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Abstract—Evolutionary algorithms are a well-known optimi-
sation technique, especially for non-convex, multi-modal optimi-
sation problems. Their capability of adjusting to different search
spaces and tasks by choosing the suitable encoding and operators
has led to their widespread use in various application domains.
However, application domains sometimes come with difficulties
like fitness functions that can not be evaluated or not more
than a few times. In these situations, surrogate functions or
approximative fitness functions allow the evolutionary algorithm
to work despite this complication. Still, using approximative
fitness functions comes with a price: The fitness value is no
longer correct for every individual, and the algorithm can
not know which value to trust. However, statistical methods
yield knowledge about the preciseness of the approximation.
We propose using this knowledge to adapt the fitness value
to ease the effects of the approximative nature. We choose to
use the information given in the density of the training data,
which has computational merits over the use of other techniques
like cross-validation or prediction intervals. We evaluate our
method on four well-known benchmark functions and achieve
good optimisation success and computation time results.

I. INTRODUCTION

Optimisation is an essential task in many areas. We see
it in many application areas: Economics, logistics, disaster
planning, scheduling problems, placement problems, e.g. in
chip design [1], and the list goes on and on. Additionally,
optimisation comes in many different forms: There are binary,
integer, and real-valued optimisation problems but also optimi-
sations for processes, programs, and strategies. Optimisation
problems can have single or multiple objectives; they may
be constrained or unconstrained. Furthermore, they can be
linear or quadratic, convex or non-convex. Researchers or
practitioners choose different techniques depending on the
optimisation problem at hand. The most straightforward ones
are deterministic solutions. However, whenever the problem
becomes multi-modal, non-convex or very distorted, the choice
usually defaults to heuristics, i.e. approaches with a stochasti-
cal component that do not necessarily yield the correct results.
Evolutionary algorithms have long been a thriving, very flex-
ible approach in this area and are one of the more dominant
representatives of bio-inspired methods. The possibility to
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adjust almost every feature of an evolutionary algorithm makes
them widely applicable and, at the same time, a challenge
for every applicant. Small changes in features like parameters
for chosen operators can considerably impact the quality of
the proposed solution. Additionally, the chosen encoding is
a rather intricate feature that needs lots of experience if the
problem at hand is not a standard numeric one. Nonetheless,
many successful solutions have been found, and quite a lot
of the theoretical behaviour of evolutionary algorithms is
understood well.

Given an optimisation problem, despite all the above-
mentioned differences they might have, one usually expects
one essential part to be present and well-defined: The optimi-
sation function. Unfortunately, many real-world applications
do not directly yield an optimisation function that allows the
researcher to use it as the fitness function. This inapplica-
bility could — for one — stem from the complexity of the
computation of the optimisation problem, i.e. one computation
might take several days, e.g. complex numerical equations.
Hence, a surrogate function is trained and used for a significant
part of the optimisation process. A second reason for the
inapplicability may be that the actual function is unknown, and
its behaviour is only known through data possibly achieved
by experiments. Today, companies and researchers try to
find many explanations or advantages by analysing data,
resulting in approximative functions (using machine learning
techniques) that are part of an optimisation task.

However, applying an optimisation problem to an estimated
function (estimating the actual fitness function with means
of training data) has its difficulties. An estimated function
is seldom perfect, i.e. it deviates from the original function
in some input values. The estimated function may compute
a worse fitness for a search candidate in the evolutionary
algorithm’s population than the actual function or the other
way around. In both cases, the population of the evolutionary
algorithm may drift away from a favourable distribution —
not due to a poor design of the algorithm but simply because
it is what the estimated function dictates. Additionally, the
estimation does not need to be equally precise (or imprecise),



i.e. some regions of the estimation may be closer to the original
function than others.

Some researchers have proposed including statistical knowl-
edge about the estimation in the fitness function or the
evolutionary algorithm to deal with the disadvantages of using
an estimated function. We follow this path and propose to
use the distribution of training data as a quality measure for
the preciseness of the estimation. This quality measure can
then be used to adapt the estimated fitness values. The main
idea is that a high density is related to a better estimation (in
general). The more training data one has for a specific area, the
better the estimation is. Hence, using the information from the
density, we can estimate the likeliness of whether a computed
fitness value (from the approximation) is the correct fitness
value. Then, we adjust the fitness such that fitness values which
are more likely to be correct, remain unchanged, and fitness
values, which are more likely to be incorrect, are balanced
to smooth out extreme values. The balancing part decreases
high fitness values and increases low fitness values. The goal
is to reduce the influence of potentially wrong values on the
evolution of the population.

