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Abstract—With more and more powerful quantum computers
becoming available, there is an increasing interest in the efficient
mapping of a given quantum circuit to a particular quantum
computer (so-called technology mapping). In most cases, the
limitations of the targeted quantum hardware have not been
taken into account when generating these quantum circuits
in the first place. Thus, the technology mapping is likely to
induce a considerable overhead for such circuits. In this paper,
we consider the realization of reversible circuits consisting of
multiple-controlled Toffoli gates on IBM quantum computers.
We show that choosing different quantum-level decompositions
can indeed have a significant impact on the mapping overhead.
Based on this observation, we present an approach to perform
design space exploration to obtain quantum circuits with reduced
overhead by exploiting information about the targeted quantum
hardware as well as the reversible circuit. An experimental
evaluation shows that this approach often leads to considerable
reductions of the technology mapping overhead with negligible
runtime.

I. INTRODUCTION

Quantum computing [1] is a flourishing research area. By
exploiting quantum-mechanical phenomena like superposition,
entanglement and phase shift, quantum computing has the
prospect of solving certain practically relevant problems sig-
nificantly faster than any known classical algorithm. Due to
this fact, the synthesis and technology mapping of quantum
circuits, i.e. the automatic generation of quantum circuits
realizing a given quantum functionality on a targeted quan-
tum computer architecture, has become an active research
area. As quantum logic synthesis is a very complex and
challenging problem, Boolean functions—which constitute a
major component in many quantum algorithms—are usually
treated separately using a two-step approach: the desired
Boolean function is first realized in terms of a reversible
circuit, i.e., by means of classical reversible logic gates, after
which the resulting circuit is transformed to a functionally
equivalent quantum circuit by mapping each reversible gate
to a corresponding cascade of quantum gates [2]–[4]. The
resulting quantum circuit usually does not take into account
the limitations of the targeted quantum computer architecture
regarding the (non-)availability of certain gates. Thus, a so-
called technology mapping is required in order to make the
circuit executable on a particular quantum computer. This

leads to an overhead, since gates that are not natively available
have to be rewritten as a functionally equivalent cascade of
native gates.

In recent years, there has been much progress in the devel-
opment of quantum computers with increasing computational
power due to improvements regarding the number and quality
of the basic computational entities (qubits) [5]–[7]. In present
architectures, there is usually only one multiple-qubit gate
available, e.g. the two-qubit controlled-NOT or controlled-Z
gates, and this gate can only be applied on a subset of qubit
pairs. This also holds for the publicly available QX series by
IBM that has been made available to the public via free-of-
charge cloud access and is also considered in this paper.

Researchers have developed different strategies to solve
such quantum architecture constraints [8], [9], most of which
rely on inserting a (minimal) number of SWAP gates that move
the desired qubits close to each other. To solve the problem
for the IBM architectures where all CNOTs additionally can
only be applied in one direction, several approaches have
been proposed, see e.g. [10]–[14]. Again, most proposals
focus on the insertion of SWAP gates and the work in [14]
even presented a method to determine the minimal number of
SWAP and H operations for small circuits by using Boolean
satisfiability solvers. In contrast, there are also promising
proposals to not permute the qubits using SWAP gates, but to
use precomputed sequences of gates to realize arbitrary CNOT
gates [15], [16].

However, the mapping of reversible circuits, i.e., circuits
composed of multiple-controlled Toffoli (MCT) gates, still
is an area to be explored. Some works have addressed the
problem [16], [17], but are limited to MCT gates with up
to two controls. The approach from [18] shows appealing
results, but it requires MCT circuits that have been synthesized
in a particular way with many adjacent gates sharing the
same target. Recently, there have been proposals for optimized
decompositions of arbitrary MCT gates [4], [19], but these
focus on reducing the number of T gates rather than the
technology mapping overhead that results from the restricted
availability of CNOT gates.



In this paper, we consider the mapping of MCT gates with
the aim to reduce the technology mapping overhead and show
that there is a large potential for improvement when employ-
ing different decompositions. We propose an algorithm for
exploring the design space of the possible decompositions for
each MCT gate—despite its exponential size. An experimental
evaluation shows this leads to considerable reductions in the
technology mapping overhead with relatively small run-times.

