Exploration of Sequential Depth by Evolutionary Algorithms

Nicole Drechsler

Rolf Drechsler

Institute of Computer Science
University of Bremen
28359 Bremen, Germany
{nd,rd} @informatik.uni-bremen.de

Abstract

Verification has become one of the major bottlenecks
in today’s circuit and system design. Up to 80% of the
overall design costs are due to checking the correctness.
Formal verification based on Bounded Model Checking
(BMC) is a very powerful method that allows to prove the
correctness of a device. In BMC the circuits behavior is
considered over a finite time interval, but for the user it is
often difficult to determine this interval for a given Device
Under Verification (DUV).

In this paper we present a simulation based approach
to automatically determine the sequential depth of a Finite
State Machine (FSM) corresponding to the DUV. An Evo-
lutionary Algorithm (EA) is applied to get high quality re-
sults. Experiments are given to demonstrate the efficiency
of the approach.

1. Introduction

Modern circuits contain up to several hundred million
transistors. In the meantime it has been observed that ver-
ification becomes the major bottleneck in circuit and sys-
tem design, i.e. up to 80% of the overall design costs are
due to verification. This is one of the reasons why re-
cently several methods have been proposed as alternatives
to classical simulation, since it cannot guarantee sufficient
coverage of the design. E.g. in [2] it has been reported that
for the verification of the Pentium 1V more than 200 bil-
lion cycles have been simulated, but this only corresponds
to 2 CPU minutes, if the chip is run with 1 GHz.

As alternatives, formal verification or symbolic simu-
lation have been proposed and in the meantime these have
been successfully applied in many industrial projects. To
allow for an early detection of design errors, model check-
ing has been used. While “classical” CTL-based model
checking [4] can only be applied to medium sized designs,
approaches based on Bounded Model Checking (BMC) as
discussed in [3] give very good results when used for com-
plete blocks with up to 100k gates.

But there is one inherent problem when applying
BMC: The circuit is considered over a fixed time inter-

val and to give complete proofs it is important to deter-
mine the sequential depth of the circuit. Recently in [16]
an approach based on simulation in combination with a
toggle-heuristic has been proposed, but experiments have
shown that the method might result in over- or under-
approximations and often gives sub-optimal results. This
makes the technique hard to use for a designer or a verifi-
cation engineer. An exact solution to this problem based
on a problem formulation as quantified Boolean functions
has been proposed in [13]. A SAT-solver is applied to
compute the optimal result, but due to the complexity
of real-world circuits this technique cannot be applied to
larger problem instances.

In this paper we present a simulation based algorithm
for computation of the sequential depth of FSMs. The
quality of the simulated vectors is evaluated using tech-
niques from Evolutionary Algorithms (EAS). It has been
observed that EAs work very well in testing applications
[6, 5, 14, 12, 10] and here the underlying problem is very
similar. Experiments show that the same quality can be
obtained as the exact approach but using simulation tech-
niques only. By this, the EA technique combines the best
of the two approaches from [16] and [13], i.e. we get the
optimal results but for the evaluation no time consuming
proof techniques, like BDD or SAT, are used, but only
simulation that can be carried out in linear time in the cir-
cuit size.

The paper is structured as follows: First, basic defini-
tions of sequential circuits and sequential depth compu-
tation are outlined. Then the proposed EA for depth ap-
proximation is presented. Experimental results show the
quality of the presented approach and finally, the paper is
summarized.

2. Preliminaries

A synchronous sequential circuit can be described us-
ing a Finite State Machine (FSM). An FSM is a 5-tuple
M = (I,0,S5,4,)), where T is the input set, O is the
output set and S is the set of states. 6 : T x S — S'is
the next-state functionand A : I x S — O is the out-
put function. Since we consider a gate level realization of
the FSM, we have I = B*, O = B!, and S = B™ with

vyl Cooyt)
o S P g
State | * : : * :

Timeframe 1 Time framet

Figure 1. Iterative description of a sequential
circuit

B = {0, 1}. k denotes the number of primary inputs, [de-
notes the number of primary outputs, and m denotes the
number of memory elements. The functions ¢ and A are
computed by a combinational circuit C. The inputs (out-
puts) of the combinational circuit, which are connected to
the outputs (inputs) of the memory elements, are called
secondary inputs (outputs). Sometimes the secondary in-
puts are called present state variables and the secondary
outputs are called next state variables.

For the description of our algorithms we use the fol-
lowing notations: X = z(1),...,xz(n) denotes the input
sequence of depth n. s; denotes the next state defined by
x(z) and Si—1, 1 <1< n.

