three times
the number of inputs of the Boolean function being mini-
mized, but not greater than 120. Each individual is assigned

parent
selection:
proportional
to fitness

initialization:
evaluate random
variable orderings

recombination

best individual
too old?

‘environmental
selection:

delete worst
individuals

evaluation:
count

Yes

one-paths

Figure 4: Sketch of the EA

Table 1: Operator weightings with their EA results

weighting #

operator 1 2 3 4 5 6 7 8
PMX 0.9510 | 0.9216 | 0.9510 | 0.9216 0.98 1.00 0.98 0.98
CX 0.0000 | 0.0196 | 0.0000 | 0.0196 0.00 0.00 0.00 0.00
MERGE 0.0000 | 0.0196 | 0.0000 | 0.0196 0.00 0.00 0.00 0.00
INV 0.0245 | 0.0196 | 0.0245 | 0.0196 0.01 0.00 0.01 0.01
REP 0.0245 | 0.0196 | 0.0245 | 0.0196 0.01 0.00 0.01 0.01
MUTP1 0.05 0.33 0.33 0.05 0.05 0.05 0.05 0.02
MUTP2 0.05 0.33 0.33 0.05 0.05 0.05 0.05 0.02
MUTPD 0.00 0.33 0.33 0.00 0.00 0.00 0.05 0.00
result

3 nodes 11968 12481 13861 14344 13284 12663 11985 15283
¥ P 29235 31139 29406 29258 29218 29492 29340 29785
3 sec 1757.95 | 1781.84 | 1748.23 | 1856.52 | 1830.61 | 1720.19 | 1720.70 | 1756.22
> gener. 9494 9810 9389 10313 10156 9266 9294 9712

weighting #

operator 9 10 11 12 13 14 15 16
PMX 0.98 0.98 0.98 0.98 0.00 0.00 0.36 0.00
CX 0.00 0.00 0.00 0.00 0.98 0.00 0.32 0.48
MERGE 0.00 0.00 0.00 0.00 0.00 0.98 0.32 0.48
INV 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
REP 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
MUTP1 0.07 0.10 0.06 0.08 0.07 0.07 0.07 0.07
MUTP2 0.07 0.10 0.06 0.08 0.07 0.07 0.07 0.07
MUTPD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
result

3 nodes 12972 13299 12834 12542 16561 12863 11394 13240
> P 29191 29392 29269 31569 31964 31981 31392 29893
3 sec 1706.35 | 1732.86 | 1669.44 | 1922.72 | 2041.20 | 1763.46 | 1686.11 | 1717.26
> gener. 9580 9556 9119 10105 10132 11186 9797 9550

a fitness according to the number of one-paths of the corre-
sponding BDD.

After initialization the evolutionary loop is started.
Fitness-proportional selection [11], i.e. roulette wheel se-
lection, determines which parents will produce children. In
each generation, the number of children is half the popula-
tion size.

Recombination and mutation operators are chosen ran-
domly according to the specified set of operator probabili-
ties. The fitness evaluation consists of the counting of the
one-paths of the children. To keep the population constant,
the worst third of this bigger population (parents + children)
is discarded during the environmental selection before the
next generation.

The termination condition means that the best individ-
ual has survived for a long time and no improvements were
found during its lifetime.

4 Experiments

To tune and test the EA, a number of experiments was con-
ducted with various benchmarks functions. These bench-
mark functions were chosen as a representative set of easy

and hard problems. Moreover, the benchmarks are mostly
not too expensive, computationally, so that the set of bench-
marks can be run in reasonable time.

4.1 Qualities

In this section we give some arguments why we deem the
chosen set of benchmark functions representative.

The sizes of the 38 benchmark functions vary over a
wide range. They have between 5 and 54 inputs and be-
tween 1 and 41 outputs (for a detailed list see Table 3). From
the MS algorithm, the values for P; are known to vary over
more than three orders of magnitude.

4.2 Computing Environment

The tests for the EA as well as the reference runs for the MS
algorithm were done on a Linux machine equipped with an
AMD Athlon XP2200+ processor (1.8 GHz, 256kB cache)
and 512 MB RAM.

For the BDD representation, CUDD [16] was used. The
EA is based on the C++ library for evolutionary algorithms
GAME [10] (version 2.3). Test control programs were writ-
ten in Python.

4.3 Parameter Selection

In order to assess the usefulness of the EA operators (see
Section 3.2) for our set of benchmarks, a good, balanced set
of operators is sought. Such a set of operator probabilities
is called a weighting. To find a good operator set, sixteen
different weightings were tested, e.g. with PMX, CX, and
MERGE of nearly equal probability, etc.