The remainder of this paper is structured as follows. The
next section introduces notations and preliminaries needed
in this paper. Section III analyses the potential of different
MCT decompositions, followed by Section IV presenting
our method for design space exploration which determines
optimized mappings for MCT gates. Experimental results are
presented in Section V. Finally, the paper is concluded in
Section VI.

II. BACKGROUND AND PRELIMINARIES

To keep the paper self-contained, this section briefly intro-
duces the basics of reversible and quantum circuits.

A. Reversible Functions and Circuits

A multi-output Boolean function f : {0, 1}n → {0, 1}n is
called reversible if f is bijective, i.e., if each input pattern is
mapped to a unique output pattern and vice versa.

Reversible functions on n inputs are realized by reversible
circuits consisting of at least n lines (carrying binary values).
These reversible circuits are cascades of reversible gates
belonging to a particular gate library, with no fan-out or
feedback. The most popular gate library is given by multiple-
controlled Toffoli (MCT) gates which are defined as follows:

Definition 1 (Multiple-Controlled Toffoli gate): Given a set
of circuit lines X = {x1, x2, . . . , xn}, an m-controlled Toffoli
gate T (C; t) is given by a possibly empty set of control lines
C = {xc1 , . . . , xcm} ⊂ X (where |C| = m), and a target line
t ∈ X \C. On the target line, the gate performs the mapping
t 7→ t ⊕ (xc1 ∧ . . . ∧ xcm), i.e. the target line is inverted if,
and only if, all control lines are in the 1-state. All other lines
pass through unaltered.

Example 1: An MCT gate with no control line always
inverts the target line and is thus the well-known NOT gate.
An MCT gate with a single control line is called a controlled-
NOT (CNOT) gate. The case of two control lines is the original
Toffoli gate.

When drawing reversible and quantum circuits, a
⊕

indi-
cates the target line and • to indicate the control connection
of an MCT gate. For instance, the left-hand side of Fig. 1a
represents a (2-controlled) Toffoli gate.

B. Quantum Circuits

A quantum circuit is a model of quantum computation
representing a sequence of quantum operations [1]. Each
operation is represented by a quantum gate and the circuit is
a cascade of quantum gates where the circuit lines represent
the qubits (quantum bits) of a quantum system.

In this work, we consider the Clifford+T gate library [20]
which is popular due to the fact that it only contains a
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Fig. 1. Mapping of Toffoli gate into Clifford+T circuits [21] and correspond-
ing CNOT graphs.

small, discrete number of gates and due to its compatibility to
schemes for error correction which are required for large-scale
quantum computing. More precisely, the library contains the
CNOT gate, the NOT gate as well as some other single-
qubit gates (H,S, S†, T, T †) whose precise definitions are not
relevant for this paper and who will rather be considered as
blackboxes in the following.

Example 2: Figure 1a shows the realization of the Toffoli
gate, i.e. a two-controlled MCT gate, in Clifford+T [21, Fig.
7(a)]. The gates are to be applied from left to right.

C. Mapping MCT circuits to Clifford+T

The mapping of reversible MCT circuits to Clifford+T
quantum circuits is typically conducted in two steps. First,
MCT gates with c ≥ 3 controls are decomposed into MCT
gates with less than three controls, i.e. NOT, CNOT, and
Toffoli gates (which constitute the so-called NCT library).
Afterwards, each NCT gate is mapped individually to an
equivalent cascade of Clifford+T gates.

Usually, the well-known decomposition of MCT into NCT
gates proposed by Barenco et al. [22] is used. The basic
construction requires c− 2 additional circuit lines/qubits (so-
called ancilla lines/qubits) that are used to store intermediate
computations, but are finally restored to their initial value/state
(cf. Fig. 2a for the case c = 4). Note that these ancilla can
have an arbitrary value/state.

This basic construction can be employed as a building block
in order to perform a decomposition also when less than c−2
ancilla are available (cf. Fig. 2b for the case c = 5 and a single
ancilla).

To map the NCT circuit to Clifford+T , usually the mapping
from Fig. 1a is employed for Toffoli gates, while NOT and
CNOT gates do not have to be mapped.
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(a) Decomposition of 4-controlled MCT gate using
2 ancilla according to [22, Lemma 7.2].
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(b) Decomposition of 5-controlled MCT gate
using 1 ancilla [22, Lemma 7.3].
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(c) Alternative decomposition of 4-controlled
MCT gate using 2 ancilla.

