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Abstract—Magnetic Resonance Imaging (MRI) is an essential
tool for medical diagnosis. At the same time, its usage requires
profound expert knowledge to determine the ideal MR sequence
and protocol to be run. Until now, the contrast and quality
of the resulting image have relied mainly on the radiologist’s
expertise. When confronted with clinical requirements and patient
information, the radiologist chooses suitable sequence protocols
for the examination. We propose a workflow that supports medical
personnel in finding the optimal sequence for a given diagnostic
task. To that end, we combine evolutionary algorithms for the
optimisation, machine learning techniques for training a surrogate
optimisation function from simulated MRI data, and domain-
specific languages to allow non-programmers to formulate their
requirements and constraints semi-formally. In this paper, we
focus on the efficient usage of real-world application-motivated
adaptions of the used evolutionary algorithm and evaluate their
effects on four real-life sequence examples. We show that it is
essential to use an adaption for the surrogate model to obtain
realistic solutions and use correlation information about the
search space to stay in feasible areas of the search space and
thus improve optimisation quality. These findings are a first step
in automating the entire MRI-sequence optimisation flow, which
is necessary to allow a more widespread usage of this essential
medical diagnostic technique.

Index Terms—Evolutionary Algorithms, Surrogate Model, Con-
straint Handling, Medical Application, Domain-Specifc Language

I . I N T R O D U C T I O N

Magnetic Resonance Imaging (MRI) is one of the most
versatile modern imaging modalities in clinical routine. The
important role arises from the ability to create a large variety
of different image contrasts using so-called MRI sequences,
which are computer programs that orchestrate the different
hardware components of the MRI machine to yield the best con-
trast and image geometries for the specific application [1]. This
flexibility allows MRI to both structurally and quantitatively
separate healthy and malignant tissue and gives insights into the

physiology of the patient. MRI is a non-invasive technique that
offers accurate diagnosis without harming the patient, which
is an additional benefit over other commonly used imaging
modalities such as X-rays. Unfortunately, great flexibility often
comes with great complexity, which also holds for MRI for the
following reasons: First, implementing novel MRI sequences
is usually a complex task, which requires a high amount
of programming skills and thus is only possible for highly
trained experts. Ongoing research, therefore, focussed on the
development of tools for optimisation for specific aspects of
sequence programming (see, e.g. [2] [3] [4]). Second, even if
a specific MRI sequence is available, the correct adjustment
of related sequence parameters, which define different timings
of the pre-built sequence structure, usually requires months
or years of expertise. As a consequence, a lack of trained
operators can hinder the successful application of MRI in, e.g.,
emerging countries where many people would benefit from
better diagnostics.

The current process in clinical day-to-day is depicted in
Figure 1: The physician issues an MRI request to help diagnose
a patient. This MRI request (along with the patient) is then
transferred to a radiologist who has to assess the physician’s
request as well as the patient’s condition (physical and mental)
to choose the MRI sequence and protocol best suited for this
combination in his experience. The radiologist then chooses
one of the available sequences and adjusts the protocol to the
best of his ability. This is then run on the MRI machine.

This poses two main issues: First, the restriction to the
available sequences which might not be a perfect fit for the
situation at hand and second, the extensive expertise that is
required by the radiologist to fulfill the request as well as adapt
to the patient’s condition.

In [5], a general workflow of predicting image metrics
from sequence description after training an ML model and
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Fig. 1: Current Sequence Determination Process

subsequent optimisation was described and already showed
promising results. We extend the work of Hoinkiss et al. in
several ways. First, we provide a more detailed analysis of the
optimisation techniques, identifying which of the used features
are relevant to the improved optimisation results and if so, how
this comes to pass. Second, we extend the workflow with two
knowledge-based automation routines: One, to automatically
translate the MRI request into a configuration for an evolu-
tionary algorithm and second, an automatic repairing of the
final optimisation results, which translates back to an MRI
sequence that can be transformed into an MRI program which
will guide the MRI process. While the former contribution
improves knowledge about relevant features of the algorithm
and might eventually improve performance, the latter contri-
bution pushes the workflow one step further to automating the
MRI-imaging process, reducing the required expert knowledge.
This contribution helps to keep good medical diagnostics up
even in times of reduced skilled workforce and allows good
medical diagnostics in countries with a reduced number of
available experts.