A simple measure of goodness for an operator weight-
ing is the sum over all P; values. In this way, benchmarks
with larger absolute improvements of P, influence the sum
stronger. We considered this a desirable effect because these
more complex functions are the intended application area.

The final result of this parameter exploration is shown in
Table 1. The three best results for the sum of P; are shown
in boldface. The most promising operator weighting is #9.

This operator weighting of the EA was used for compar-
ison with MS. Since running the EA with a specific param-
eter set over all 38 benchmarks needed about half an hour
with the given hardware configuration, each weighting was
tested only once during the selection process.

4.4 EA Performance

The performance of the selected EA was tested by running
it 25 times, each time over all the benchmarks.

The different value spreads for nodes and P; are shown
graphically in Figure 5. Each benchmark is represented by
a dot. For the 25 runs of each benchmark with the finally
selected operator weightings, median (dot) and value spread
(bars) are shown. The horizontal bars show the range of
the resulting node numbers of the BDD of each benchmark.
The vertical bars correspond to the range of results in P;.
Note that in this plot of one-paths versus nodes both axes
are logarithmically scaled.

Figure 5 shows the wide range of problem sizes and the
rough correlation between the length of one-paths and the
number of nodes.

The complete statistics for EA (Table 2) shows that the
value range of found P; minima is quite small for most
functions. However, the value spread becomes larger when
the P; values increase. Examples for this are the first two
(51196, s1238) and the last three functions (cordic, misex3,
seq). Table 2 serves as a value table for Figure 5 where this
effect shows: the functions with smaller P; rarely have visi-
ble P, error bars. In this logarithmic diagram only functions
with large P; have visible error bars which means that their
percentual value spread relative to the median is greater.

4.5 Comparison to Modified Sifting

We now compare our EA to the state-of-the-art heuristic for
one-path minimization, MS. First, we will have a look at
a graphic representation of the differences. After that, the
details will be discussed using Table 3.

In Figure 6, the differences between our EA and MS are
shown. For each best benchmark result of these two al-
gorithms, the difference of nodes (abscissa value) and the
negative difference of P; (ordinate value) was computed
and plotted. Note that the ordinate is logarithmically scaled
(about four orders of magnitude).

Because of the logarithmic scale, functions with one-
path differences of zero are not shown. It is worth men-

Table 2: Descriptive statistics for the EA

Py
function min. mean | median max.
s1196 2508 | 2626.92 2673 2783
s1238 2508 | 2621.40 2650 2757
s1488 352 352.00 352 352
s1494 352 352.12 352 353
s208 53 53.04 53 54
s27 16 16.00 16 16
s298 70 70.00 70 70
s344 330 331.80 330 348
s349 330 332.16 330 351
$382 230 231.32 230 239
s386 57 57.56 57 64
s400 230 230.64 230 236
s444 230 232.32 231 239
s510 153 154.88 154 163
s526 156 159.88 159 172
s526n 156 158.60 158 168
s641 1444 | 1498.36 1497 1580
s713 1447 1497.04 1488 1596
$820 146 146.04 146 147
$832 146 146.12 146 149
alu4 1372 1372.00 1372 1372
b12 60 60.04 60 61
clip 214 214.00 214 214
inc 27 27.00 27 27
majority 5 5.00 5 5
misex1 34 34.00 34 34
misex2 29 29.56 30 30
rd53 35 35.00 35 35
rd73 147 147.00 147 147
rds4 294 294.00 294 294
saon2 97 97.12 97 98
t481 841 867.88 841 1009
Xxor5 16 16.00 16 16
5xpl 79 79.00 79 79
9sym 148 148.00 148 148
cordic 8332 | 11349.12 11044 | 13218
misex3 1976 1991.28 1987 2031
seq 1744 | 1753.20 1752 1769
by 26987 | 29787.40 29471 | 31831

tioning in this context that in no case the EA was worse
than MS.

Many values cluster near a zero node difference while
being better in the one-path difference. For these bench-
marks, P; can be improved at little or no increase in node
number. It is noteworthy that most of the time (i.e. all dots
left of zero node difference), an improvement in P; goes
with a decrease in node number (contrary to Example 1).
For greater differences in one-paths the spread in node dif-
ference becomes larger.

For a closer inspection of benchmark results we now use
Table 3. For each function, the results of the two different
algorithms are shown in one row.

The upper, larger part of Table 3 contains the ISCAS89
benchmarks functions [2, 1] considered in [8]. Separated

medians with minimum and maximum for EA

I T T T T TT T T T T T T TT | T T T T T T TT T T T]
10000 | I + : -
L il
B |—'$|_| 7]
==
L - .
Q[I S B B .
dC) ° o H'H—-.—H
100 | —
O - -
- }_;Er_{l%]
L d F— e i
L . e |
10 = =
- — .
. | | L1 11 | | | | | L1 11 | | | | | L1 11 | | | | |
10 100 1000

nodes

Figure 5: Qualities of benchmark set. Plot of P; versus nodes.

by a horizontal line and below these are functions that have
been used in a recent paper [9]. The lower, smaller part of
Table 3 gives three benchmarks that were deemed especially
difficult. Each of the two parts of Table 3 has a statistic
section at its bottom.