Fig. 2. Decompositions of MCT to NCT gates from Barenco et al. [22].
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Fig. 3. IBM QX5 architecture [23].

D. Technology Mapping to IBM Quantum Computers

The IBM Q project provides public access to quantum
computers via a cloud service. The purpose of this access is
to provide the opportunity to experiment with real devices.
Currently, there are architectures with 5, 14 and 16 qubits
available (not continuously online) along with a simulator
for up to 32 qubits [5]. In spite of continuous improvement,
the architectures are still in development and have limitations
regarding the number and the fidelity of qubits. As a conse-
quence, the execution of quantum gates in the real devices
is susceptible to errors such that the output may not be the
expected one.

Another limitation of the architectures is the types of
quantum gates that can be used in the circuits. All architectures
essentially support arbitrary single-qubit gates (especially the
ones from the Clifford+T library) as well as the CNOT
gate, although, its availability is limited. More precisely, the
architectures restrict the interaction of the physical qubits, i.e.,
it is only possible to apply a CNOT gate to a defined set of
qubits.

These CNOT restrictions are expressed in a coupling graph.
Figure 3 shows the coupling graph of the 16 qubits IBM
QX5 (Rueschlikon) architecture [23]. The circles represent the
physical qubits (Q0, Q1, Q2, . . . , Q15) and the arrows indicate
the availability of a CNOT gate between the qubits. To this
end, a CNOT gate can only be applied if the qubit at the
base of the arrow is the control qubit and the tip of the arrow
represents the target qubit. For instance, a CNOT with control
qubit Q1 and the target in qubit Q0 is natively available in the
IBM QX5 architecture. Overall, for quantum circuits with 16
logical qubits, there are 16 · 15 = 240 different CNOT gates
possible, but only 22 are natively available in the IBM QX5
architecture. This shows the technology mapping challenge to
be solved in order to realize a quantum circuit on these devices.

More precisely, the challenge is to find an efficient way to
map the misplaced CNOT gates, i.e., to transform the non-
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Fig. 4. SWAP gate realized in Clifford+T .

available CNOT gates. Clearly, it is promising to map the
logical qubits to the available physical ones in such a way
that the number of misplaced gates is minimized. While there
might be some corner cases where it is possible to perform this
mapping in such a way that all used CNOT gates are available,
this is clearly not the case in general. Thus, in order to realize
the remaining misplaced CNOTs, either the target and control
qubits can be moved to appropriate positions (e.g., using so-
called SWAP gates which correspond to a cascade of 3 CNOT
and 4 H gates as shown in Fig. 4) or predefined cascades of
native gates can be employed as suggested in [15].

III. MOTIVATION AND GENERAL IDEA

As discussed in Section II-C, Clifford+T quantum can
be derived from MCT circuits by mapping each gate to
a corresponding cascade of quantum gates. The technology
mapping overhead of the decompositions is usually not taken
into account in this mapping of MCT circuits to the quantum
level, since this overhead can hardly be quantified in advance.
However, as we will motivate in the following, the decompo-
sitions are quite sensitive to permutations of the control lines
and also to the particular choice of the ancilla qubits. While
all such possible configurations finally realize the desired
functionality, the associated technology mapping overhead can
vary significantly.

To this end, let us consider the Clifford+T realization of
a Toffoli gate from Fig. 1a. Ignoring the single CNOT in
the center, each qubit is used twice as a control and also
twice as a target of a CNOT. This is illustrated in the CNOT
graph in Fig. 1c where the vertices correspond to the qubits
and a directed edge represents one or two CNOTs between
the corresponding qubits. Here one can see that the CNOTs
form a cyclic structure (aside from a single “reverse” CNOT
which is applied in the opposite direction). Hence, in the
best case, all but the reverse CNOT are native operations and
can be realized without any technology mapping overhead.
In contrast, in the worst case, only the reverse CNOT is a
native operation and a large mapping overhead is induced.



Note that the best case can become the worst case and vice
versa, by simply swapping the two controls. This swap can
be realized with SWAP gates (which increase the technology
mapping overhead), but also without any additional overhead
by simply using a different decomposition of the Toffoli gate to
Clifford+T. More precisely, the decomposition given in Fig. 1b
serves this purpose (as can be seen from the CNOT graph in
Fig. 1d). As it was derived from the original decomposition
by swapping the two control lines, it has the same gate count
and, thus, no additional overhead.