We evaluate our approach using four benchmark functions.
To model the situation of an estimated fitness function, we
generated noised training data from those benchmark functions
and trained estimated fitness functions of different degrees of
precision. Then, we compare the results of our approach to
the traditional one using the estimated function and find that,
on average, our approach leads to an improvement over using
the estimated function. We additionally compare our results to
an approach that uses prediction intervals in terms of success
in finding an optimum and the necessary computation time.
Our approach surpasses the prediction interval approach and
is significantly faster.

This work is structured in a usual manner: The following
section introduces standard approaches for surrogate-based
evolutionary computation and quantitive measures on estima-
tion quality. Section 3 describes our approach and the proposed
adjustment of a fitness function, whereas Section 4 explains
how we implemented our approach. Section 5 reports on our
evaluation and its results, and finally, Section 6 concludes this

paper.
II. BACKGROUND

This section deals with the motivation and some related
work for this topic.

A. Genetic Algorithms and approximative fitness functions

Genetic algorithms are a vast research area, even if they
are employed in a standard situation—clean data, precise
fitness function, trivial encoding (if this exists). However, the
number of problems increases when these standard attributes
get more complicated. The genetic algorithm can not compute
the true fitness function in many real-world applications. This
incapability can be due to several reasons: First, the fitness
function may be hard to calculate, making it impossible to
compute it as many times as necessary for the evolutionary

algorithm. Second, the fitness function may be subjective,
i.e. evaluated by a person, and therefore non-deterministic
and only available for a given amount of evaluations. Third,
the setup may not define the fitness function given but only
training data that may induce a fitness function. Researchers
employ different techniques in these cases (see [2] and [3]
for surveys on the topic). However, they have one thing in
common: A surrogate (or approximative) function replaces the
fitness function used for the evolutionary algorithm. Hence,
we obtain the following situation, where f symbolises the
estimated function, and f the original function:

f(@) = f(z) + e(x) (1)

When the fitness function is only hard to compute, e.g.
with complex differential equations that may take days to
compute, it is at least possible to obtain some accurate results.
Hence, it is possible to validate the approximate fitness values
every now and then. This is still an open research field
despite many good results that have been obtained over the
years. The usual technique is to use a surrogate function that
estimates the true fitness function(see, e.g. [4]). However, at
certain points during the algorithm, the true fitness function
is used to obtain exact values. The timing of these time
points nevertheless varies from application case to application
case. However, when the fitness is actually unknown, there
is no possibility to include some true references. It may be
possible to somehow validate the results with experiments,
nevertheless, depending of the cost of this experiment, there
should not be too many wrong results. Additionally, it is
impractical to include the experiment while the evolutionary
algorithm runs. Therefore, it could only be used to validate
final results. In this case, many researchers have proposed
including statistical knowledge to their approximative fitness
function. The work of Plump et al. [5], for example, includes
prediction intervals to adjust the final fitness function. They
obtain reasonable results, although their method does seem to
not work well on multi-modal functions. However, from their
evaluation it is unclear, if this is rooted in their approach or
the setup of their evaluation. They model the approximative
situation by generating data and estimating an approximative
function through support vector regression. Support vector
regression does not necessarily perform smoothly on multi-
modal functions which may disadvantage their result overpro-
portionately. Nevertheless, their technique has one important
drawback—their computation time for the prediction interval
in their online phase is quadratic in the number of training data
(or rather the support vectors in their machine-learning model).
Which leads to an unfortunate situation: Less training data is
favourable for computation time, more training data helps with
the preciseness of the approximative fitness function.

B. Estimation quality

There are several statistical methods to describe (or esti-
mate) the preciseness of an estimation. These are often called
goodness-of-fit measures. However, not only the measure itself
but also the process of evaluating is important to avoid pitfalls



like estimation or selection biases. We therefore define the
standard MSE, discuss two evaluation processes and finally
present a point-based evaluation measure contrasting the usual
overall measures.

