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ABSTRACT
Quantum computing offers a promising alternative to con-
ventional computation due to the theoretical capacity to
solve many important problems with exponentially less com-
plexity. Since every quantum operation is inherently re-
versible, the desired function is often realized in reversible
logic and then mapped to quantum gates. We consider the
realization of reversible circuits using a new class of quantum
gates. Our method uses a mapping that grows at a very low
linear rate with respect to the number of controls. Results
show that, particularly for medium to large circuits, our
method yields substantially smaller quantum gate counts
than do prior approaches.

Categories and Subject Descriptors
B.6.3 [Design Aids]: Optimization

General Terms
Design
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1. INTRODUCTION
Quantum computation [1] offers the promise of efficient

computing for problems that are of exponential difficulty for
classical computing paradigms. Here, information is stored
in terms of qubits which provide the probabilistic superpo-
sition of the Boolean states 0 and 1. This enables solutions
for many important problems (e.g. database search, factor-
ization, graph problems) significantly faster than with clas-
sical approaches (see e.g. [2, 3, 4]). The states of the qubits
are modified by quantum operations which are inherently
reversible and can be represented by unitary matrices.

Considering that many of the established quantum algo-
rithms include a significant Boolean component (e.g. the
oracle transformation in the Deutsch-Jozsa algorithm, the
database in Grover’s search algorithm, and the modulo expo-
nentiation in Shor’s algorithm), it is crucial to have efficient
methods to synthesize quantum gate realizations of Boolean
functions.The problem is often approached by a two-stage
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procedure: First, a reversible circuit is designed using a re-
versible gate library. Then, the resulting reversible circuit is
mapped into an equivalent quantum circuit.

The synthesis of reversible circuits has been extensively
addressed e.g. in [5, 6, 7]. In this work, we focus on the
mapping of reversible circuits to efficient quantum circuits.
So far, the well known NCV quantum gate library (NOT,
controlled-NOT and square-root-of-NOT gates) introduced
in [8] has been applied to the mapping problem [9, 10]. Dif-
ferent optimization techniques have been introduced
e.g. in [11]. However, mappings based on the NCV-library
become very expensive particularly if large reversible gates
are considered which often require so called ancillaries, i.e. cir-
cuit lines being utilized as temporary work lines only.

In this paper, we consider a modified NCV library moti-
vated by the approach introduced in [12]. We introduce a
new methodology for mapping reversible circuits into quan-
tum circuits using this library. We demonstrate that the
new library leads to realizations for multiple-control Toffoli
gates with far fewer quantum gates than have been found
using the NCV library. Our approach uses a structure sim-
ilar to one recently introduced in [13]. However, while that
work addressed a particular application, we here consider
the realization of general reversible circuits.

Experiments demonstrate the benefits of the proposed
mapping methodology. Compared to the best previously
introduced methods, we show that our mapping yields sub-
stantially smaller circuits particularly for medium to large
scale problems. More precisely, improvements of around
70% can be achieved on average. In the best case, the size
of the circuits can even be reduced by approximately 90%.
The proposed mapping has other advantages like the direct
handling of Toffoli gates with mixed-polarity controls, as
well as a better consideration of additional technology-based
constraints like the nearest-neighbor constraint.

The remainder of this paper is structured as follows. The
next section briefly reviews the basics of reversible and quan-
tum circuits. Section 3 introduces the new gate library moti-
vated by the work in [12] which forms the basis for our map-
ping methodology. Afterwards, the proposed mappings are
presented in Section 4 and evaluated in Section 5. Finally,
further benefits of the proposed mappings are discussed in
Section 6 and conclusions are drawn in Section 7.

2. PRELIMINARIES
This section presents the background necessary for this

paper. Readers interested in more detail should consult the
literature, e.g. [1].

2.1 Reversible Functions, Gates and Circuits
A Boolean function f : Bn → Bm, B = {0, 1} with inputs

X = {x1, . . . , xn} is reversible iff it has the same number
of inputs and outputs i.e. n = m, and it maps each input
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Figure 1: An MCT circuit for a Peres gate (a) and corresponding NCV (b) and NCV-|v1〉 (c) circuits.

pattern to a unique output pattern. Otherwise, the function
is termed irreversible. A reversible function can be realized
by a circuit comprised of a cascade of reversible gates with
no fan-out and feedback [1].