Similarly, the decomposition of MCT gates to NCT gates
offers a large degree of freedom. In fact, the decomposi-
tion selects triples of control and ancilla qubits and creates
corresponding Toffoli gates (cf. Fig. 2a). However, there is
a priori no order implied neither on the controls nor on
the ancilla qubits. Hence, there are many possibilities of
selecting the triples—all of which lead to decompositions
that are functionally equivalent but may induce significantly
different overheads. Again, the optimal among those decom-
positions can be derived by inserting SWAP gates or by using
a reordered decomposition. For instance, Fig. 2c shows an
alternative decomposition of a 4-controlled MCT gate that has
been gained from the decomposition in Fig. 2a by permuting
control and ancilla qubits and, thus, has the same gate count
and no additional overhead.

In general, for a c-controlled MCT gate on an m-qubit
quantum computer and the basic decomposition using c − 2
ancilla qubits, there are c! permutations of the controls and
the c − 2 ancillae can be chosen freely from the m − c − 1
qubits that are neither target nor control. This means there are
c! ·
(
m−c−1
c−2

)
· (c − 2)! possible permutations/decompositions

to be considered. Hence, for m = 16 there are already 86,400
permutations for c = 5 and 2,177,280 permutations for c = 6.
Note that these numbers do not yet take into account the
additional degree of freedom that results from the control
permutations of the individual Toffoli gates.

If the 1-ancilla decomposition is used, the ancilla can be
chosen freely from the m − c − 1 qubits that are neither
target nor control. For each of these choices, the controls
plus the ancilla need to be distributed to MCT gates with
b c+1

2 c and d c+1
2 e controls (cf. Fig. 2b). This can be done

in
( c+1
d c+1

2 e
)

ways. For instance, for c = 10 there are MCT
gates with 5 and 6 controls and overall 2,310 possibilities to
choose the ancilla and distribute the controls to these gates. By
multiplying this number with the number of decompositions
for the smaller MCT gates from above, we arrive at the number
of 5,229,100,800 possible decompositions.

IV. ALGORITHM FOR DESIGN SPACE EXPLORATION

The main idea of the proposed approach is to exploit
the potential of different MCT decompositions for a reduced
technology mapping overhead by performing a design space
exploration of the possible decompositions for each MCT
gate—taking into account the topological restrictions of the
targeted quantum computer. This can either be done

• during the mapping phase (as long as a designated
placement of the involved logical qubits has already been
derived), or

• as a post-mapping optimization (as long as the “bound-
aries” of the original MCT gates at the quantum level are
known such that in-place replacements with optimized
quantum level realizations become possible).

However, the design space for single MCT gates grows very
quickly as the analysis in Section III has shown. Consequently,
we do not enumerate and explicitly construct all possible
decompositions for all MCT gates. We rather perform a single
decomposition of the respectively considered MCT gate to the
quantum level (which yields a quantum circuit that realizes
this, and only this, single MCT gate) and then make use of a
constrained technology mapping approach in order to compute
a decomposition into NCT gates with small technology map-
ping overhead (as illustrated in the top of Fig. 5). Note that an
off-the-shelf technology mapping of such a single-MCT-gate
“circuit” yields a realization without any misplaced CNOT, but
usually the logical qubits are mapped to the physical qubits
in some arbitrary fashion in order to reduce the technology
mapping overhead. Especially, the controls and the target of
the MCT gate can be mapped anywhere, far away from their
designated positions and a potentially expensive rearrangement
of the qubits might be necessary in order to actually use this
realization.

Thus, we enforce that the target is mapped to its designated
position and that controls are mapped to any of the desig-
nated control positions (while the ancilla still can be mapped
arbitrarily). As a consequence, the actual mapping determined
by the accordingly constrained technology mapping approach
corresponds to some particular choice of ancilla qubits and
some particular permutation of the controls, i.e. some NCT
decomposition of the original MCT gate with small technology
mapping overhead. In a second step (see the bottom of Fig. 5),
the NCT decomposition is checked for further optimizations
that might be derived by swapping controls of individual
Toffoli gates (which corresponds to applying the alternative
Toffoli gate decomposition shown in Fig. 1b). Note that this
step is comparably in-expensive as the optimal order of con-
trols can be pre-computed (once for all possible combinations
of target and control qubits) and be stored in a database. The
resulting optimized Clifford+T circuit is then employed to
realize the MCT gate.