Please, assume for the rest of the paper unless stated
otherwise, that we have m training data in n dimensions,
mapping to one dimension, i.e. (€1,y1), ..., (Tm,Ym), Where
x; = (zj1,%j2,..,T;n). Furthermore, y; = f(x;). We
denote the estimated function with f(x) = f(x) + €(x). €
is the mistake the estimation makes. The smaller € is, the
more precise the estimation function is. Quality measure for
estimations therefore are usually based on €. Most times, the
computed quality measure is the mean squared error (MSE):

. 1 & .
MSE(T, fr) = o Z (fr(Tjz) = Tjy)?
j=1

1) Three Way Holdout: The three way holdout divides the
training data into three different sets: One, for training, one for
validation, one for testing. Using the training data, different
models are trained and validated on the validation data set.
Depending on the goodness of each of the models on the
validation data, the final candidate is chosen. Subsequently,
this candidate is evaluated on the testing set to estimate its
quality. It is important to use a different set for the final
evaluation to not fall victim to a selection and estimation bias.

2) Cross-Validation: Cross-Validation is a technique to use,
when there is not enough training data available for a three-
way holdout. The main idea is to split the training data set into
k chunks. Then, k — 1 chunks are used for training, and the
kth chunk is used for evaluating e. This is repeated until every
chunk once served as the testing set. All results are averaged
and their standard deviation is reported. Again, depending on
the final results, a model is chosen, and its cross-validation is
reported as quality estimation [6].

3) Prediction Interval: Prediction intervals differ from both
techniques above in that they report a quality measure for
every point in the domain rather than for the entire model.
A prediction interval specifies the range that includes the true
value f(x) with a given confidence. It basically works as a
confidence interval, however, it includes a bias to account for
the fact that it considers single data points and not the average
of a population.

I(x) =

2

fl®)£21-2 (3)
Usually, prediction interval computation is rather computation
intensive (usage of Bootstrapping). However, Brabanter et al.
developed a technique that reduces the online computation
significantly [7].

SE + bias(cc)}

III. METHODOLOGY

The following section will motivate and describe our
methodology. It is divided into four subsections, first we
will state the problem, second, present our fitness adjust-
ment methodology, third discuss configuration possibilities and
fourth, justify the usage of density values to use for the quality
measure.
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Fig. 1. Depiction of approximative fitness values and golden fitness values
and their prospective change.

A. Problem Description

Please assume the following situation: f is the function
to be minimised (recap from Section 2: f : X — Y, with
dim(Y) = 1), i.e. a solution * € X to be found, such
that f(z*) < f(xz) V& € X. We assume dim(Y) = 1
because we restrict ourselves to single-objective optimisation.
Furthermore, this function f is unknown. However, training
data T is present, and an estimation has been computed,
namely, fT. The minimisation is supposed to be done using
an evolutionary algorithm, i.e. f is the golden fitness function,
while fT has to be used as an approximative surrogate.

Figure 1 depicts a comparison of golden and approximative
fitness values. The x-axis shows the approximative values,
the y-axis the golden ones. If all points lay on the bisector,
the estimation was perfect. The closer the points are to the
bisector, the smaller the error. The shades in green, yellow and
red represent the interpretation of both fitness value scales. A
point in a green region will probably survive onto the next
generation, while a point in a red region will not. It is now
easy to see which points pose a problem and which do not.
Of course, points on the bisector are perfect. Points close to
it are unproblematic. Nevertheless, points in the upper left
and lower right corner are problematic. Points in the upper
left corner have a small approximative value; thus, they will
most likely stay in the population, although they have a high
golden fitness value; hence, they would have been removed
from the population with a relatively high probability. Points
in the lower right corner face the opposite problem: They are
fit regarding the golden fitness function, have an influence on
the next generation to reproduction and most likely stay in
the population, only—their approximative fitness value is high,
and therefore, in reality, they will possibly not survive.
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Fig. 2. Depiction of the adjusted fitness dependent on the approximative
fitness and the probability

B. Adjustment of fitness

Adjusting the approximative fitness should now move points
on the right of the bisector to the left and vice versa. Never-
theless, points that are already well estimated should not be
moved as far as poorly estimated points. Figure 1 visualises
this adjustment, where the length of the arrows symbolises the
degree of the shift.

The above adjustment proposal can be reformulated in terms
to allow the definition of an formalisation for f:

1) If the estimation is well, the adjusted fitness function
should basically equal the approximative fitness.
2) If the estimation is poor, the following should hold:

a) High fitness values are decreased
b) Low fitness values are increased.

