Quasi-Exact BDD Minimization using Relaxed Best-First Search

Rudiger Ebendt

Rolf Drechsler

Institute of Computer Science
University of Bremen
28359 Bremen, Germany
Email: {ebendt,drechsle} @informatik.uni-bremen.de

Abstract

In this paper we present a new method for quasi-
exact optimization of BDDs using relaxed ordered best-first
search. This general method is applied to BDD minimiza-
tion. In contrast to a known relaxation of A*, the new
method guarantees to expand every state exactly once if
guided by a monotone heuristic function. By that, it effec-
tively accounts for aspects of run time while still guaran-
teeing that the cost of the solution will not exceed the opti-
mal cost by a factor greater than (1 + €) L2) where n is the
maximal length of a solution path. E.g., for 25 BDD vari-
ables and using a degree of relaxation of 5%, the BDD size
is guaranteed to be not greater than 1.8 times the optimal
size. Within a range of reasonable choices for €, the method
allows the user to trade off run time for solution quality.

Experimental results demonstrate large reductions in run
time when compared to the best known exact approach.
Moreover, the quality of the obtained solutions is much bet-
ter than the quality guaranteed by the theory.

1 Introduction

Reduced ordered Binary Decision Diagrams (BDDs)
were introduced in [2] and are well known from hardware
verification and logic synthesis.

It is well known that the size of BDDs is often very sen-
sitive to a chosen variable ordering. In [2] an example has
been given where the BDD size varies from linear to ex-
ponential dependent on the ordering of the variables. Es-
pecially in applications like logic synthesis targeting mul-
tiplexor design styles, e.g. [14, 15, 20], it is important to
determine a good ordering, since a reduction in the number
of BDD nodes directly transfers to a smaller chip area.

In general, determining an optimal variable ordering is
a difficult problem. In fact it has been shown that it is NP-
complete to decide whether the number of nodes of a given
BDD can be improved by variable reordering [1]. For this,
in the past many heuristic approaches have been proposed
that are based on structural information [10] or on dynamic
reordering of BDDs [12, 17]. But all these methods can-
not guarantee an optimal result and experiments have shown

that they can yield results up to orders of magnitudes larger
than an optimal solution. For the applications mentioned
above, this is a significant drawback.

For this reason, exact algorithms have been suggested.
The fastest practical method [7, 8] makes use of ordered
best-first search, i.e. the A*-algorithm [5,11, 16]. Due to
the hardness of the problem, the computational effort of the
method is still high and further reductions in run time are
strongly desirable.

One way to avoid the low quality of heuristic solutions
are quasi-exact or approximating approaches which guaran-
tee a solution whose cost does not exceed the optimal cost
by a factor greater than 1 + e. Quasi-exact methods aim
to achieve smaller run times than their exact counterparts.
However, it has been shown that the existence of a polyno-
mial algorithm to approximate the optimal variable ordering
of BDDs implies P = NP [18]. For this reason, as with ex-
act methods, the run time of an approximate method to im-
prove the variable ordering is expected to be much higher
than that of heuristics.

Previous algorithms for quasi-exact BDD minimization
can be found in [13]. Similar to the exact approach of [9],
the methods operate on a truth table representation of the
involved Boolean function. For this reason, while being of
theoretical interest, these algorithms are not practical. Both
run time and space demand are always exponential as they
are proportional to the size of the truth table.

In this paper, we investigate a more practical algorithm
for quasi-exact BDD minimization, called A”?"**. The new
method is based on the fastest known exact algorithm for
BDD minimization, the A*-based approach in [8].

A* finds the minimum cost path in a graph using heuris-
tic information and can be devised to operate on state space
graphs. A* searches the state space by systematically ex-
panding and generating states until a match to a goal condi-
tion is found. If certain requirements to the heuristic func-
tion guiding the search are met, A* will find a minimum
cost path to a goal state.