Our evaluation shows that an adaption technique for the
surrogate model is essential to keep the results in a feasible
area. Additionally, it shows that depending on population
size and mutation rate, it is necessary or at least helpful
to use recombination and mutation operators that comply
with interdependencies in the data. Our repairing mechanism
produces sensible MRI sequences that perform as specified in
the optimisation for three out of four main setups.

The remainder of the paper is structured as follows: Sec-
tion II explains necessary information about the domain, the
structure of the search and optimisation space, as well as the
intricacies of the optimisation requirements. Then, Section III
shows the interaction of our applied techniques and formulates
our method, while Section IV comments on the implementation.
The setup and results of our evaluation are described in
Section V, whereas the overall discussion takes place in
Section VI. Section VII then concludes the paper.

I I . P R O B L E M D E S C R I P T I O N

In this section, we introduce the reader to the terminology,
search space description and explanation, as well as optimisa-
tion space and description to understand the challenges of the
given optimisation problem and our modelling approach.

A. Search Space Description

A typical MRI sequence utilises four different principles.
The main magnetic field aligns the proton spins in the body,
creating a net magnetization along the magnetic field (through
the bore). In addition, the proton spins start to precess
around the external magnetic field at the so-called resonance
frequency, which is linearly related to the external field strength.
Radiofrequency pulses in resonance with the spin precession
frequency are used for excitation of the spins and receiver coil
elements sample the signal that can be received while the spins
tend back to the equilibrium state. The time it takes the protons
to return to their equilibrium state depends on their chemical
environment and, thus, is an important factor in differentiating
tissue types. A set of three coils (x, y, z) that create a gradient
magnetic field in each of the three Cartesian directions is used
to generate spatial resolution. These help to fill a parameter
space called k-space, which can eventually be transformed into
the final image using the Fourier Transform.

That said, all MRI sequences could be modelled using
temporal functions of the different hardware components:
Radiofrequency pulses, (x,y,z)-gradient coils, receiver coil.
However, this form of representation has — while simple —
a significant drawback. A majority of the so-defined search
space is unfeasible in that it constitutes either impossible or
insensible sequences. Additionally, it contains no information
about the meaning (semantics) of the specific parts of the
sequence. Therefore, another representation is necessary.

Instead of looking at five (independent) functions, their
physical contribution to the image is considered. For an MRI
to work, there are two major components: The echo signal
formation, which describes the excitation of the spins and
the creation of an MRI signal, and the readout type, which
describes the spatial stepping through the k-space. These are
typically followed by each other. The echo itself can be
prolonged through a refocusing pulse that follows the original
excitation to bring back the signal that has been degraded by
magnetic field inhomogeneities. The flip angle, resembling the
strength of the excitation, describes an important sequence
parameter. The most important timing parameters of an MRI
sequence are given by TE (echo time) and TR (repetition time),
which describe the relative position of excitation, refocusing,
and readout to each other. These are essential for acquiring
the desired contrast in the image. The readout itself can be
specified by its duration and the number of samples received
by the coil, which will fill a single line in k-space. Finally,
it is important to define the trajectory of the k-space to fill
this parameter space by repeating the sequence parts in a
looped fashion. In this paper, we restrict ourselves to cartesian
trajectories, which fill the k-space line-by-line after a single
or multiple excitations. More complex trajectories like spirals
or radial sequences will be considered in future work. These
cartesian trajectories can be specified through the total number
of k-space rows, as well as the echo train length (ETL) and
the Epi-factor, which describes the number of rows to be read
out after a single excitation.



Search Space Variable Domain Opt Space Variable Domain
numOfRows N≤512 SNR CSF R>=0

numOfCols N≤512 SNR GM R>=0

ETL N≤512 SNR WM R>=0

Epi-Factor N≤512 GWC R>=0

Refocusing Angle N≤360 CGC R>=0

TE N CWC R>=0

TR N0 Ghost [0, 1] ∈ R
readout duration N0 Sharpness [0, 1] ∈ R
measurements N0 Homogeneity [0, 1] ∈ R
prescans N0 Motion.Sens [0, 1] ∈ R
reference lines N0 Distortion [0, 1] ∈ R

acquisition R>=0

TABLE I: Description of search and optimisation space vari-
ables of the optimisation problem, their domain-related name
as well as their boundaries.