Assume that p € (0,1] represents the precision of the
estimation, i.e. p = 1 means the estimation is perfect ( fT =f),
p = 0 means the estimation is completely off.

Taking all of the above mentioned points into account, we
propose the following adjustment (see detailed explanation
below):

fr = fr- €]

This adjustment may seem arbitrary at first, but a closer
look reveals its structure: First, the adjustment is in the form
of a linear equation: It has slope /p P Ifp=1,
the step becomes 0, and the slope 1, i.e. we achleve identity
of fT and f for a perfect estimation. With decreasing p, the
significance of the step is dependent on the size of f The
larger f, the more significant the effect of the slope factor
in decreasing it. Hence, for high fitness values, we achieve a
decrease (Wlth the exception of very s small values of p—but we

has the higher 1mpact, so the value will be 1ncreased. It can
be shown that (excluding very small values of p, depending

on the given range of fitness values, Equation 4 fulfills the
criteria set up above. As the mathematical proof will take up
too much space, we visualise Equation 4 in Figure 2. It shows
the adjusted fitness value as color coded level, depending on
the approximative fitness value and the value p. The evenly
spaced contour lines at the upper end of figure show the linear
behaviour - there p = 1 and therefore the adapted fitness value
(shown through the colouring) equals the estimated value. It
also shows the increase in step size for very small values of
.

The switch between the increasing and decreasing effect
highly depends on the occuring ranges of fitness values. The
higher the potential fitness values, the higher the y-intercept
needs to potentially be, to have a chance of counteracting the
effect of the fitness value. So, we introduce some configuration
parameter into our formula: The exponents can be adapted to
the given domain problem at hand as shown in the following
equation. Please note that we have now formally introduced
the dependency on x which we motivated during the last para-
graphs. Furthermore, the density-based fitness function is now
dependent on the training data as well as both configuration
parameters, for which s > r > 1 should hold.

Frro(w) = Jr i) + ;p(j;:()x) (5)

The question remains of how to decide which exponents to
use. This is, fortunately, where math comes in. The conditions,
we originally defined for our adjustment, can be reformulated
via the fraction fT,T,S(a:) / fT. This fraction should equal 1 for
the case of high probabilities, it should be smaller than 1 for
low values of p and high fitness values, and it should be higher
than 1 for low values of p and low fitness values. Assuming
pr(x) # 1, we can derive the following:

frrs(@) -1
fT
= i p%(x)llj;fgff) > f
- m > f(1 = \/ph@)
p%(x)l- <1p—T(x;9<x>> >

Please note that the same reformulations hold for < inequal-
ities and the equality. Therefore, 1—pr(z) = f is

T( ) (1_\/pT )

the boundary between decreasing fitness values and increasing
fitness values.

C. Configuring the adjustment

Figure 3 visualises this boundary for exemplary values for
r and s. The domain expert (or evolutionary algorithm expert)
can now—factoring in his knowledge about the usual fitness
values—choose those configuration values that he thinks fit
the given situation best.
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Fig. 3. Curves of the formula derived from Equation 5. Colors denote different
values of s, the linetype different values of . On the upper side of the curves,
the adjusted fitness value will be decreased (improved), on the lower side of
the curves increased (worsened).

D. Influence of training data on estimation precision

Up until now, we assumed a value p € (0, 1] to represent
the precision of the estimation. However, we never clarified
what value this might be. It is possible to use a fixed value,
e.g. stemming from a Three-Way-Holdout estimation or a
crossvalidation (see Section II). Nevertheless, Figure 1 shows
that the value p needs to be dependent on the current individ-
ual, i.e. p = p(x). Therefore, a fixed value is not sufficient.
Another possibility is the usage of prediction intervals, they
can be computed pointwise and their length might hold the
information we need for our approach. However, to obtain
a value in the range of (0,1] from a length seems not
straightforward. Additionally, the computation of prediction
intervals is quadratic in the size of training data and dependent
on the used prediction algorithm (support vector regression,
neural networks, gaussian processes). Instead, we propose
using the probability of the current value given the distribution
of the training data. The main assumption here is that the
prediction will (in general) be better in regions where a lot
of training data is present and will be worse in regions where
little training data is present.