This idea has been implemented on top of the technology
mapping algorithm presented in [16]. More precisely, the
algorithm in [16] computes a placement of a Clifford+T
quantum circuit to a given quantum circuit architecture using
a set of pre-computed optimized sequences of gates to realize
the CNOTs rather than SWAP gates. The resulting placements
are optimal w.r.t. the technology mapping overhead, under the
premise that only this particular set of pre-computed optimized
sequences of gates is used to realize the CNOTs—and ignoring
potential optimizations that could result from employing the
alternative Toffoli gate mapping from Fig. 1b.

In order to achieve this optimality, the qubit placement
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Fig. 5. Illustration of the proposed Design Space Exploration.

problem is formulated as an Integer Linear Programming (ILP)
problem over the variables GijCkl ∈ {0, 1} which denote
whether the CNOT gate with control on logical qubit i and
target on logical qubit j will be mapped to a CNOT gate with
control on physical qubit k and physical target l. The ILP prob-
lem contains several constraints to ensure that only such vari-
able assignments are valid that correspond to a well-defined
qubit placement, e.g. constraints like

∑m
k,l=0 GijCkl = 1

enforce that all logical qubits that occur as target or control of a
CNOT gate are indeed mapped to some physical qubit, while
further constraints are required to ensure that this mapping
is indeed unique. This ILP problem is passed to a solver
that computes an optimal assignment of the variables that
minimizes the provided objective function (which, in this case,
expresses the technology mapping overhead of the associated
qubit placement). This assignment can then easily be translated
to a particular qubit placement. Note that in the original ILP
formulation used in [16], qubits are placed arbitrarily, such that
in the case of single-MCT-gate quantum circuits considered
here, target and controls of the MCT gate could be placed
anywhere and the resulting placement would in general not
correspond to a decomposition of the considered MCT gate.
In fact, it would realize an MCT gate with the same number
of controls, but different target or controls.

To this end, we extended the LP formulation in order to
specify a classification of the logical as well as physical qubits
into target, control or ancilla qubits and enforce that each
logical qubit may only be placed at an (arbitrary) physical
qubit with the same classification. This is enforced by the
constraint ∑

(i,j,k,l)∈S

GijCkl = 0

where the set S describes all incompatible qubit classifications

S = {(i, j, k, l) | class(i) 6= class(k) ∨ class(j) 6= class(l)}.

By adding this constraint, the LP solver determines the
optimal permutation of the controls as well as the optimal
choice of ancilla qubits for the given decomposition type and
qubit placement, and thus a decomposition of the original
MCT gate into NCT with small technology mapping overhead.

In order to speed-up computation times for circuits, com-
puted decompositions can be stored in a lookup table in order
to avoid redundant computations. Moreover, a timeout can be
provided to the solver after which the solver stops and returns
the best solution found so far (which, however, might then be
a sub-optimal solution).

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the potential of the proposed
design space exploration in comparison with previous work. To
this end, the proposed scheme has been implemented in C++
on top of RevKit [24] and has been tested on single MCT gates
as well as a suite of benchmarks taken from RevLib [25]. As
target architecture, we employed the IBM QX5 with m = 16
qubits in order to compare with the results from [16].

A. Single MCT gates

In order to quantify the potential benefit of a topology-aware
technology mapping for single MCT gates, we constructed cor-
responding NCT decompositions according to [22] using the
nct command provided by RevKit and mapped the resulting
NCT circuits to Clifford+T using the mapping in Fig. 1a.

For each number of controls, we then randomly chose 10
configurations of controls, targets, and ancilla then asked the
solver to find the best as well as the worst permutation of
controls and ancillae (given a timeout of 60 CPU seconds).
Moreover, we also searched for global best cases where the
target, controls and ancilla can be placed arbitrarily. For these
runs, the timeout was set to 3600 CPU seconds.