Using these notations the next state is given by

(f,) _ S0 ift=0
S0 8= §(x(t), s(se,t— 1)) otherwise

In doing so, we consider a synchronous sequential circuit
as an iterative network (see Figure 1).

The state transition graph of an FSM is a labeled di-
rected graph T' = (V, E') where each node v € V corre-
sponds to a state s;, 0 < ¢ < |S|—1, of M, and each edge
e = (v,w), v,w € V, corresponds to a transition from
state s; to state s;. The edge is labeled with y € I* which
is the input vector that affects the transition from s; to s;,
ie.d(y, i) =s;,0<i,7<|S] -1

A path is a sequence of nodes v of 7" where all nodes
are different. Using the definitions above, the sequential
depth of an FSM is given as follows:

Consider an FSM M and its corresponding state
transition graph 7" with a single initial state sq.
Find a path of maximum length starting in sq
such that each node along the path is visited
only once and additionally, the path has maxi-
mum length.

Example 1 In Figure 2 a state transition graph with four
states is illustrated. If the initial state is 00, only path
00-10-11-01 with length 3 exists. All other paths have
a shorter length, i.e. paths 00-01-11 and 00-10-11 have
length 2. The resulting sequential depth of the given ex-
ample is 3.

In the next section we present a simulation based op-
timization technique for determining the sequential depth
of an FSM.

Figure 2. State transition graph

0

3. Evolutionary Algorithm

In this section the different components of the EA are
described. Instead of a single solution, EAs consider a
whole set - also called a population. First, the encod-
ing of these elements and their representation is presented
in Section 3.1. The “critical part” of the EA is to mea-
sure the quality of simulation sequences. This is done in
several steps using multi-objective optimization (see Sec-
tion 3.2). The evolutionary operators used are described
in Section 3.3 and finally the overall algorithmic flow - in-
cluding the detailed choices for the parameter settings - is
discussed in Section 3.4.

3.1. Representation

Each individual in the population represents a set of m
input vectors Y. An upper limit on the length of the vector
set is given by the user and the length of one vector is
given by the number of input variables k. An individual is
a vector set represented by a binary string of length & - |}7|.

During the initialization phase, these strings are ran-
domly chosen.

3.2. Objective Function

3.2.1. Simulation

Each individual is evaluated by the objective function to
determine its quality. For the evaluation of the objective
function the set of vectors represented by an individual is
simulated starting from the initial state s.

e Starting from the initial state sy the set of next states
is calculated:

Y]
S = U (s 80),
=1
where j; € Y.
e Then for each new state in S and Y the set of next
states is calculated. I.e.:

compute_depth (individual){

S:={so};

Snew = {50} ,

Spresent = {50} ;

depth:=0;

do {

fori:=1to|Y|do{
for j := 1t0|S,ew| do {

5= 0(ji,s)
S:=85U{s};

I
b

depth := depth +1 ;
Snew =5 \ Spresent ;
Sp'resent =9,
} Wh”e(snew 7"é @) ;
return depth ;

Figure 3. Objective function

where y; € Y and s; € Sy
e This is repeated, until no new state is found.

A sketch of the algorithm is given in Figure 3. The sets
S, Snew aNd Spresens are initialized with the initial state.
In set S all states reached during the exploration are in-
cluded. S,,.., describes only the set of new states reached
in the present exploration step and Spresent IS S€t .S One
time step before. Then for each vector in Y and each state
in S, the next states are calculated. If no new state
is found the algorithm terminates and the present value of
depth is calculated by the input set Y.

3.2.2. Muulti-objective Optimization

For EAs it has been observed that often a single objective
function is not sufficient to allow for high quality results.
Using only the computed depth as optimization criterion
would prefer input vectors that calculate a maximum (in-
stead of the sequential) depth of the given FSM. Thus,
specialized techniques have been developed following the
paradigm of Multi-Objective Optimization (MOO) [8].

In our application we make use of the MOO technique
proposed in [9] that has been integrated in the software li-
brary GAME [11]. For each criterion a priority has to be
determined, that ranks “how important” this objective is.
The choices for our application are given in Figure 4. As
can be seen, two optimization objectives have the high-
est priority: the total number of reached states has to be
maximized and the computed depth has to be minimized.
Thus, the input sets are optimized such that a maximum
number of states with a minimum depth is reached. Fur-
thermore, objectives with descending priorities maximize
the number of states reached in level k, 2 < k < depth.

Then the input sets where the states are visited “as fast as
possible” are preferred.