The above explanation is a very simple description of
the MRI search space. Additional parameters have to be
considered, like, for example, the number of prescans (to
guarantee a steady state of the magnetisation before receiving
data) or the number of total measurements (for task-related
imaging or to increase signal-to-noise ratio). Also, some MRI
acceleration techniques can be used to subsample the k-space.
Missing lines are then generated by utilising information,
which is extracted from additional multi-coil reference data.
Whether such parameters deviate from the default value, is
highly dependent on the chosen type of sequence.

All of the above-mentioned information can be structured in
a search space consisting of mainly integer values. A sequence
is thus — for this work — defined by a vector x ∈ N11 = S
containing the variables (together with their boundaries) shown
in the left part of Table I.

Several of these variables are dependent on each other,
however not in a strict way that could be expressed by a
constraint. It can rather be described as a correlation. For
example, low TE values are more likely to occur with low TR
values than with high TR values.

B. Optimisation Space Description

The physician has — depending on the diagnostic task —
different demands regarding the properties of the resulting
image: First, the contrast of gray matter and white matter
to the main image as well as to one another is of interest.
Usually, high contrast is preferred. Second, the signal-to-noise
ratio in Cerebrospinal Fluid (CSF), as well as both gray and
white matter, is essential. All six values are real-valued and
non-negative. Third, usually, the absence/presence of ghost
artefacts is relevant. Ghost artefacts are shadow copies of the
actual image that occur at different places in the image. Fourth,
the image’s sharpness and homogeneity are relevant to the
physician. A measure that is directly linked to the patient is
motion sensitivity: In principle, the patient should lie still;
however, often, this is impossible. Motion sensitivity describes
how reactive the image quality is to the patient’s motion. A
comparable measure is distortion sensitivity. These last five
values are all real-valued as well and lie between 0 and 1.
Finally, an essential factor is the acquisition time, i.e. how long

it takes to complete the examination. Some patients may not be
able to lie in the MR tube for longer than a few seconds. Then,
the sequence definition produces a quick examination. All in
all, this leads to an optimization space (with variables that
may be subject to optimisation or constraints for optimisation)
of O = R12

>=0, with the above-mentioned restrictions (see the
right part of Table I).

C. Optimisation Task

Before we finally describe the optimisation task, we com-
ment on the functional relationship between S and O. Ob-
viously, the optimisation in O results from variations in S.
However, no explicit function

f : S → O (1)

exists. As is usual in this kind of situation, we fall back to a
surrogate model (see [6] for exists. As is usual in this kind
of situation, we fall back to a surrogate model (see [6] for an
extensive survey on types of surrogate models and forms of
usage). We therefore use the trained function f̃D : S → O
based on a set of training data D, as has been discussed in [5].
Hoinkiss et al. extensively describe their decision process
for the model as well as the analysis of the training data.
Additionally, they state goodness-of-fit values like the mean
squared error (MSE), which allows for the informed usage of
their model. Using a surrogate model increases the difficulty of
the optimisation task significantly due to the following reasons:
First, f̃D is error-prone, even when well-trained. Second, its
quality is highly dependent on the training data D. Third, it
decreases the chances of applying gradient-based optimisation
techniques.

We will now discuss the structure of potential optimisation
tasks. In general, the physician needs the i − th of the
optimisation space components to be maximised or minimised,
i.e.