For comparison, the one-path minimization results from
the MS algorithm [8] are shown in the three columns labeled
nodes, Py, and sec (CPU run-time in seconds).

The results of our EA shown in Table 3 are the minima
of the 25 benchmark runs. The run-time given is that of
one single run. If there were several runs with minimal P,
the run with the smallest number of nodes was chosen. For
20 functions, the best EA results were better than MS in
node number; in this cases, the node number was printed
in boldface. It is remarkable that for these runs the number
of generations is often also small: a good permutation was
found early.

Normally, the EA runs much longer than MS, as was
expected. But it should be mentioned that functions exist
where this is not the case. The seq function is such a case
which proved difficult for MS. Here the EA is superior not
only in P; butalso in run-time.

In the 38 benchmarks considered, the EA improves on
the one-path minima found by MS in 25 cases (66 %). In
all other cases EA was as good as MS, concerning minimal

Py. In 17 cases (45 %) the EA additionally improved on the
number of nodes in the BDD.

Improvements by the EA in comparison to MS amounted
to up to 72 % with a mean improvement of 8.4 %.

The EA is a reliable algorithm for the P, minimization
problem. This is exemplified by the fact that the median P;
values for the EA (see Table 2) are never worse than the re-
sults of MS in Table 3. This means that about every second
run of this EA is better than MS for a given benchmark; one
has to run only a handful of EA attempts to get an improve-
ment over MS. And the best P; results of our EA are always
better or equal to MS (boldface in Table 3).

5 Conclusions

In this paper, the number of one-paths of various Boolean
functions was minimized by an EA. The most promising
combination from a set of different operator weightings for
that EA was chosen. This most successful parameter setting
predominantly used partially matched crossover (PMX) as
recombination operator. The EA with this parameter setting
always found the P, minima of the MS method, most of the
time improving on these.

EA minus MS

[TTTT TTTT TTTT TTTT TTTT TTTT TTTT TTTT TTTT TTTT TTTT TTTT T 1]
u . _
8 10000 = =
I t _
= 1000 = =
S e =
e — e|e ° _
T — ° ¢
o o0
d> 100 = ® =
5 F % -
G) — —]
= 10 ” o °
8 E ‘a® =
D F * =
o r -
1= ® —
:l' 1 1| 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1 | 'l__
-400 -300 -200 -100 O 100 200 300 400 500 600 700

node difference

Figure 6: Differences between EA and MS. Plot of negative P; difference versus node difference.

6 Acknowledgements

We like to thank Gorschwin Fey for providing the bench-
mark data of the MS algorithm. We also thank the referees
for their helpful comments.

Bibliography

[1] ISCAS’89 benchmark information.
CBL_Docs/ iscas89.html, 1997.

[2] F.Brglez, D. Bryan, and K. Kozminski. Combinational pro-
files of sequential benchmark circuits. In Int’l Symp. Circ.
and Systems, pages 1929-1934, 1989.

[3] R. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Trans. on Comp., 35(8):677-691, 1986.

[4] R. Bryant. Binary decision diagrams and beyond: Enabling
techniques for formal verification. In Int’l Conf. on CAD,
pages 236-243, 1995.

[5] R. Drechsler. Evolutionary Algorithms for VLSI CAD.
Kluwer Academic Publisher, 1998.

[6] R. Drechsler and N. Drechsler. Evolutionary Algorithms
for Embedded System Design. Kluwer Academic Publisher,
2002.

[7] E. Dubrova and D. Miller. On disjoint covers and ROBDD
size. In Pacific Rim Conference on Communications, Com-
puters and Signal Processing, pages 162-164, 1999.

[8] G. Fey and R. Drechsler. Minimizing the number of paths
in BDDs. In Symposium on Integrated Circuits and System
Design, pages 359-364, 2002.

www.cbl.ncsu.edu/

[9] G. Fey and R. Drechsler. A hybrid approach combining
symbolic and structured techniques for disjoint sop mini-
mization. In Workshop on Synthesis And System Integration
of Mixed Information technologies (SASIMI), pages 54-60,
2003.

[10] N. Gockel, R. Drechsler, and B. Becker. GAME: A software
environment for using genetic algorithms in circuit design.
In Applications of Computer Systems, pages 240-247, 1997.