Several reversible gates have been introduced including
the Toffoli gate [14], the Fredkin gate [15], and the Peres
gate [16]. A multiple-control Toffoli (MCT) gate, a direct
generalization of the basic Toffoli gate, has a target line
xj and control lines {xi1 , xi2 , . . . , xik}. This gate maps
(x1x2 . . . xj . . . xn) to (x1x2 . . . (xi1xi2 . . . xik )⊕xj . . . xn), i.e.
the target line is inverted if all the controls have value 1;
otherwise the value on the target line is passed through un-
changed. The values on the control and unconnected lines
always pass through the gate unchanged. An MCT gate with
no controls always inverts the target and is a NOT gate. An
MCT gate with one control line is called a controlled-NOT
(CNOT) gate (also known as the Feynman gate). The case
of two control lines is the original gate defined by Toffoli.

MCT gates are universal in that all reversible functions
can be realized using this gate type alone [14]. Fredkin and
Peres gates can, for example, be realized using MCT gates.
This paper considers reversible circuits composed of MCT
gates. An MCT gate is denoted by T (C; t) where C ⊂ X is
the possibly empty set of control lines and t ∈ X \ C is the
target line. For drawing circuits, we follow the established
convention of using the symbol ⊕ to denote the target line
and solid black circles to indicate control connections.

Example 1. Figure 1(a) shows an MCT circuit with three
circuit lines and two gates that emulates a Peres gate [16].
As shown, this circuit maps the input pattern 111 to the out-
put pattern 100. Note that the gate operations can be applied
in either direction, i.e. from the inputs towards the outputs
realizing a particular reversible function and from the out-
puts towards the inputs realizing the inverse of that function.
This is because every MCT gate is its own inverse.

2.2 Quantum Gates & Circuits
The basic unit of quantum information is the qubit whose

state is written as |Ψ〉 = α|0〉 + β|1〉, where α and β are
complex numbers such that |α|2 + |β|2 = 1. |0〉 and |1〉 are
basis states corresponding to the classical 0 and 1 states.

The quantum state of a single qubit can be expressed as
a vector

(
α
β

)
. The state of a quantum system with n > 1

qubits can be represented as a normalized (length 1) vector
with 2n elements, called the state vector. A quantum cir-
cuit is a cascade of quantum gates and the operation of the
circuit on the state vector corresponds to the multiplication
of appropriate 2n × 2n unitary matrices, one for each of the
quantum gates [1].

A qubit has a potentially infinite number of values and
there is also a potentially infinite number of distinct quan-
tum gates. However, in practice researchers consider circuits
composed of a small number of gate types.

The NCV gate library was introduced by Barenco et al. [8]
and contains the following set of quantum gates:

• NOT gate T (∅; t): A single qubit t is inverted which
is described by the unitary matrix

(
0 1
1 0

)
.

• Controlled NOT (CNOT) gate T ({c}; t): The target
qubit t is inverted if the control qubit c is 1.

• Controlled V gate V ({c}; t): The operation described

by the unitary matrix V = 1+i
2

(
1 −i
−i 1

)
is performed

on the target qubit t if the control qubit c is 1.

• Controlled V + gate V +({c}; t): The operation de-

scribed by the unitary matrix V+ = 1−i
2

(
1 i
i 1

)
is per-

formed on the target qubit t if the control qubit c is 1.
The V + gate performs the inverse operation of the V
gate since V+ = V−1.

The V and V + gates are referred to as controlled square-
root-of-NOT gates since two adjacent identical V , or V +,
gates are equivalent to a CNOT gate.

Example 2. Figure 1(b) shows an NCV gate circuit which
is functionally equivalent to the circuit in Figure 1(a). Note
the quantum value output of the first gate. To apply the cir-
cuit in reverse, i.e. from output to input, V and V + gates
must be interchanged as they are the inverse of each other.

3. A NEW CLASS OF QUANTUM GATES
Although the NCV gate library is universal in the sense

that every reversible Boolean function can be realized by
a circuit composed of NCV gates [8], other libraries are of
interest as they can lead to better circuits, e.g. fewer gates.
In this work, we focus on a modification to the NCV gate
library based on concepts introduced in [12].

If circuits with Boolean inputs use NCV gates only, the
value of each qubit at each stage of the circuit is restricted
to one of {0, v0, 1, v1} where v0 = 1

2

(
1+i
1−i

)
and v1 = 1

2

(
1−i
1+i

)
.