The results are summarized in Table I. Here, the first
column denotes the number of controls of the MCT gate (c),
the following columns show the average technology mapping
overhead of the 10 configurations without any permutations
(Conv.), the average overhead improvement for the corre-
sponding best case (∆best) as well as the average overhead
degradation for the corresponding worst case (∆worst). The
final columns denote the global best cases observed for MCT
gates with the respective number of controls (Global Best) as
well as the average difference between the global optimum
and the best permutation for the respective configuration
(∆global best).

First of all, let us note that the case of Toffoli gates
(c = 2) behaves quite differently from the others. For each
configuration, there are only two possible decompositions to
be considered, and if one of those has a large technology
mapping overhead, then the same also holds for the other
one. To this end, the IBM QX5 architecture is “balanced”.
Note that the minimal technology mapping overhead of 14 can
be found for MCT ({Q14, Q15}, Q2), MCT ({Q14, Q15}, Q3)
and MCT ({Q9, Q10}, Q8), MCT ({Q9, Q10}, Q7). At these
locations, the coupling graph of IBM QX5 is quite similar



TABLE I
TECHNOLOGY MAPPING OVERHEAD FOR SINGLE MCT GATES

c Conv. ∆best ∆worst Global Best ∆global best

2 154 -3% 4% 14 1,004%
3 544 -50% 68% 62 316%
4 1,120 -69% 94% 126 163%
5 1,580 -73% 105% 198 101%
6 2,108 -75% 102% 270 91%
7 2,818 -79% 67% 336 70%
8 3,091 -67% 74% 436 110%
9 6,569 -71% 88% 1,396 34%

10 7,490 -66% 94% 1,876 34%

to the CNOT graph from Fig. 1c. More precisely, as also
highlighted in gray in Fig. 3, there are cycles with three
of four arrows pointing in the same direction: clockwise
for Q15 ⇒ Q2 ⇒ Q3 ⇒ Q14 and counter-clockwise for
Q9 ⇒ Q8 ⇒ Q7 ⇒ Q10.

In contrast, a significant potential for improvement can be
observed for c ≥ 2. In fact, the average possible improvement
compared to the randomly chosen initial control permutation
is between 50% and 79% and, on the other hand, also the
average deviation of this permutation from the worst case
is between 67% and 105%. However, we also see that the
achieved best cases still incur significantly more overhead than
the determined global optimum. This means that it might be
beneficial to precompute configurations with small technology
mapping overhead and then apply SWAP gates in order to
transform the given configuration into one of those configura-
tions if no sufficiently good permutation can be found. Note
that this precomputation only needs to be performed once for
each architecture and can then be re-used for any circuit.

B. Mapping of Reversible Circuits

We evaluated the proposed approach on a suite of bench-
marks taken from [25]. In Table II, we report the results for
the set of benchmarks considered in [16].

Here, the first two columns describe the benchmark in terms
of its name (ID) and its number of qubits (L). The next
columns denote the technology mapping overhead reported
in [16] as well as obtained by the proposed approach. The
remaining columns list the relative improvement of the pro-
posed approach, the share of the improvement that originates
from the subsequent Toffoli gate control permutations at NCT
level (NCT impr.) as well as the overall run-time (in CPU
seconds).

On the one hand, the results show that the approach is
able to provide considerable improvements in many cases
(up to 46%). On the other hand, the improvements are often
not as significant as the above evaluations for single MCT
gates might suggest. A possible explanation is that many
benchmarks do not contain MCT gates with more than 2
controls and the potential improvement for Toffoli gates in the
IBM QX5 architecture is rather small (around 5%) as shown
above.

TABLE II
EXPERIMENTAL RESULTS

Benchmark Technology Mapping Overhead
ID L [16] Proposed ∆conv NCT impr. run-time