[11] D. Goldberg. Genetic Algorithms in Search, Optimization &
Machine Learning. Addision-Wesley Publisher Company,
Inc., 1989.

[12] A. Mishchenko and M. Perkowski. Fast heuristic minimiza-
tion of exclusive-sums-of-products. In Int’l Workshop on
Applications of the Reed-Muller Expansion in Circuit De-
sign, pages 242-250, 2001.

[13] I. Oliver, D. Smith, and J. Holland. A study of permuta-
tion crossover operators on the traveling salesman problem.
In Int’l Conference on Genetic Algorithms, pages 224-230,
1987.

[14] S. Reda, R. Drechsler, and A. Orailoglu. On the relation
between SAT and BDDs for equivalence checking. In Int’l
Symp. on Quality Electronic Design, pages 394-399, 2002.

[15] R. Rudell. Dynamic variable ordering for ordered binary de-
cision diagrams. In Int’l Conf. on CAD, pages 42-47, 1993.

[16] F.Somenzi. CUDD: CU Decision Diagram Package Release
2.3.1. University of Colorado at Boulder, 2001.

[17] Y. Ye and K. Roy. Efficient synthesis of AND/EXOR net-
works. In ASP Design Automation Conf., pages 539-544,
1997.

Table 3: Best results of EA compared to MS

MS EA A
function || #in | #out || nodes P sec || nodes P sec genr. %
s1196 32 31 1523 | 2874 0.30 1142 | 2508 | 104.14 555 || 12.73
s1238 32 31 1523 | 2874 0.28 1105 | 2508 | 129.56 896 || 12.73
$1488 14 25 500 369 0.04 410 352 39.80 254 4,61
s1494 14 25 500 369 0.04 424 352 19.89 175 4,61
s208 18 9 62 53 0.02 62 53 25.02 235 0.00
s27 7 4 13 16 | <0.005 11 16 6.37 61 0.00
$298 17 20 91 70 | <0.005 88 70 17.54 165 0.00
s344 24 26 104 330 0.01 104 330 45.47 423 0.00
s349 24 26 104 330 0.01 104 330 37.10 345 0.00
$382 24 27 152 238 | <0.005 188 230 40.98 378 3.36
$386 13 13 158 61 0.01 121 57 18.08 171 6.56
s400 24 27 152 238 0.01 190 230 29.80 276 3.36
s444 24 27 154 243 0.01 183 230 34.17 313 5.35
s510 25 13 184 170 29.18 159 153 26.93 244 || 10.00
s526 24 27 153 162 0.01 138 156 40.59 375 3.70
s526n 24 27 153 162 0.01 151 156 28.20 260 3.70
s641 54 42 768 | 1700 0.11 911 1444 | 216.99 | 1707 || 15.06
s713 54 42 768 | 1700 0.11 1458 | 1447 | 189.99 | 1498 || 14.88
s820 23 24 310 155 0.07 250 146 22.06 195 5.81
s832 23 24 310 155 0.06 249 146 30.21 269 5.81
alu4 14 8 621 1545 0.17 597 1372 40.02 322 || 11.20
b12 15 9 67 60 | <0.005 73 60 17.66 167 0.00
clip 9 5 127 262 0.01 75 214 19.80 188 || 18.32
inc 7 9 79 66 0.01 43 27 8.86 86 || 59.09
majority 5 1 8 5| <0.005 8 5 3.57 35 0.00
misex1 8 7 42 34 | <0.005 37 34 8.32 80 0.00
misex2 25 18 147 30 0.01 124 29 12.21 112 3.33
rd53 5 3 17 35 | <0.005 17 35 7.94 78 0.00
rd73 7 3 31 147 | <0.005 31 147 11.31 109 0.00
rds4 8 4 42 294 | <0.005 42 294 12.84 124 0.00
sa02 10 4 102 99 0.01 100 97 13.42 127 2.02
t481 16 1 35 1009 | <0.005 50 841 17.33 162 || 16.65
Xor5 5 1 6 16 | <0.005 6 16 6.21 61 0.00
5xpl 7 10 45 82 | <0.005 44 79 10.62 102 3.66
9sym 9 1 25 148 | <0.005 25 148 11.28 109 0.00
b 9076 | 16101 30.56 || 8738 | 14312 | 1304.28 | 10657
median 3.66
mean 6.47
cordic 23 2 49 | 30093 0.01 171 | 8332 84.60 747 || 72.31
misex3 14 14 946 | 2303 0.39 727 1976 43.42 325 || 14.20
seq 41 35 1398 | 1841 | 4469.27 1499 | 1744 | 305.67 991 5.27
b 2393 | 34237 | 4469.67 || 2379 | 12052 | 433.69 | 2063
mean 30.59