The NOT , V , and V + operations over these four values are:

x NOT (x) V (x) V +(x)
0 1 v0 v1
v0 v1 1 0
1 0 v1 v0
v1 v0 0 1

As shown, NOT is a complement operation, V is the cycle
(0→ v0 → 1→ v1 → 0), and V + is the inverse cycle.

In this work, we adopt a new quantum gate library which
we call the NCV-|v1〉 library. The NCV-|v1〉 gate library is
composed of (1) the three unitary gates (i.e. gates without a
control line) performing the NOT, V, and V + operation as
well as (2) single-control versions of these gates. In contrast
to the NCV-library, and in keeping with the work in [12], the
controlled gates perform the respective operation not when
the control line is 1, but rather when the control line is set
to the value v1. We label control connections for NCV-|v1〉
gates with v1 to emphasize this fact.

Example 3. Figure 1(c) shows an NCV-|v1〉 circuit func-
tionally equivalent to the circuits in Figures 1(a) and 1(b).

Besides the benefits in the physical implementation, as dis-
cussed in [12], this gate library enables a much more efficient
mapping from an MCT gate circuit as we introduce below.

The implementation cost of a quantum gate is heavily
technology dependent. Here we assume that all quantum
gates, NCV and NCV-|v1〉 in particular, have unit cost. Un-
der that assumption the cost of a quantum circuit is the gate
count. This is clearly an approximation but a suitable one
when considering technology independent optimization.
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Figure 2: Mapping a Toffoli gate (a) to NCV gates
(b) and NCV-|v1〉 gates (c).

4. PROPOSED MAPPING METHOD
The common approach to synthesize a quantum circuit

implementing a reversible Boolean function has two steps.
First, a circuit composed of reversible gates implementing
the desired function is synthesized. That circuit is then
mapped to a cascade of gates from the target quantum gate
library. Optimizations can be applied at various stages of
the mapping process (see e.g. [11]).

In this section, we briefly review the established mapping
methodology based on the NCV library. We then introduce
a new mapping approach based on the NCV-|v1〉 library.
We show that, except for very small circuits, the proposed
mapping leads to circuits with significantly fewer gates than
the circuits determined using the established NCV mapping.

4.1 Mapping Individual MCT Gates
The well-known [8] optimal mapping of a Toffoli gate

T ({c1, c2}; t) to a cascade of NCV gates is shown in Fig-
ure 2(b). As shown, five NCV-gates are required. For MCT
gates with more control lines, the number of required NCV-
gates increases rapidly.

Table 1 shows the number of NCV gates required to re-
alize MCT gates with up to 15 controls using the approach
described in [10]. Besides the number of control lines, the
number of ancillary lines available also affects the size of
the quantum gate circuit. An ancillary line is a circuit line
which is neither used as the target line nor as a control line
of a Toffoli gate, and is thus available to be used as a tempo-
rary work line in the quantum realization. For each number
of controls, the rightmost gate count is the lowest possible.
Blank entries indicate when the availability of more ancil-
lary lines is not advantageous. The NCV gate counts given
in Table 1 are the best known for NCV gate realizations of
MCT gates. It is important to note (1) that at least one an-
cillary line is required for three or more controls and (2) that
the gate counts grow quite quickly with the number of con-
trols. In Table 1 for c ≥ 4, assuming the maximum number
of ancillaries required is available, the number of gates is
12c − 28. If only one ancillary is available, for c ≥ 10 the
number of gates required is 24c− 132. These formulas have
been verified for up to 20 controls and it is believed they will
continue to hold for larger numbers of controls.

In contrast, better mappings with much slower linear
growth are possible using the NCV-|v1〉 library. Therefore,
the structure illustrated in Figure 3 for a Toffoli gate with 4
control lines is proposed. Here, the actual operation of the
Toffoli gate (i.e. the inversion of the target line) is performed
by a single CNOT gate controlled by v1. The V -gates ensure
that the control line of the CNOT gate is set to v1 if, and
only if, all control lines c1 to c4 are equal to 1. The last V +

gates are needed to undo the corresponding V operations on
the control lines in order to restore their values.