Estimating the probability density function (pdf) of the
training data allows the computation of the probability of a
new value given this density. This value will lie in the required
interval and is dependent on the search space candidate x € X.

Figure 4 visualises the principal idea that the precision of
estimation usally depends on the distribution of training data
for a two-dimensional case. The main part of the figure shows
training and test data with their true values as well as their
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Fig. 4. An estimation example for a quadratic function with marginal density
function for X and Y and the two-dimensional density in contouring colors.
The points show the true function, while the crosses show the estimation.
Colors red and blue separate the testing and training data.

estimated ones. The background shows a 2D-kernel density
estimation. The top and right curves are the estimated marginal
distributions, i.e. the distribution of X and the distribution
of Y = f(X). One can see that the estimation’s precision
is worse (distance of crosses to points) where the marginal
distribution of Y is smaller. It is important to note that this
will not be true in every case and there certainly can be setups
constructed where this does not hold. The chances of this
general idea to hold true are higher with correct data than
with noised data. Another important point is the fact that these
probabilities can turn out to be very small, in fact, a probability
of 1 can almost never be achieved—as the training data needed
to consist of only one data point (or many repetitions of this
one point). The reader might get an impression of the values
when looking at the axis of both marginal density graphs.
Therefore, one more adjustment to this probability is neces-
sary: We take the range of values into account. We assume
here that a higher range of values will lead to smaller densities
overall (keep in mind that this assumpition is a heuristic one,



it will certainly not always be true), and we therefore scale
the probability with this density. That is, the same number
of values has a higher chance of higher probabilities when
defined upon a small range, as they do upon a large range.
Therefore, we divide the computed probability by the length of
the range of the data points considered. This leads to our final
choice of p(z) = P(Yr = min f(z))Rex¥—min¥ 7 yhere
€ is the boundary around z that is taken for computation of
the probability based on the density. Usually, the minimum
function should not be necessary, however, there may be
distorted distributions that lead to this effect.

IV. IMPLEMENTATION

To evaluate our proposed approach, we created a Java-
based implementation. We use SMILE, the statistical machine
intelligence and learning platform, a programming library
supporting support vector regression and kernel-based den-
sity estimation [8]. We use SMILE to calculate the support
vector regression and to estimate the density in the learning
phase. Furthermore, we use Jenetics, a framework for genetic
algorithm, evolutionary algorithm, genetic programming, and
multi-objective optimisation for implementing the evolutionary
algorithm [9]. In Jenetics, it is possible to register a custom-
based fitness function. We used this mechanism to add our
modified fitness calculation. This extended calculation usees
SMILE to apply the learned regression function to an individ-
ual and then adjusts the fitness value using SMILE again.

target individual

training data

©

support vector
regression

density
estimation

learning phase

regression

function
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population density pop
distance density
calculation adjustment

W

fitness calculation
mutation selection
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Fig. 5. Implementation overview

Figure 5 shows an overview of our approach’s implemen-
tation. First, the learning phase learns a regression function
based on existing training points. Besides, it estimates the
training’s data density using a Gaussian kernel approach. This
step executes before the actual search phase runs. Second,
the search phase works as a usual evolutionary algorithm
does. It starts with an initial population for which the Jenetics
framework calculates the fitness. The fitness calculation first
maps an individual using the learned regression and calculates
the distance to the searched target properties. We implemented
the density adjustment to modify the distance according to
the estimated probability using Equation 4 to support our
approach. Afterwards, the normal selection, recombination,
and mutation process take place. The individual with the best
fitness value is selected from the final individual generation
when the evolutionary algorithm stops. The adaptions made
to implement our approach are highlighted using a plus sign.

V. EVALUATION

This section presents the empirical evaluation of our ap-
proach. The evaluation was conducted on a commercially
available laptop, running on an Intel i7-8565U CPU which
operates at 1.80 GHz. The system has 24G of memory
available.

In total, we work on three research questions:

RQ 1: Does our approach significantly differ from the
standard approximative approach in terms of best individuals
as result of an evolutionary optimisation?

RQ 2: How does our approach compare to the use of
prediction intervals in terms of success of the optimisation
process?

RQ 3: How does our approach compare to the use of
prediction intervals in terms of computation time?

We will first describe the evaluation setup as well as the
statistical evaluation process. Subsequently, we will present
the results of our evaluation and finally, discuss them. Please
note that while we reproduced the results of [5], evolutionary
algorithms have a stochastic component, therefore, the results
presented here may differ slightly from their published ones.