S ∋ xopt = argmax
x

(yi) (2)

where yi denotes the i-th component of O ∋ y = f(x) and
argmax may be replaced with argmin depending on the opti-
misation task. In [5], it was stated that this main optimisation is
usually accompanied by further restrictions, however, usually
on the optimisation space rather than the search space. These
restrictions can be strict, i.e. must not be violated, or tendencies,
i.e. should not be violated. Hence,besides usual constraints of
the form

csj(x1, x2, ..., xs) ≤ 0 , 1 ≤ j ≤ m, s = dim(S) (3)

which restrict the search space, we additionally have constraints
of the form:

cok(y1, ..., yo) ≤ 0 1 ≤ k ≤ l, o = dim(O) (4)

cs stands for constraint-searchspace and co for constraint-
optspace. Please note that the form of constraint is the
general form, which includes expressions like ETL ≤ 512⇒
ETL−512 ≤ 0. Remember that some constraints may denote
tendencies, e.g. avoiding ghost artefacts, that need not be be
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Fig. 2: Automated Sequence Determination Process

fulfilled but should be. All in all, we search for an element
of the search space that fulfills the optimisation goal, while
keeping the constraints on the optimisation space as well as
the interdependencies of the search space to make sure it
corresponds to a valid sequence.

I I I . M E T H O D O L O G Y

In Figure 1, we depict the usual workflow of an MRI
program specification. The aspired automated workflow we are
working towards is depicted in Figure 2. When the radiologist
receives the physician’s request, he formulates it in a formal
manner that is still close to natural language. To that end,
in [5], a domain-specific language (DSL) was developed.
This formal optimisation requirement is transformed into
an evolutionary algorithm configuration. The optimisation
process is then carried out using a trained model f̃ of f .
Finally, it results in an element of the defined search space,
which is then transformed into a sequence formulation that—
again—conforms to a DSL, which is close to natural domain
language, i.e., easy to understand. This sequence can finally be
automatically transferred to an MRI program. Instead of having
a profound knowledge of the different aspects of sequence
generation and programming, the radiologist now only needs
to transform the MRI request to the optimisation task language.

Figure 2 also graphically depicts this work’s contribution
in a dark blue colour. The parts of the non-automated process
are in dark gray, whereas the work of [5] are in light blue.

A. Optimisation technique

Because the problem at hand is multi-modal and non-
differentiable (see [7] for works on differentiability), it is
necessary to use an algorithm for optimisation that requires
function evaluations only and does not depend on gradient
techniques. The multi-modality suggests a stochastic approach
to keep the possibility of leaving local optima. Consider-
ing both requirements, we propose a bio-inspired approach,
namely genetic algorithms [8]. Their stochastic, population-
based nature, together with a strictly function-based evaluation
technique, can handle the challenges of the given task.

Genetic algorithms model the evolutionary process of select-
ing the fittest individuals for the next generation and recombi-
nation. Additionally, mutation introduces some variance to the
population. When a given termination criterion is met, usually
a fixed number of generations, the algorithm terminates, and
the best candidate is returned.

Algorithm 1 Adapted Genetic Algorithm
p0 ← pinitial
for z = 1 to i ≤ generations do

θ ← computeMalusForV agueConstraints
psz ← select(pz−1, d(f̃(pz−1)) + θ)
ppz ← select(pz−1, d(f̃(pz−1)) + θ)
poz ← mutate(recombinate(ppz), correlationInfo)
filterStrictConstraintsViolations(poz)
pz ← psz ∪ poz

end for

Genetic algorithms are a versatile tool that is adaptable to
many use cases and requirements. During our description of
the optimisation task, it became apparent that several adaptions
need to be made to the standard algorithm. Algorithm 1 shows
the principle of a standard genetic algorithm, which is enhanced
with the problem-specific adaptions. We will describe these
adaptions in the following paragraphs.

a) Handling of constraint types: There are several possi-
bilities for dealing with constraints [9]. They can be divided
into two categories. The first category does not allow the
existence of individuals that violate any constraint, and the
second one discourages their existence by worsening their fit-
ness. As the optimization requirements can contain constraints
that must not be violated (e.g., acquisition time < 5 min) as
well as constraints that may slightly, however not massively,
be violated, we adapt both strategies in a configurable way.
Individuals are killed at birth when a strict constraint is violated.
For non-strict constraints, we add the following malus to the
fitness function:

θ(x) =

mnonStrict∑
j=1

θSj · |csj(x1,x2, ...,xs)| (5)