Generalizing this structure, every Toffoli gate with c con-
trol lines can be realized using a V gate and a V + gate for
each control line as well as a single CNOT gate which op-
erates on the target line. This leads to a total of 2c+ 1
NCV-|v1〉 gates. While for a Toffoli gate with 1 control line
only, this results to a more expensive mapping (3 gates in-
stead of 1), MCT gates with more than 2 controls can be
realized with significant reductions in the number of gates

Table 1: Quantum gate counts for MCT gate real-
izations

NCV gates [10] NCV-|v1〉
Number of ancillary lines gates Ratio

c 0 1 2 3 4 5 6 2c + 1

0 1 1 100%
1 1 3 300%
2 5 5 100%
3 14 7 50.0%
4 20 9 45.0%
5 32 11 34.4%
6 44 13 29.5%
7 64 56 15 23.4-26.8%
8 76 68 17 22.4-25.5%
9 96 88 80 19 19.8-23.8%
10 108 100 92 21 19.4-22.8%
11 132 120 112 104 23 17.4-22.1%
12 156 132 124 116 25 16.0-21.6%
13 180 156 148 136 128 27 15.0-21.1%
14 204 180 172 148 140 29 14.2-20.7%
15 228 204 198 172 160 152 31 13.6-20.4%
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Figure 3: Mapping of a 4-control MCT gate (a) to
NCV-|v1〉 gates (b).

compared to the established NCV mappings. Furthermore,
the NCV-|v1〉 mappings do not require any ancillary lines.

Table 1 lists the number of NCV-|v1〉 gates required for up
to 15 controls. The gate counts are significantly lower than
the NCV costs. The relative size of the NCV-|v1〉 circuits
to the NCV circuits drops to about 30% at 6 controls and
approaches 20% at 15 controls. We again emphasize the
NCV-|v1〉 gate circuits require no ancillary lines.

4.2 Mapping a Reversible Circuit
In the last section, the mapping of single MCT gates was

considered. We now address how to map circuits composed
of MCT gates to a quantum circuit. This can be done by
a direct substitution of each single MCT gate by its corre-
sponding quantum gate cascade. Even for this simple ap-
proach, the mapping illustrated in Figure 3 leads to sig-
nificant reductions in comparison to the established NCV
mappings. However, even better results can be obtained if
further optimizations are applied.

We employ an optimization method based on the ideas
presented in [11] extended to handle the new NCV-|v1〉 gates.
The optimization process involves a Line Labeling Procedure
(LLP) and a Gate Reduction Procedure (GRP). Both are ap-
plicable to both MCT and quantum gates.

The LLP is used to assign labels to line segments such
that two segments of a line have the same label only if they
have the same functionality. The LLP is Procedure 1 of [11]
extended to handle NCV-|v1〉 gates. The procedure involves
a single pass through the circuit from the inputs toward the
outputs. A stack of gate operations is kept for each line. As a
gate g is processed, the stack for its target line is checked for
a sequence of gates realizing the identity operation. When
one is found the output line for gate g is assigned the same
label that appears on the target line input to the first gate
in the sequence. While this procedure only assigns the same
label to two segments of the same line that have the same
functionality, it is not guaranteed to find all equivalences.
We have identified a few such cases, but in general the LLP



a • • •
b �������� • ��������
c • �������� •

(a)

a • • • • • •

b V V + V + • �������� • V V + V

c • �������� • V V + V • �������� •
(b)

a V •
v1

•
v1

•
v1

•
v1

V +

b �������� V •
v1

V + ��������
c V •

v1
�������� •

v1
V +

(c)

Figure 4: Mapping and optimizing an MCT circuit:
(a) MCT (b) NCV (c) NCV-|v1〉

finds most equivalences in circuits we have considered.
The GRP is Procedure 2 of [11] extended to handle NCV-
|v1〉 gates. The procedure starts from the input side of the
circuit and processes the gates in order. The LLP is used to
label the circuit up to the current gate g of interest. Then,
gate g is moved back through the circuit to each of the places
that have the same labels on its control lines. Gate g can
not be moved past a point where there is a control on the
target line of g. As a gate is moved, a list is made that
contains gates that can be adjacent to it and have the same
target, controls, control labels, and control types. Then,
the gates in this list are removed from the circuit and an
optimized equivalent sequence, which can be empty when
the gates implement the identity function, is inserted in the
position of the removed gate closest to the circuit’s inputs.
The procedure then proceeds for subsequent gates until the
end of the circuit is reached.

In our overall approach, the MCT gate circuit is first
optimized using the GRP . Then, the appropriate NCV-
|v1〉 realization is substituted for each gate in the optimized
MCT circuit. Finally, the resulting NCV-|v1〉 circuit is op-
timized using the GRP. Because of the regular structure of
the new realizations, significant improvements are typical in
the NCV-|v1〉 optimization step.