To transform this method into a faster quasi-exact algo-
rithm, in this paper a technique of [3] is used and adapted
to the new context. In [3], the Traveling Salesman Prob-
lem (TSP) has been tackled by an extended A*-algorithm.
This approach is called A} and it relaxes the selection con-
dition of A* which triggers the choice of the next state for

expansion (i.e. for generating all its successors).

When searching in large state spaces, a potential source
of performance loss is the repeated consideration of the
same states. This problem arises in search algorithms of
various paradigms, e.g. for the Branch and Bound (B&B)
framework as well as for A*. In the exact BDD minimiza-
tion algorithm of [6] the simultaneous use of more than one
lower bound has been suggested as a remedy. In the A*-
based approach of [8], the problem is solved by the use of a
monotone heuristic function.

The following questions have not been discussed in an
analysis of A’: how does the method behave in the case
that a monotone heuristic function guides the search? And:
In this case, can there exist states that are reopened and ex-
panded (again and again)?

This question is of particular interest since the origi-
nal A*-algorithm is known to expand every distinct state
at most once in the case of a monotone heuristic function.
If A} cannot guarantee the same, performance can be de-
graded. In a worst-case scenario, the number of reopened
states could even exceed the savings provided by the relax-
ation when using A} instead of A*.

In this paper first it is proven that A} in fact can show the
above (unwanted) behavior. Second, a simple modification
of the algorithm resolves the problem while still guarantee-
ing a bounded deviation from the optimum. The resulting
method APP™* is shown to always find a solution whose cost
may exceed the optimal cost by a factor not greater than
(1+€)L%] where n is the maximal length of a solution path.
Experimental results show the efficiency of the approach.

This paper is structured as follows: in Section 2, some
background on BDDs and on state space search as well as
basic notations and definitions are given. In Section 3, pre-
vious work related to our approach is briefly reviewed. Sec-
tion 4 gives an example for a severe weakness of a previous
approach. This weakness then is tackled by the new ap-
proach in Section 5. Experimental results are given in Sec-
tion 6. Finally, a summary in Section 7 concludes the work
with the obtained results.

2 Background
2.1 BDDs

We use the standard terminology of reduced ordered Bi-
nary Decision Diagrams (BDDs) which are directed acyclic
graphs where a Shannon decomposition is carried out with
each node. Variables are from the set X,, = {z1,...,z,}
and they are encountered at most once and in the same or-
der (the “variable ordering”) on every path from the root to
a terminal node. Note that reduced diagrams are considered,
derived by removing redundant nodes and merging isomor-
phic subgraphs. An example of a shared BDD representing
more than one function in one diagram is given in Fig. 1.
For more details see [2].

X

{x” xz}

Figure 1. BDDs for a transition ¢ :=
{z1,22} 24, quU {z4}.

2.2 State Space Search by A*-Algorithm

An important method to guide the search on a state space
is heuristic search. With every state ¢ a quantity h(q) is
associated which estimates the cost of the cheapest path
from q to a goal state ¢. This allows us to search in the di-
rection of the goal states. The A*-algorithm is a heuristic
search algorithm designed to find a minimum cost path from
the initial state s to a goal state ¢. It starts at s and bases the
choice of the next state to expand on two criteria:

o the cost of the cheapest known path from the initial
state up to state ¢, denoted g(g), and

e the estimate h(q).

They are combined to the so-called evaluation function
©(q) = g(¢g) + h(q). The minimal cost of a path from s
to ¢ is denoted g*(¢). The minimal cost of a path from ¢ to
a goal state is denoted h*(q).

For A*, the estimate h(g) has to be a lower bound on the
cost of an optimal path from g to a goal state, more formally:

h(q) < h*(q). (1)

In this case, h is called admissible. A* is called an admis-
sible algorithm, since theory guarantees that A* terminates
and always finds a minimum cost path.