3.3. Operators

Now the evolutionary operators that are the “core op-
erators” of EA applications are described. First, we dis-
tinguish between “standard” crossover operators (well-
known for EAs [7]) and problem specific operators [6, 5,
12]. In our framework we only make use of the standard
operators and one problem specific “meta operator”, that
is a generalization of all the others. Additionally, we make
use of “classical” mutation operators to explore the local
region of proposed solutions.

First, the “standard” EA operators are briefly re-
viewed: All operators are directly applied to binary strings
of length [that represent elements in the population.
The parent(s) for each operation is (are) determined by
Tournament-selection. For the selection of each parent el-
ement two individuals are randomly chosen from the pop-
ulation. Then the better individual - with respect to its
ranking in the population - is selected.

Crossover: Construct two new elements ¢; and ¢, from
two parents p; and po, where p; and po are split in
two parts at a cut position . The first (second) part of
c1 (c2) is taken from p; and the second (first) part is
taken from p,. (Notice, that a special case of this op-
erator is the horizontal crossover from [5], where the
cut position is chosen only between two test vectors,
i.e. test vectors are not split up.)

2-time Crossover: Construct two new elements ¢; and ¢,
from two parents p; and p-, where p; and po, are split
in three parts at cut positions 7 and j. The first (sec-
ond) part of ¢; (c2) is taken from py (p2), the second
part is taken from ps (p1) and the last part is again
taken from p; (p2).

Uniform Crossover: Construct two new elements ¢; and
co from two parents p; and ps, where at each position
the value is taken with a certain probability from p;
and p-, respectively.

Next, the problem specific operator is presented. The
string representation of a sequence of vectors is in-
terpreted as a two-dimensional matrix, where the x-
dimension represents the number of inputs and the y-
dimension represents the number of vectors. The operator
works as follows [12]:

Free Vertical Crossover: Construct two new elements
c¢1 and co from two parents p; and po. Determine for
each test vector ¢ a cut position i;. Divide each test
vector ¢ of p; and p» in two parts at cut position i,.
The first (second) part of each test vector of ¢; (c2)
is taken from p; and the second (first) part is taken
from p». (Notice, that the vertical crossover from [6]
is a special case of this operator, if i, is equal for all
test vectors ¢.)

priority objective
1 maximize total number of visited states
1 minimize depth

k.k=2,...,depth

maximize number of visited states in depth k&

Figure 4. Optimization objectives and their priorities

R B Cy C2
Figure 5. Example for Free-Vertical Cross-
over

Example 2 The behavior of the free vertical crossover is
illustrated in Figure 5. The black filled areas result, if
vector sets of different size are considered; then, the off-
springs are filled with randomly generated values. (But,
up to now, in this application all individuals have the same
length.)

Moreover, three (standard) mutation operators are ap-
plied which are based on bit-flipping at a random position.

Mutation (MUT): Construct one new element ¢ from a
parent p by copying the whole element and changing
a value at a randomly chosen position i.

2-timeMutation: Perform MUT two times on the same
element.

Mutation with neighbor: Perform MUT at two adjacent
positions on the same element.

Obviously, all evolutionary operators generate only valid
solutions, if they are applied to binary strings.

3.4. Algorithm

We now introduce the basic EA which describes the
overall flow. (A sketch is given in Figure 6.)

e The initial population of size |P| is generated, i.e. the
binary strings of length [are initialized using random
values.

e Two parent elements are determined by Tournament-
selection.

e Two new individuals are created using the evolution-
ary operators with given probabilities.

e These new individuals are then mutated by one of the
mutation operators with a fixed mutation rate.

approximate_sequential depth (circuit) {

generate_random_population () ;

evaluate_population () ;

do {
apply_evolutionary _operators () ;
evaluate offsprings () ;
update_population () ;

} while (not terminal case) ;

return (best_element) ;

}

Figure 6. Sketch of basic algorithm

e The quality of the elements is determined by simula-
tion and MOO ranking.

e The elements which lost the tournament selection in
the present parent population are deleted and the off-
springs are inserted in the population.

e The algorithm stops if the best element has not
changed for 100 generations.

For the experiments the following parameters have
been used: The population size is set to |P| = 24. The
vertical crossover is carried out with a probability of 80%
and one out of the standard crossover operators is carried
out with a probability of 20%, respectively. The offsprings
are mutated with a probability of 15% by one of the mu-
tation operators.

4. Experimental Results

The techniques described in the previous section have
been implemented using the software library GAME [11].
All algorithms are written in C'//C' + + and the experi-
ments were all run on a SUN Ultra with 256 MByte main
memory. As a simulator for evaluation of the objective
function we used a simple functional approach based on
the ideas of [1]. Here, the underlying BDD package is
CUDD from [15]. For the experiments a sample of the
benchmarks from ISCAS were taken.