+

lnonStrict∑
k=1

θOk · |cok((f(x))1, (f(x))2, ..., (f(x))o)|

where θOk , θSj are weights with negative values for maximi-
sation tasks and positive values for minimsation tasks (each
time worsening the fitness, therefore making it harder for the
individual in the population). The summation only runs over
all non-strict constraints, as the strict constraints are handled
by the killed-at-birth strategy.

b) Treatment of surrogate function: As mentioned in
Section II, there is no explicit relationship known between
image metrics and sequence parameters. Therefore, there is no
canonical fitness function for the evolutionary algorithm. In
situations like this, a reliable technique is the usage of surrogate
functions (see [6], [10]). We use the trained function from [5]
as a surrogate function and propose the usage of a density



estimation de [11] to soften the influence of prediction errors.
This technique estimates the density of search space variables
in the training data and uses this information to smooth out
extreme optimisation function results in search space areas
where little training data is present.

c) Treatment of interdependent search space: The search
space contains dependencies between dimensions. For example,
ETL, Epi-Factor and Refocusing Angle influence each other
in their choice, as well as TE, TR, and readout duration,
when talking about reasonable solutions. Through mutation and
recombination operators in the genetic algorithm, it is possible
to produce generations that do not contain these dependencies,
i.e. Cov(X1

i , X
1
j ) ̸= Cov(X2

i , X
2
j ) ̸= ...Cov(Xzmax

i , Xzmax
j ),

where Xz
i denotes the random variable of the i-th search

space variable in the z-th iteration of the genetic algorithm.
To contain the covariance similar between generations, we
apply correlation-aware mutation and recombination operators
as proposed in [12]. They ensure that all correlated components
of the search space are mutated (or recombined, resp.) together.
This keeps the dependencies similar throughout the algorithm.
The solution improvement stems from a change in the expected
value and variance of the search space variables.

B. Translation of optimisation requirements to configuration

The presented optimisation requirement DSL of [5] contains
three main parts: First, the optimisation goal itself, which states
optimisation space variable and direction. Second, restrictions
to obey, which contain constraints that must not be violated.
Third, properties to aim for, which can be of a constraint
nature or categorical type (very high — very low). We generate
the fitting configuration for the optimisation tool as follows:
For the optimisation goal, the direction is given as maximize
:= true|false, and the goal is specified by setting the
corresponding weight for the fitness calculation to 1.0. The
restrictions of type obey are directly transformed to constraint
configurations of the form constraint(expression,
"strict");, where expression equals the left side
of the constraint. The properties to aim for that resemble
constraints are transformed analogously. However, they receive
the value "vague" instead of "strict". The properties
to aim for—that are categorical—are transformed into
constraints with cardinal values constraint(variable
- toCardinal(categorical value), "vague");
where the categorical value depends on variables it refers to, e.g.
very high sharpness translates to constraint(Sharpness
>= 0.9, "vague");.

C. Repairing the optimisation result and translating it to
sequence description

The result of an optimisation process is the vector representa-
tion of the search space. However, to (a) make it easier readable
for the radiologist, (b) allow human improvement, and (c) allow
the processing of this result to a scanner-compatible sequence
information, we translate the result in the MRI sequence
model DSL of [5]. This has the advantage that the model
already includes the necessary semantics through the nesting

of the information. Most parameters, however, can be directly
processed as information after a short sanity check. Others
need to be subjected to a repairing procedure. This is usually
to account for actual applicability as sequence and compliance
with basic interdependencies in the data. Additionally, the
most upper level of sequence description (which type of echo
and which type of readout) is not part of the optimisation
output and is computed through the information in the variables
refocussing angle, ETL, and Epi-factor.

I V. I M P L E M E N TAT I O N

We implemented the proposed methodology—shown in
Figure 2—using the model-driven development paradigm [13]
using different Java frameworks. In model-driven development,
the (data) model is the essential aspect and the basis for
data transformations. To this end, we are using Xtext [14],
a framework from the Eclipse modeling framework [15], for
specifying the optimisation task DSL. The DSL specification
defines the grammar for optimisation tasks and how a file—that
conforms to this grammar—is translated into an optimisation
task model. We then use Xpand—a model-to-text framework—
to automatically generate optimisation task-specific configura-
tion files for the open-source optimisation tool suite EvoAl [16].
The optimisation tool is partially built on Jenetics [17] to search
for an optimal solution to the configured problem. Jenetics is
a Java library providing an adaptable evolutionary algorithm.
In this search process, we use Smile [18] to pre-train a model
to predict the fitness of MRI sequences. The final solution is
then translated into an MRI sequence model that allows the
description of MRI sequences that are independent of the used
MRI scanner.