Example 4. Consider the circuit depicted in Figure 4(a).
No optimization is possible for the MCT gates. Replacing
each Toffoli gate with the appropriate version of the realiza-
tion from Figure 2(b) yields a circuit with 15 NCV gates.
Applying the GRP reduces this to the 12 gate circuit in Fig-
ure 4(b). In contrast, while using the NCV-|v1〉 realization
from Figure 2(c) also results in a 15 gate circuit but applying
the GRP yields the 9 gate circuit shown in Figure 4(c).

5. EXPERIMENTAL RESULTS
In this section, we present results obtained by the pro-

posed approach. We first consider the improvements achieved
by the new mapping methodology. Then, we also briefly dis-
cuss how the resulting circuits have been verified.

5.1 Evaluation
The procedures described in the previous section have

been implemented using Python 2.7.1. Our experiments
were run on a computer with a Core 2 Duo 2.66 GHz CPU
and 4.0 GB RAM. We used a test suite of 138 circuits from
RevLib [17]. The results are shown in Table 2. Due to space
limitations, the table shows only those circuits for which the
improvement was greater than 30% (50 of the 138 circuits).

Each row of the Table gives: (1) The name of the circuit
including the RevLib file index number. Note that Fred-
kin and Peres gates in the RevLib circuits are substituted
by MCT gate realizations before applying our techniques.
(2) The quantum gate count given on the RevLib site (called

quantum cost in RevLib). (3) The NCV gate count for cir-
cuits determined using the mappings from [10] with the op-
timization techniques described in [11]. (4) The gate count
for direct substitution of the 2c+1 NCV-|v1〉 gate realization
for each MCT gate in the given circuit. (5) The direct map-
ping NCV-|v1〉 gate count is reported for the circuit found
by first applying the GRP to the MCT circuit. (6) The
NCV-|v1〉 gate count for the circuit from (5) optimized at
the NCV-|v1〉 gate level using the GRP.

For all 138 circuits, the gate reduction for all circuits in
total is 81.8% with respect to the counts from RevLib and
68.7% with respect to the NCV circuits determined using
the techniques from [10] and [11].

As the results in Table 2 show, our approach does very
well for medium to large circuits since those circuits tend
to have more MCT gates with greater than 2 controls than
do the small circuits. In addition the smaller circuits often
have a high proportion of CNOT gates which as noted above
require 3 NCV-|v1〉 gates. To be precise, our methods yield
slightly more gates than the RevLib gate count for 33 of
the circuits: 22 with 1-3 extra gates; 4 with 4; 2 for each
of 5, 6 and 7; and 1 circuit with 8 additional gates. The
great majority of these circuits are small and have a high
proportion of CNOT gates, i.e. the fact that CNOT is not
a primitive in the NCV-|v1〉 library has a major effect. In
contrast there are 21 circuits where the NCV-|v1〉 circuit has
more than 1000 fewer gates and a further 6 with from 139
to 984 fewer gates than the circuit reported in RevLib.

The total improvement comes primarily from the new
MCT to NCV-|v1〉 gate mapping. Besides, the optimiza-
tions described in Section 4.2 reduce the gate count by a fur-
ther 4.5% (MCT gate optimization) and by a further 32.5%
(NCV-|v1〉 gate optimization) on average. Note that for n-
line circuits that have an MCT gate of size n, an ancillary
line must be added to map to NCV circuits. Additional lines
are never required for NCV-|v1〉 circuits. Considering unit
delay for all 1-qubit and 2-qubit quantum gates as in [18],
NCV-|v1〉 circuits are much faster than the NCV circuits as
they have lower logic depth.

5.2 Circuit Verification
Verification methods have been applied to confirm that

the circuits produced by our methods are functionally equiv-
alent to the original RevLib circuits. This is an interesting
problem on its own. The RevLib circuit is binary whereas
the circuit our method produces uses 4-valued logic gates.
Also our basic MCT gate substitution relies on the fact the
inputs are restricted to values 0 and 1.

Our verification procedure uses Quantum Multiple-valued
Decision Diagrams (QMDD) [19] and is basically the ap-
proach described in [20]. The differences are that the gates
in the RevLib circuit are treated as 4-valued as are of course
the gates in the circuit we produce, and equivalence of the
circuits is not just a matter of confirming the equality of the
QMDD for the two circuits. Rather, equivalence checking
requires a depth-first comparison of the two QMDD that
restricts the input line values to 0 and 1, ignoring v0 and v1.