The experimental results are given in Table 1. The
name of the benchmark is given in the first column. The
columns Sim and SAT give the results from [16] and [13],
respectively. It is important to notice that Sim obtains es-
timations only, while SAT give the exact numbers. As can
be seen, compared to SAT the other technique gives over-

Table 1. Experiments for ISCAS circuits

name | Sim | SAT | EA
s298 18 18| 18
s208 255 | na. | 255
$349 6 | na. 6
$386 n.a. 7 7
s499 n.a. 21| 21
s510 46 | na. | 46
s526 150 | n.a. | 150
641 n.a. 6 6
s713 10 6 6
$820 n.a. 10 10
s953 n.a. 10| 10
s1196 5 2 2
51488 21 21| 21

as well as under-approximations, what makes them hard
to use in real-world scenarios.

The results of our EA approach are given in the last
column. It can be observed that in all cases the exact re-
sults (where this is known) is computed. But since the
EA is based on simulation, it can also be applied to larger
circuits.

In this way, the presented technique combines the best
of [16] and [13], i.e. very high-quality results are com-
puted but for the evaluation no time consuming proof tech-
niques, like BDD or SAT, are used. Instead, simulation
that can be carried out in linear time in the circuit size is
successfully applied.

5. Conclusions

In this paper a simulation-based approach for the com-
putation of the sequential depth of a FSM has been pre-
sented. Due to the choice of the objective function results
of high quality can be obtained. This finds direct applica-
tion in BMC, since the depth of the FSM corresponding
to the DUV gives the results for the maximal time interval
that has to be considered.

The run time of the algorithm is dominated by the sim-
ulation time. For this, it is a focus of current work to in-
tegrate a more efficient parallel simulator in the GAME
software library.

References

[1] P. Ashar and S. Malik. Fast functional simulation
using branching programs. In Int’l Conf. on CAD,
pages 408-412, 1995.

[2] B. Bentley. Validating the Intel Pentium 4 micropro-
cessor. In Design Automation Conf., pages 244248,
2001.

[3] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and
Y. Zhu. Symbolic model checking using SAT proce-

[4]

[5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

dures instead of BDDs. In Design Automation Conf.,
pages 317-320, 1999.

J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L.
Dill. Sequential circuit verification using symbolic
model checking. In Design Automation Conf., pages
46-51, 1990.

F. Corno, P. Prinetto, M. Rebaudengo, and M.S. Re-
orda. GATTO: A genetic algorithm for automatic
test pattern generation for large synchronous sequen-
tial circuits. IEEE Trans. on CAD, 15(8):991-1000,
1996.

F. Corno, P. Prinetto, M. Rebaudengo, M.S. Reorda,
and R. Mosca. Advanced techniques for GA-based
sequential ATPG. In European Design & Test Conf.,
pages 375-379, 1996.

L. Davis. Handbook of Genetic Algorithms. van
Nostrand Reinhold, New York, 1991.

K. Deb. Multi-objective Optimization using Evo-
lutionary Algorithms. John Wiley and Sons, New
York, 2001.

N. Drechsler, R. Drechsler, and B. Becker. A new
model for multi-objective optimization in evolution-
ary algorithms. In Int’l Conference on Computa-
tional Intelligence (Fuzzy Days), volume 1625 of
LNCS, pages 108-117. Springer Verlag, 1999.

R. Drechsler and N. Drechsler. Evolutionary Algo-
rithms for Embedded System Design. Kluwer Aca-
demic Publisher, 2002.

N. Gockel, R. Drechsler, and B. Becker. GAME: A
software environment for using genetic algorithms in
circuit design. In Applications of Computer Systems,
pages 240-247, 1997.

M. Keim, N. Drechsler, R. Drechsler, and B. Becker.
Combining GAs and symbolic methods for high
quality test of sequential circuits. Jour. of Elec-
tronic Testing: Theory and Applications, 17:141—
142, 2001.

M. Mneimneh and K. Sakallah. SAT-based sequen-
tial depth computation. In ASP Design Automation
Conf., 2003.

E.M. Rudnick, J.H. Patel, G.S. Greenstein, and T.M.
Niermann. Genetic algorithm framework for test
generation. IEEE Trans. on CAD, 16(9):1034-1044,
1997.

F. Somenzi. Efficient manipulation of decision di-
agrams. Software Tools for Technology Transfer,
3(2):171-181, 2001.

C.-C. Yen, K.-C. Chen, and J.-Y. Jou. A practical ap-
proach to cycle bound estimation for bounded model
checking. In Int’l Workshop on Logic Synth., pages
149-154, 2002.