A. Setup

As has been mentioned in Section IV, we simulate the
problem of an approximative fitness function by sampling
training data from a distribution, computing correct values
based on the benchmark function, noising them and finally
estimating the functions using a support vector regression
with different kernels. This result is used as approximative
fitness function. That way, we are capable of comparing our
results to a golden truth (the real fitness function) because the
benchmark function are our fitness functions. Additionally, we
include so called targets y*. They adapt the original fitness
function to fy«(z) = |f(x) — y*|. This is done to give some
variation to the benchmark functions.

We vary several components of the setup for our evaluation.
Every distinct combination is called one setup in the following.
One setup is run 10 times, with a population of 100 individuals
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Fig. 6. Evaluation results, results of adjusted have been reproduced according to Plump et al. [5]

and for 100 generations, to smooth the stochastic component
of evolutionary algorithms. The varied components are the
following:

e Benchmark function: Ackley Function, Rosenbrock
Function, Rastrigin Function, Weighted Sphere Function,
each with n = 10.

« Distribution of Training Data: Multidimensional Nor-
mal Distribution, Multidimensional Uniform Distribution

o Goodness-of-fit of estimation: Good, average, bad (clas-
sified based on 10-fold crossvalidation)

« Evolutionary Algorithm':

— Encoding: Bit-Encoding, Gray-Encoding, Real-
Valued-Encoding

— Selector: elitism , stochastic

— Recombinator: uniform crossover (Gray), single

point crossover (Bit), line crossover (real-valued)
— Mutator: Swap Mutator (Bit, Gray), Gaussian
Mutator(Real-Valued)

o Targets: 50 uniformly chosen values from the respective
ranges of the benchmark functions.

All in all, we have 144 - 50 = 7200 distinct setups.
We run each setup once with the golden fitness function
(fgota(x) = |f(x) —y*[), once with the estimated fitness

IThe detailed parameters are as follows: for the elistism selector, we have
a survivor proportion of 0.4, and an off spring proportion of 0.2. For the
recombination operators, we have the following: uniform crossover with a
crossover probability of 0.3, a swap probability of 0.4 and a threshold of 0.6,
the single point crossover has a probability of 0.3 and a threshold of 0.6, the
line crossover has a probability of 0.4 and again, a threshold of 0.6. For the
mutation operators, we had a probability of 0.6, and a threshold of 0.6 for the
swap mutator and the gaussian mutator was run with the same parameters.

function (fapp(x) = ‘f(x) —y* ),
adjusted approach (fdens (x) = f(x) —y*

and once with our density-

As mentioned above, we repeat every setup ten times.
Our evaluation is then mainly based on the compari-
son of the average fitness of the best individual. That
is, for every setup S we compute: avgBest(S) =
15 SO0 frrue(arg ming, ;e p fs(ind)). It is important to note
that the best individual is chosen based on the fitness function
specified in the setup S, i.e. the approximative one, our
modified one, or the one using the prediction intervals of [5].
However, the average value is computed using the true fitness
value of that individual. This is necessary, because otherwise
due to the adaptions in the fitness functions, their absolute
values would be incomparable.

We use these golden fitness values of the best individuals to
compare the different fitness approaches, mainly the approxi-
mative one (using the standard estimation) and our approach,
i.e the density-based fitness. Later on, we will also compare
our approach to the one of Plump et al. [5] who used prediction
intervals to adapt their approximative fitness.

We compare each setup (that was run 10 times) with its
counterpart with the changed fitness function to determine
which fitness function performed better. To decide upon the
winner of each of these contests, we use a hypothesis test to
ensure statistical significance. We choose a one-sided hypoth-
esis test (because one-sided comparison) for the comparison
of means with different standard deviations, also known as
Welsh’s t-test[10]. This test fits our situation perfectly as we
are indeed comparing means (mean of the best individuals
over 10 runs) and have different standard deviation in the

B. Computation of presented results



population considered as contestants). In general, we run our
hypothesis tests with a confidence niveau of 0.95 That is, we
limit our error probability when deciding for the alternative
hypothesis to 5%. We count the result of a hypothesis test as
win for the density-approach, when we can reject the hypoth-
esis that the approximative fitness function has a higher mean.
Vice versa, we count it as win for the approximative approach,
when the hypothesis that the density-based fitness function
has a higher mean can be rejected. When the null-hypothesis
cannot be rejected, we count the result as borderline. This
follows the general idea of [11]. Furthermore, we store the
p-value to analyse how significant the potential wins were.