A* maintains a prioritized queue OPEN which is ordered
with respect to increasing values ©(q).

In the beginning, this queue only contains s. In each
step, a state g with a minimal p-value is expanded, de-
queued and put on a list called CLOSED. During expan-
sion, the successor states of ¢ are generated and inserted
into the queue OPEN according to their ¢-values. For this,
the values g and h of the successor states are computed dy-
namically. For a transition ¢ — ¢’ let ¢(g, ¢’) denote the
cost of the transition. Then ¢’ is associated with its cost
9(qd") = g(q) + ¢(q,q’), i.e. g accumulates transition costs.
In this, for a state ¢, g(g) is computed as the sum of the cost
¢(r,r’) of all transitions r — 7’ occurring on the cheapest

known path to ¢. If a path between ¢ and ¢’ is optimal, its
cost is denoted by k(q, ¢').

A successor state ¢’ might be generated a second time if
q' has more than one predecessor state. If a cheaper path
from s to ¢’ is found in this case, g(q’) is updated. If ¢ was
on the list CLOSED, g is reopened, i.e. it is put on OPEN
again. By that, states get a second chance during the search
for the minimum cost path when new information about
them is available. These updates of the “g-part” of ¢ to
the costs of a newly found cheaper path to g continuously
compensate for the fact that the character of the “h-part” is
only estimative. The cheapest known path to ¢’ is denoted
p(¢’) and is also updated respectively. The algorithm ter-
minates if the next state to expand is a goal state ¢t. The
estimate h(t) = h*(t) must be zero. In this case, the path
found up to ¢, i.e. p(t), is of minimal cost C* which is also
expressed with ¢*(t) = ¢(t) = ¢*(t) = C*. This mini-
mum cost path p(t) = p*(t) is reported as solution.

3 Previous Work

In this section previous work related to our approach is
briefly reviewed.

3.1 Finding a Best Ordering by Path Cost Mini-
mization

In [8] an A*-based approach to exact BDD minimization
has been presented: the problem of finding an optimal vari-
able ordering is expressed as the problem of finding a min-
imum cost path from the initial state {) to the goal state X,
in the state space 2%~ .

To achieve this, an appropriate cost function is chosen.
The key idea of [8] is to define the cost function such that
the number of nodes in the first £ levels of a BDD is taken
as the cost of this path. An example of a state transition and
the corresponding BDDs is given in Fig. 1.

The heuristic function used in [8] has the property of
monotonicity.

Definition 3.1 Consider an A*-algorithm with heuristic
function h and with the cost of optimal paths between states
k. Heuristic function A is said to be monotone (or consis-
tent), if

hq) < k(q,q') + N(q"))
if ¢ is any descendant of g.

In [11] it is shown that, in the case of a monotone heuristic
function h, A* finds optimal paths to all expanded nodes,
more formally:

Theorem 3.1 Consider an A*-algorithm with a mono-
tone heuristic function h. Then, if a state q is expanded,
a cheapest path to q has already been found, i.e. we have

9(q) = g*(q) and therefore p(q) = p*(q)-

With that, performance degradation by reopenings of states
(as described in Section 1) cannot occur as every state is
expanded exactly once.

3.2 Relaxing Ordered Best-First Search

Experiments have shown the following: during execu-
tion of an A*-algorithm, a large amount of time is spent
discriminating among many paths whose cost do not vary
significantly from each other. To assure optimality of the
final solution, A* spends a disproportionately long time to
select the best of roughly equal candidate states as next state
to expand. This behavior raises the idea of equipping Ax
with the capability of terminating earlier with a suboptimal
but otherwise perfectly acceptable solution path.