V. E VA L U AT I O N

As the main contribution of this paper is the chosen adapted
evolutionary algorithm (genetic algorithm), this section mainly
focuses on its evaluation. We aim to answer the following
evaluation questions:

Research Question 1: First, does the proposed optimisation
strategy find MRI sequences that fulfil the given requirements
and are optimal concerning the used training data?

Research Question 2: Second, how does the chosen algo-
rithm compare to a standard evolutionary algorithm that does
not consider the training data’s peculiarities and the given
search space interdependencies?

Research Question 3: Third, what is the relationship between
optimisation result and time effort, i.e., to what degree does
an increase in population size and generations improve the
algorithm’s result?

A. Evaluation Setup

We specify four sets of requirements that model different
clinical situations, translate them into constraints and optimi-
sation tasks and analyse them using varying parameter sets
of the evolutionary algorithm. The four sets of requirements
are modelled with respect to the training data in the sense
that—given the restricted set sequence types in the training



data—sequences do exist that fulfil the requirements. That
does not mean the set of requirements has to be present in the
training data; however, it is reasonably close to some that are.

Every setup (requirement and parameter set) is run ten times
to account for stochastic effects. For every individual x of each
run, we collect the relative optimality optr = fr(x)/opt datar,
the proportion of violated strict constraints, and the proportion
of violated soft constraints. For each setup, we report averages
of these values over ten runs and the maximum.

We vary the following parameters for the evolutionary
algorithm: As general features for the evolutionary algorithm,
we vary whether we use the fitness adaption and/or correlation-
aware operators (no vs. with density and correlation vs.
normal). Additionally, we have a look at the maximum number
of generations to get some understanding of what maximum
number of generations may be sufficient. This keeps the goal
in mind to produce a feasible setup for reality, which would
include a timely computation. Last but not least, we experiment
with different population sizes, ranging from 20 to 500.

Note that the variation of the maximum number of gener-
ations does not require separate evaluation runs. All setups
are run for 1000 generations, however, we evaluate the above-
mentioned metrics after 10, 50, 100, 200, and 500 evaluations.

B. Evaluation results—description

We focus on describing the results for a target specification,
which aims to maximise the signal-to-noise ratio in CSF, while
having a white and gray matter contrasts of at least 20 and
15, resp. and an avoidance of ghosting. We will comment
on the behaviour of the other target specifications later on. In
Figures 3 - 6, the evolution of the mean of the population (over
all runs) and mean of the maximum of the population (over all
runs) is depicted (dark blue points stand for max, light blue
points for mean). Please note that only those individuals that
satisfy the weak constraints, as well as the strict constraints,
were included in the computation of this data. Furthermore, the
reported values are those achieved by using the surrogate model
as the predictor of the individuals. The adaptions through
constraints or density adaption are not included in these values
to keep the variants comparable.

We first have a look at the optimisation results for a high
population count (m = 500) and a low probability for mutation.
The results (as described above) are shown in Figure 3. The
left side shows the results for no density, i.e., the surrogate
model is used as such for the fitness function, and the right
side shows the result for the density adaption. The upper facets
show the results for using the correlation adaption, and the
lower facets show these for using standard mutation operators
and crossover.

First, we see that the mean and max show comparable
behaviour as was to be expected. They follow the same
trajectory, with the maximum a little more unstable than the
mean. This was to be expected through the population size
of 500. The results using no density adaption reach very high
values very fast after around 50 generations. The density and
correlation adapted results first drop and then increase until
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Fig. 3: Results for BSSFP-Setup (well represented in training
data, differentiated by correlation and density adaption usage)
with low mutation probability and population size of 500

they stabilise at around 100 generations but at a much lower
value. The density-adapted but not correlation-adapted setup
decreases and then stabilises at a value below zero.