4mod5-bdd 287 7 74 70 -5.4% 0% 0.15
0410184 169 14 284 276 -2.8% 0% 0.36
alu-bdd 288 7 117 117 0.0% 0% 0.12
sf 274 6 926 862 -6.9% 75% 0.66
sf 276 6 926 862 -6.9% 75% 0.68
cnt3-5 179 16 310 290 -6.5% 0% 0.24
4gt4-v0 80 6 214 214 0.0% 0% 0.26
rd53 133 7 934 866 -7.3% 71% 1.00
f2 232 8 1,963 1,661 -15.4% 13% 10.84
cm152a 212 12 2,110 1,980 -6.2% 12% 3.06
cm82a 208 8 1,014 966 -4.7% 33% 1.12
ex3 229 6 560 418 -25.4% 28% 0.31
ham7 104 7 539 503 -6.7% 44% 0.38
ex2 227 7 1,067 881 -17.4% 13% 0.89
majority 239 7 991 851 -14.1% 23% 1.12
4gt4-v0 78 6 388 264 -32.0% 0% 0.23
rd53 135 7 514 434 -15.6% 30% 0.43
rd53 131 7 854 678 -20.6% 14% 1.39
rd53 138 8 212 200 -5.7% 0% 0.18
mod5adder 127 6 857 755 -11.9% 16% 0.68
4gt4-v0 73 6 660 584 -11.5% 42% 0.43
rd53 251 8 2,382 1,988 -16.5% 10% 1.22
4gt4-v0 72 6 392 358 -8.7% 0% 0.27
C17 204 7 909 833 -8.4% 53% 1.91
mod8-10 177 6 778 616 -20.8% 35% 0.43
rd53 311 13 748 704 -5.9% 0% 0.40
rd73 140 10 448 432 -3.6% 0% 0.36
sys6-v0 111 10 410 390 -4.9% 0% 0.34
wim 266 11 2,214 1,868 -15.6% 23% 4.13
mini alu 305 10 334 314 -6.0% 0% 0.26
rd53 130 7 2,237 1,643 -26.6% 19% 6.96
dc1 220 11 4,437 3,839 -13.5% 23% 2.23
hwb5 53 6 2,715 2,153 -20.7% 13% 1.53
cm42a 207 14 3,960 3,060 -22.7% 9% 7.61
sym6 145 7 9,215 6,919 -24.9% 12% 17.58
con1 216 9 2,377 1,525 -35.8% 7% 79.44
sym6 316 14 812 740 -8.9% 0% 0.53
hwb6 56 7 16,985 12,101 -28.8% 10% 23.67
sym9 146 12 1,045 1,031 -1.3% 0% 0.62
z4 268 11 10,725 5,761 -46.3% 4% 287.60

VI. CONCLUSIONS

In this paper, we considered the mapping of reversible MCT
circuits to IBM quantum computers. So far, the topological
constraints of the targeted quantum hardware are hardly taken
into account when performing the quantum level decomposi-
tion of the circuits. We showed that there is indeed significant
potential to reduce the resulting technology mapping overhead
if the characteristics of the actual quantum computer are taken
into account for this decomposition. Moreover, we proposed
an algorithm for determining decompositions with minimal
technology mapping overhead. Due to the formulation as an
ILP problem, the approach allows for a complete exploration
of the exponentially large design space in acceptable run-
times. For many benchmarks, a reduction of the technology
mapping overhead of around 20% can be observed.



VII. ACKNOWLEDGMENT

The authors are grateful for the support of CAPES PDSE
process n◦ 88881.189547/2018-01. This study was financed in
part by the Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior - Brasil (CAPES) - Finance Code 001.

REFERENCES

[1] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge Univ. Press, 2000.

[2] A. A. A. de Almeida, G. W. Dueck, and A. C. R. da Silva, “Efficient
realization of toffoli and NCV circuits for IBM QX architectures,”
in Reversible Computation - 11th International Conference, RC 2019,
Lausanne, Switzerland, June 24-25, 2019, Proceedings, 2019, pp. 131–
145.

[3] R. Wille, M. Soeken, C. Otterstedt, and R. Drechsler, “Improving the
mapping of reversible circuits to quantum circuits using multiple target
lines,” in ASP Design Automation Conf., 2013, pp. 85–92.

[4] N. Abdessaied, M. Amy, M. Soeken, and R. Drechsler, “Technology
mapping of reversible circuits to Clifford+T quantum circuits,” in Int’l
Symp. on Multiple-Valued Logic, 2016, pp. 150–155.

[5] IBM. Project IBM Q. [Online]. Available:
https://www.ibm.com/quantum-computing/

[6] R. Courtland, “Google aims for quantum computing supremacy,” IEEE
Spectrum, vol. 54, no. 6, pp. 9–10, 2017.

[7] J. Hsu, “CES 2018: Intel’s 49-qubit chip shoots for quantum supremacy,”
IEEE Spectrum Tech Talk, 2018.