The verification procedure is implemented in C. On the
computer described above, 115 of the circuit verifications
each took only a fraction of a CPU second. However, the
larger circuits take significantly longer, e.g. just under 3
hours of CPU time for plus127mod8192 162. It is inter-
esting that it is not the largest circuits that take the longest
time to verify. More detail can be found in [20].

6. FURTHER BENEFITS
As shown above, applying the NCV-|v1〉 gate mapping

leads to much smaller quantum circuit realizations in com-
parison to the established NCV methodology. The NCV-|v1〉



Table 2: Experimental Results
Benchmark Previous Approaches Proposed Approaches (using NCV-|v1〉)

NCV with Direct MCT Gate NCV-|v1〉 Gate % Improv. % Improv.
RevLib [17] Opt. [10, 11] Mapping Optimization Optimization wrt [17] wrt [10, 11]

plus63mod8192 164 45025 19566 6620 5921 2135 95.3 89.1
plus127mod8192 162 73357 35348 12318 10910 3972 94.6 88.8
plus63mod4096 163 32539 14652 5327 4672 1779 94.5 87.9
cycle10 2 110 1202 720 219 219 91 92.4 87.4
hwb9 121 44665 28629 13149 12920 10156 77.3 64.5
hwb9 122 44653 28629 13149 12920 10156 77.3 64.5
hwb9 119 44714 28660 13168 12938 10180 77.2 64.5
hwb9 120 44702 28660 13168 12938 10180 77.2 64.5
hwb8 113 16530 10328 5065 4957 3786 77.1 63.3
hwb8 118 16522 10328 5065 4957 3786 77.1 63.3
hwb8 114 14699 8815 4456 4378 3235 78.0 63.3
hwb8 115 14691 8815 4456 4378 3237 78.0 63.3
ham15 107 1831 1155 836 724 447 75.6 61.3
hwb9 123 22510 14487 9151 9145 5704 74.7 60.6
hwb7 59 5236 3500 2017 1969 1434 72.6 59.0
hwb7 61 3876 2863 1622 1596 1226 68.4 57.2
hwb8 116 7015 4825 3383 3383 2109 69.9 56.3
hwb8 117 7013 4825 3383 3383 2109 69.9 56.3
hwb6 56 1530 1150 766 756 546 64.3 52.5
rd53 130 232 195 112 112 93 59.9 52.3
hwb7 62 2611 1973 1495 1495 957 63.3 51.5
4gt4-v1 74 57 46 31 31 23 59.6 50.0
hwb7 60 4170 2989 2286 2121 1524 63.5 49.0
4gt12-v1 89 45 37 23 23 19 57.8 48.6
4gt4-v0 72 54 34 30 25 18 66.7 47.1
alu-v2 30 114 103 82 79 55 51.8 46.6
mod5adder 128 83 84 59 59 45 45.8 46.4
hwb6 57 1171 872 829 728 473 59.6 45.8
decod24-v3 45 35 35 25 25 19 45.7 45.7
sym9 148 4368 672 1722 616 374 91.4 44.3
sym6 145 777 212 276 187 118 84.8 44.3
ham15 108 453 356 320 321 202 55.4 43.3
mod5adder 127 125 104 75 75 60 52.0 42.3
alu-v2 31 101 83 69 70 48 52.5 42.2
alu-v2 32 39 38 31 28 22 43.6 42.1
hwb5 53 315 282 257 254 166 47.3 41.1
rd53 131 119 90 76 70 55 53.8 38.9
rd53 132 117 90 76 70 55 53.0 38.9
rd53 133 128 72 68 65 45 64.8 37.5
rd53 134 120 72 68 65 45 62.5 37.5
mod5adder 129 77 76 65 65 48 37.7 36.8
4gt4-v0 73 89 49 73 53 31 65.2 36.7
4gt4-v0 80 37 28 21 21 18 51.4 35.7
4gt5 77 28 28 20 20 18 35.7 35.7
one-two-three-v0 97 71 62 57 57 40 43.7 35.5
ham7 104 83 84 91 91 55 33.7 34.5
4gt10-v1 81 34 35 28 28 23 32.4 34.3
decod24-enable 126 86 77 72 72 52 39.5 32.5
decod24-v1 41 22 23 22 22 16 27.3 30.4
4mod7-v1 96 39 33 31 31 23 41.0 30.3

gate mapping has a number of further important benefits.