These results need some domain context to be correctly
interpreted. A signal-to-noise ratio is always higher than zero,
and the highest signal-to-noise ratios for CSF lie at around
300 in the training data. With this in mind, we can turn to an
interpretation of the presented results. Both variants with no
density adaption do perform significantly better in maximising
the respective value; however, this value reaches unrealistic
areas with respect to the domain and training data. This leads to
the assumption that the high values reported result from a worse
prediction of the fitness value at this position. An expert review
of the actual resulting sequence confirms its invalidity. The
density approach does lead to worse results in terms of sheer
prediction value; however, it seems to be in a more realistic
area. This is exactly in line with the explanation by Plump et al.
when presenting this technique: Areas with little training data
are flattened, i.e. high fitness predictions are decreased, and
low fitness predictions are increased to prevent extreme values
with small confidence to steer the population in the wrong
direction [11]. Validating the final sequences leads to a positive
result. The lower right corner shows an entirely unexpected
behaviour as it seems to minimise the fitness results. We
assume that this is the case because the considered sequences
do not follow the given interdependencies and, therefore, result
in wrong fitness predictions.

Figure 6 shows the results for a population of m = 500
and a high mutation rate (p = 0.8). The behaviour of the
first three facets is comparable to Figure 3, besides the slower
convergence and the greater distance between the mean and
the maximum, which is, however, to be expected for a high
mutation rate. The right lower facet shows a different behaviour
than before: It works now as expected, resulting in results
comparable to the setup with both density and correlation
adaption. We assume that the negative results from Figure 3
are prevented through the high mutation rate, thus more
likely achieving valid sequences and thus resulting in good
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Fig. 4: Results for BSSFP-Setup (well represented in training
data, differentiated by correlation and density adaption usage)
with high mutation probability and population size of 500
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Fig. 5: Results for BSSFP-Setup (well represented in training
data, differentiated by correlation and density adaption usage)
with low mutation probability and population size of 20

predictions through the surrogate model.
After describing the results for the highest instance of

population variations, we now turn to the smallest one to
discuss the other end, namely m = 20. Figure 5 shows the
results for a low mutation rate. First of all, the comparison
of mean and maximum values confirms the small population
size, as they are much closer to one another and the mean
values show more deviation over the course of time, i.e. single
extremal values in the population have a higher influence
which is to be expected with a smaller population size.
Second, the left-hand side variant (i.e. with no adaption of
the surrogate model) performs in a comparable manner to the
high population setup. Hence, it shows the same weaknesses,
i.e. unrealistic results through a bad fit of the surrogate model.
The density-adapted variants both show negative behaviour
as well, as they seem to minimise their results. We assume
that due to the small population size the correlation-adapted
alterers cannot show their potential, as their computation relies
on population-based measurements which are less reliable in
small population sizes. This could also explain the comparable
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Fig. 6: Results for BSSFP-Setup (well represented in training
data, differentiated by correlation and density adaption usage)
with high mutation probability and population size of 20

behaviour for the non-adapted alterers in the lower right facet.
Last but not least, Figure 6 shows the results for a population

size of m = 20 and a high mutation rate of p = 0.8. Means
and Maximum show the expected behaviour resulting from
a small population size (more deviation in the mean, less
distance between both measures) as well as the effects of a high
mutation rate (slower convergence). The non-density adapted
left-handed results again behave as before. Nevertheless, the
right facets show a different behaviour now. The evolutionary
algorithm using the correlated adaption performs comparably
well again. The high mutation rate seems to remedy the
negative effects of the small population size from before. The
non-correlated approach, however, minimises again instead of
maximising - here, the higher mutation rate can not counteract
the small population size.

Investigating the remaining setups leads to comparable
results for two of them with feasible sequences that fulfil the ex-
perts’ expectations as optimisation results. The fourth, however,
does not show the expected result with the surrogate model,
nor are the results valid for MRI imaging. We assume this is
due to the fact that this type of sequence is underrepresented
in the ML model presented by Hoinkiss et al. and is, therefore,
at a disadvantage during optimisation.