We perform one hypothesis test for every setup, i.e. in
the end, we obtain 7200 results for the comparison of the
approximative fitness approach and our denisty-based fitness
approach.

C. Results

Before presenting the hypothesis test results, Figure 6
gives an overview of all obtained results. The figure shows
the results of all four benchmark-functions separately and
additionally, divides the data according to the encoding and
the distribution of the setup. The boxes depict the inner
50% of data points (i.e. from the first quartile to the third
quartile), the middle line denotes the median - regarding the
negative golden fitness value. Please remember, optimisation
goal is zero, i.e. the higher the box, the better. For each
depicted setup, we show all four optimisiation modi, i.e.
what fitness function was used in the evolutionary algorithm.
These are: adjusted (reproduced for comparison from Plump
et al. [5]), density (our presented approach, f), predicted (the
approximatve version, f), and standard (the original fitness
function, f). First, we notice what we expected: The standard
approach outperforms all others, i.e. using the golden fitness
function yields the best results. Second, however, we notice
that our density-based approach is relatively close to the
standard approch and obtains much better results than the
predictive one. Third, we see, that the density-based approach
outperforms the adjusted approach as well - except for the
Ackley Function. In that case, all approaches are equally bad
or good. It is interesting to note, however, that, similarly to the
adjusted approach, the density-based approach works better on
both unimodal functions (Rosenbrock and Weighted Sphere).
The density-based approach comes even close to the standard
fitness function in some setups. For the Rastrigin Function, a
multimodal function, where the adjusted approach could not
show its merit, our density-based approach still outperforms
the predictive fitness function but it is obviously not as good
as for the unimodal functions. The Ackley function, however,
seems to not react at all to these different fitness approaches.
One last observation: The distribution does not seem to have
an effect on the ranking of the approaches but sometimes on
the quantitative values. However, there is no clear tendency to
be observed.

To underlie the above observations with some numbers, we
performed Welsh’s t-test as explained above. Please keep in
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mind that for hypothesis tests, we can only ever compare two
approaches, i.e. we have one statement for the performance of
our density-approach against the predictive setup, and one for
the performance of our density-approach against the adjusted
approach from [5]. For this primary comparison, we run the
hypothesis test with confidence niveaus of 0.90 (called signifi-
cant), 0.95(called statistically significant), 0.99( called highly
statistically significant) to ensure there is no information left
out through usage of confidence niveau of 0.95. Figure 7
shows the number of wins for the predictive, and the density-
approach, as well as the borderline category (remember, these
were the setup comparison where no approach was deemed a
better than the other).

The density-based approach wins between 4200 and 5200
hypothesis tests (of 7200) depending on the chosen confidence,
while for 1800-2800 the results are borderline. These are —
in all likelihood — the setups from the Ackley Function and
some of the Rastrigin Funcion. Additionally, one can see that
the borderline results increase with higher confidence which
is by design as - of course - a smaller amount of wins is
deemed highly significant (for any contestant) than significant.
But, what is reassuring is that the decreases for the denisty
approach and the predicted are relatively speeaking compara-
ble. This means, there is distortion in the data depending on
the confidence niveau. Figure 8 shows the same but for the
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estimation precision and distribution of training data.

comparison with the adjusted method. The adjusted method
gains more wins than the predictive version did originally,
however, the density-based approach still outperforms it.

Additionally, we investigated the dependence of the hypoth-
esis test results on the remaining properties of setups. That is,
we investigated the influence of the precision of the given
estimation (see Figure 9), the influence of the distribution
together with the precision (see Figure 10), and the influ-
ence of encoding and selection mechanism (see Figure 11).
In Figure 9, we see that still the density-based approach
outperforms the others in every subcategory. Nevertheless, it
performs weaker in combination with an average precision
level. Here, the borderline category takes up more wins. It
is also interesting that the good precision level has the least
amount of wins in borderline. This suggests that for good
estimations, either the density-based approach is better or the
predictive (in comparison to the other levels) but there is less
undecisiveness in the middle.