6.1 MCT Gates with Negative Controls
Thus far, we have assumed that MCT gates have positive

control lines, i.e. that the control lines must all have the
value 1 in order to perform the corresponding operation on
the target line. But a number of reversible circuit synthesis
algorithms, e.g. [21, 22], produce circuits with MCT gates
that also have negative controls, i.e. controls that are acti-
vated by the value 0. This affects the number of gates in an
NCV gate circuit realization.

For example, the circuit in Figure 2(b) has five gates for a
Toffoli gate with two positive control lines. If a Toffoli gate
has one positive and one negative control line, the number
of required gates would remain 5. However, if a Toffoli gate
has two negative controls, an additional NOT gate is needed
leading to a total of 6 gates [9].

NCV realizations of MCT gates with mixed (positive and
negative) controls have been considered in [23]. To give an
idea of the results, the NCV realization of a 3-controlled
MCT gate has 14 gates for 0 or 1 negative controls, 16 for
2 negative controls, and 18 for 3 negative controls. For 15
controls, the number of NCV gates ranges from 228 to 246

if there is one ancillary line available and from 152 to 168 if
13 ancillary lines are available.

The situation is quite different for our new NCV-|v1〉 gate
realizations. Consider the structure illustrated in Figure 3.
To change a positive control to a negative control, the V
gate on that line simply has to be swapped with the cor-
responding V + gate. Hence, our mapping always leads to
2c + 1 gates for c controls regardless of the mix of positive
and negative controls. Thus, in contrast to the NCV situa-
tion, the NCV-|v1〉 gate circuits handle negative controls for
free. And once again, no ancillary lines are required.

6.2 Nearest-Neighbor Constraints
Many quantum technologies, e.g. [24, 25], require that

a circuit satisfies the nearest-neighbor constraint, i.e. all
controlled gates in a circuit have the control line and the
target line adjacent. A circuit can be modified to satisfy this
constraint by adding gates which swap the values of lines so
that only adjacent lines are used. How best to locate the
swap gates has been studied e.g. in [26, 27].

As an example, the NCV circuit in Figure 2(b) does not
satisfy the nearest-neighbor constraint and can not be made
nearest-neighbor by permuting the lines. This also holds for
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Figure 5: (a) MCT gate T ({a, c}; b) and (b) NCV-|v1〉
gate nearest neighbor circuit.

the general case, i.e. existing mappings of MCT gates into
NCV quantum gates require additional swap gates to satisfy
this constraint. Often, a significant number is required.

In contrast, no intervening lines exist in the proposed
structure depicted in Figure 2(c) and Figure 3, i.e. the nearest-
neighbor condition is already satisfied. Moreover, this map-
ping remains nearest-neighbor if the target is the top line in
which case the structure is inverted. If, however, a Toffoli
gate is considered where the target is an inside line, or there
are intervening unconnected lines, the structure is no longer
nearest-neighbor and swap gates (depicted as two ×’s joined
by a line) are required as shown in Figure 5.

As just justified, in many cases the proposed mapping
can be directly applied to technologies requiring nearest-
neighbor constraints. Developing good heuristics for han-
dling the remaining cases is left for future work. Approaches
e.g. introduced in [26, 27] may be exploited for this purpose.

7. CONCLUSIONS
The new NCV-|v1〉 quantum gate library has been shown

to lead to quantum circuit realizations composed of 2c + 1
gates for MCT gates with c control lines. This is significantly
less than the best known quantum realizations based on the
NCV library. We have also shown that negative controls for
an MCT gate are available at no extra cost. Further, the
NCV-|v1〉 gate realizations do not require ancillary lines.

Using the NCV-|v1〉 library, MCT gate realizations to-
gether with extensions to previously introduced optimiza-
tion techniques lead to very significant gate count reductions
especially for medium to large circuits. In fact, on average
improvements of around 70% can be achieved.

The MCT to NCV-|v1〉 gate mappings have better nearest
neighbor properties than do the NCV mappings. Our future
work will concentrate on the nearest-neighbor problem and
in particular on how to incorporate that constraint into ex-
isting optimization procedures. We will also consider the
extension to a gate library allowing a range of gate control
values. Initial work has shown this can lead to more com-
pact circuits. Such an extension is technology dependent.
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