V I . D I S C U S S I O N

A. Evaluation Results

Regarding our presented evaluation questions, we can an-
swer question 1 positively, however, in a rather anecdotical
manner. For three of our target specifications, the proposed
variants with correlation mutation operators and the density
fitness adaption resulted in valid sequences that (according
to the trained model) fulfill the constraints and maximize the
specified value (w.r.t the training data). Nevertheless, a more
thorough target variation might be necessary to answer this
question more confidently.

Regarding our second question, we find that the density
adaption on the surrogate model is necessary to achieve feasible
sequences instead of being steered to an unknown region of



sequences, which simply perform well on the extrapolation
of the surrogate model. The effectiveness of the correlation
adaption depends on population size and mutation rate. For a
high population size, it performs well but not always better
than the normal alterers, and for a low population, it only
performs well for a high mutation rate but always outperforms
the standard approach.

For question 3 - from the given results, 200-300 generations
are usually enough for the algorithm to stabilise and thus yield
a result. Population size, however, is another matter. It seems
that in order to achieve positive effects through the correlation
adaption on the altering operators, a population size of 100 is
necessary.

B. Threats to validity

In this paragraph, we discuss evaluation decisions that may
invalidate or weaken our results, as well as workflow decisions
that may threaten the actual applicability of our approach.

In our evaluation, we measure the success of an evolutionary
algorithm run with regard to the training data. However, while
the training data is a good representation of both search
and optimisation space (as reported in [5]), it is not clear
that the overall optimum (given all possible sequences) is
in it. Therefore, a good algorithm result— as evaluated in
Section V— does not mean that the actual optimum has been
found. Furthermore, when the solution is a sequence in a sparse
area of the training data, the estimated function may differ
from the true function. Therefore, the resulting fitness value
is only partially reliable. A possibility to truly evaluate this
result would be an additionally run simulation or an actual run
on an MRI. However, for the amount of evaluation runs, the
latter is not feasible.

C. Features to improve and further steps

Our goal is a fully automated MRI sequence optimiser for
practical use. While this work shows several necessary steps
towards that goal, some aspects still need more work from our
point of view. First, we are interested in automatically adapting
the evolutionary algorithm parameters to the optimisation task.
The presented solutions show a good, general approach; how-
ever, optimisation tasks with unusual constraints or optimisa-
tion parameters may benefit from an automatic adjustment. The
idea is to build a model predicting the evolutionary algorithm’s
success from the set parameter. However, the training of
this model requires a much more profound database for the
optimisation function and valid optimisation results. Second,
the estimated optimisation function needs improvement. On
the one hand, the machine learning technique might benefit
from more domain information about dependencies in the
data. On the other hand, domain experts are researching AI-
supported simulations of image metrics given the sequence
parameters [19]–[21]. Our approach could benefit from this
work, as the possibility of having faster simulations may allow
for a merged approach in the evolutionary algorithm. Third,
to make this automated workflow useful for researchers (and
not only practitioners) in the MRI domain, an extension of the

sequence language would allow the study of more sophisticated
MRI sequences. It would be beneficial for developing new
sequences because possible sequence definitions could be
proposed by the algorithm, possibly reducing experimental
time at the MRI.

V I I . C O N C L U S I O N A N D O U T L O O K

The non-invasiveness of MRI, which allows for a precise di-
agnosis without harming the patient, makes it an essential tool
in medical diagnosis. However, sequence programming and
adjustment of related parameters with respect to the clinician’s
request is a demanding task requiring a lot of experience and ex-
pert knowledge. The necessary experience and knowledge are
critical bottlenecks for the availability of this tool, especially
in underdeveloped countries. This paper proposes the next
critical step in building a fully automated sequence optimizer—
a flexible, automatically configurable evolutionary algorithm
for the optimisation process. We successfully evaluated this
optimizer regarding the supplied training data and showed that
the choice of features improves the optimiser compared to a
standard evolutionary algorithm. In further work, we plan to
develop an automatic adaption of the optimizing parameters
to the optimisation task and an improvement of the surrogate
function replacing the unknown optimisation function.
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