This impression manifests when looking at Figure 10: For
the normal distribution and the good precision level, the
predictive approach actually gains roughly as much wins as
the borderline category, i.e. a significant number of borderline
cases switched to the predictive category. Additionally, for the
average level and uniform distribution, we find the worst per-
formance of the density-based approach so far - there are more
borderline cases then for density-based. It still outperforms
the predictive fitness function, however, uniformly distributed
training data with an average precision of estimation seems
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to be the setup where our approach performs weakest. This is
actually quite understandable, as the density will have only
a small effect with uniformly distributed data as well as
small values, and the average estimation works well without
adjustment.

Finally, looking at Figure 11 we observe that the density-
based approach has its merits especially when combined
with an elitism approach, while it performs weaker with
more stochastic approach. This may be because the stochastic
approach already aims at the same goal as the density-based
approach - keeping individuals in the population even when
they do not have perfect fitness. Therefore, the density-based
approach can not play out its strengths as much as it can with
the elitism approach, which would kill all individuals but the
best and possibly move away from the right search region.

Additionally, we analysed the computation time of our ap-
proach to show its applicability to real optimisation problems.
Table I shows the computation time of the standard fitness
function, the predictive, the density-based approach and the
adjusted approach of [5]. We give the mean, the standard
deviation, as well as minimum and maximum computation
times. We see that the predicted and the standard optimisation
types perform equally fast. Our approach roughly double
the time needed for one setup, however is still only 0.5s.
The maximal duration were roughly two seconds. However,
this increase seems small, when compared to the adjusted
approach which takes roughly 9s for one setup. This difference
in computation time is quite obvious, when looking at the
necessary computation during the online-phase: The adjusted
approach needs to perform matrix calculation with dimension
of the size of the training data, whereas the density-based
approach only searches its position in a sorted array and then
computes the probability computation. The estimation process
is done during the learning phase. Therefore, the density-based
approach is roughly linear in the number of training data, while
the adjusted approach is quadratic.

D. Discussion

With the above presented results, we can now answer our
posed research questions. RQ 1 can be answered positively:
Yes, our approach differs from the predictive approach, and
significantly improves using the predictive approach. Only



TABLE I
COMPUTATION TIME EVALUATION FOR ALL FOUR OPTIMISATION MODI.
ALL TIMES ARE IN MILLISECONDS.

optimisation type | mean | standard deviation | max min_ |
standard 250 157 1373 42
predicted 295 151 1370 64
density 459 143 1717 157
adjusted 9710 1877 61850 | 2932

for a multimodal and inseparable function (Ackley Function),
we see no significant difference. This is a challenge to be
investigated in further research. RQ 2 as well can be an-
swered positively. Our approach also outperforms the adjusted
approach which used prediction intervals. However, as we did
not only change the information about the preciseness of the
estimation (density vs. length of prediction interval) but also
the way we incorporated this information into our density-
based fitness function, it is unclear where this outperformance
stems from — the usage of density or the different adjustment
of the fitness function. It should be interesting to compare
both approaches more thoroughly to obtain a more detailed
view. RQ 3 also receives a positive answer: Whether the-
oretically or empirically, the density-based approach is less
computation-intensive. However, we would like to point out
that we only used one prediction technique (support vector
regression) - so we could not investigate the behaviour of
both approaches for different predictions techniques like neural
networks and gaussian processes. Additionally, we used two
different training data sets (one for the normal distribution, and
one for the uniform distribution). It may be that this influenced
the results because they randomly favoured our approach. It
might be interesting to repeat this evaluation with more sets of
training data from more distributions. All in all, however, we
positively answered all our research questions and found that
our presented approach outperforms the standard technique of
simply using the predicted function as fitness function when
the true fitness function is not available.

VI. CONCLUSION AND FURTHER RESEARCH

We address the problem of approximative fitness functions
in evolutionary algorithms. The outcome of the evolutionary

algorithm is highly dependent on the preciseness of the
estimation of the fitness function. We propose to use the
knowledge about the distribution of the training data to adapt
the approximative fitness function. Our method is evaluated
against four benchmark functions as well as a similar method
which uses prediction intervals to adapt the fitness function.
We obtain good results and are significantly faster than the
similar method. For future work, we would like to explore our
work on different machine learning techniques, e.g. neural net-
works, and extend our work to multi-dimensional optimisation
problems.
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