[8] J. Ding and S. Yamashita, “Exact synthesis of nearest neighbor compli-
ant quantum circuits in 2D architecture and its application to large-scale
circuits,” IEEE Trans. on CAD, pp. 1–1, 2019.

[9] S. Hu, D. Maslov, M. Pistoia, and J. Gambetta, “Efficient circuits
for quantum search over 2D square lattice architecture,” in Design
Automation Conf., 2019, pp. 1–2.

[10] A. Zulehner, A. Paler, and R. Wille, “An efficient methodology for
mapping quantum circuits to the IBM QX architectures,” IEEE Trans.
on CAD, vol. 38, no. 7, pp. 1226–1236, July 2019.

[11] A. Matsuo, W. Hattori, and S. Yamashita, “Reducing the overhead of
mapping quantum circuits to IBM Q system,” in Int’l Symp. Circ. and
Systems, Sapporo, May 2019, pp. 1–5.

[21] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A meet-in-the-middle
algorithm for fast synthesis of depth-optimal quantum circuits,” IEEE
Trans. on CAD, vol. 32, no. 6, pp. 818–830, 2013.

[12] M. Y. Siraichi, V. F. d. Santos, S. Collange, and F. M. Q. Pereira,
“Qubit allocation,” in International Symposium on Code Generation and
Optimization, ser. CGO 2018. Vienna: ACM, 2018, pp. 113–125.

[13] A. Ash-Saki, M. Alam, and S. Ghosh, “QURE: Qubit re-allocation in
noisy intermediate-scale quantum computers,” in Design Automation
Conf. New York, NY, USA: ACM, 2019, pp. 141:1–141:6.

[14] R. Wille, L. Burgholzer, and A. Zulehner, “Mapping quantum circuits
to IBM QX architectures using the minimal number of SWAP and H
operations,” in Design Automation Conf. Las Vegas: ACM, 2019, pp.
142:1–142:6.

[15] A. A. A. de Almeida, G. W. Dueck, and A. C. R. da Silva, “CNOT gate
mappings to Clifford+T circuits in IBM architectures,” in Int’l Symp. on
Multiple-Valued Logic, 2019, pp. 7–12.

[16] A. A. A. de Almeida, G. W. Dueck, and A. C. R. da Silva, “Finding
optimal qubit permutations for ibm’s quantum computer architectures,”
in 2019 32nd Symposium on Integrated Circuits and Systems Design
(SBCCI), 2019, pp. 1–6.

[17] M. B. Ali, T. Hirayama, K. Yamanaka, and Y. Nishitani, “Quantum
cost reduction of reversible circuits using new Toffoli decomposition
techniques,” in CSCI, Dec 2015, pp. 59–64.

[18] M. Soeken, F. Mozafari, B. Schmitt, and G. DeMicheli, “Compiling
permutations for superconducting QPUs,” in Design, Automation and
Test in Europe, Florence, March 2019, pp. 1349–1354.

[19] P. Niemann, A. Gupta, and R. Drechsler, “T-depth optimization for fault-
tolerant quantum circuits,” in Int’l Symp. on Multiple-Valued Logic, May
2019, pp. 108–113.

[20] P. O. Boykin, T. Mor, M. Pulver, V. Roychowdhury, and F. Vatan, “A
new universal and fault-tolerant quantum basis,” Information Processing
Letters, vol. 75, no. 3, pp. 101–107, 2000.

[22] A. Barenco, C. H. Bennett, R. Cleve, D. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates for
quantum computation,” Phys. Rev. A, vol. 52, pp. 3457–3467, 1995.

[23] IBM. IBM Q 16 Rueschlikon V1.x.x. [On-
line]. Available: https://github.com/Qiskit/ibmq-device-
information/tree/master/backends/rueschlikon/V1

[24] M. Soeken, S. Frehse, R. Wille, and R. Drechsler, “RevKit: A toolkit
for reversible circuit design,” in Workshop on Reversible Computation,
2010, pp. 69–72, RevKit is available at http://www.revkit.org.

[25] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib:
an online resource for reversible functions and reversible circuits,” in
Int’l Symp. on Multiple-Valued Logic, 2008, pp. 220–225, RevLib is
available at http://www.revlib.org.