In [3] an extension of A* called A} has been proposed,
that addresses the above problem by adding a second queue
FocAL which maintains a subset of the states on OPEN.
This subset is the set of those states whose cost does not
deviate from the minimal cost of a state on OPEN by a factor
greater than 1 + €. Formally,

FocaL ={q|¢(q) <(1+¢€)- min o(r)}. 3)

reOPEN

The operation of A? is identical to that of A* except that
A? selects a state ¢ from FOCAL with minimal value hg(q).
The function h is a second heuristic estimating the compu-
tational effort required to complete the search. By this the
nature of hp differs significantly from that of & since h es-
timates the solution cost of the remaining path whereas h g
estimates the remaining fime needed to find this solution.

It can be shown that A} is e-admissible, i.e. it always
finds a solution whose cost does not exceed the optimal cost
by more than a factor of 1 + .

4 Monotonicity

In Section 1 the following question has been raised: pro-
vided that A’ is guided by a monotone heuristic h, can
states be reopened?

Next we give an example which shows that such states
may exist.

Example 4.1 In Fig. 2, the left datum annotated at a node
is the g-value, the right one is the h-value. Edges depict
state transitions and the cost of the transition is annotated at
each edge. The heuristic function h is monotone since (2)
is respected along every path in the state space graph. For
the following, let € = 1.

First, A} expands the initial state s with successor states
¢’ and ¢o. All nodes are minimal nodes on OPEN with
o(s) = v(¢) = v(qo) = 2. Since gp has the highest g-
value, the cost of this state appears to be less estimative,
i.e. the state can be expected to be the closest to a termi-
nal state. Thus qq is expanded next while the minimum on
OPEN stays ¢(q’) = 2. The successor state of qq, state ¢,
appears on FOCAL since ¢(¢q) = 3 < (1+1)-2 = 3. More-
over, it is the state with the highest g-value 3, and hence it
is chosen as the most promising state in terms of run time.
The successor state is ¢ which does not appear on FOCAL
since p(q”) =4 > (1+) -2 = 3. As the only node left
on FOCAL, ¢’ is expanded next, reopening successor q: at

Figure 2. An example for a suboptimal path to
an expanded state.

the time of expansion of ¢, the best path to ¢ via ¢’ had not
been explored yet. Hence it is g(q) = 3 > 2 = ¢g*(¢) and
thus g(¢q) now is updated to the value 2.

To further analyze the operation of A}, the following new
result states an upper bound for the deviation of g from g*
for an expanded state.

Lemma 4.1 Let e > 0. The paths to expanded states found
by an A?-algorithm that is guided by a monotone heuristic
may be suboptimal. However, this deviation is bounded, in
detail:

Vg € CLOSED : g(q) < (1+¢€)-g*(q) +€-h(g) (4

We omit a proof due to space limitation. During exper-
iments conducted with A?, using the monotone heuristic
from [7, 8], this phenomenon in fact has been observed,
causing high increases in run time (due to space limitation
these earlier experiments are not included in Section 6). In
other words: due to the relaxation, A} has lost much of the

capability of A* to gain from the monotonicity of h.

S Preventing to Reopen States

In this section a simple modification of A} yields the
final method APP"°* used in our experiments.

Consider the following change of operation for A*: in-
stead of maintaining closed states on a list CLOSED, states
are simply marked as closed after expansion and removal
from OPEN. If the method finds a better path for a state ¢
marked as closed, this better path is ignored, i.e. g(q) is not
updated.

Otherwise, method APP* follows the usual operation of
AL

Although e-admissibility can not be guaranteed for
ApPProX e still can show the following result:

Theorem 5.1 Let n be the maximal length of a solution
path. When driven by a monotone heuristic, algorithm
APPX always finds a solution not exceeding the optimal cost
by a factor greater than (1 + ¢)3 1.

The (rather tedious, nevertheless straightforward) proof is
omitted due to space limitation.

6 Experimental Results

All experimental results have been carried out on a ma-
chine with an Athlon processor running at 2.2 GHz, with
a main memory of 512 MByte and a run time limit of 20,000
CPU seconds. The new algorithm for exact BDD minimiza-
tion is called APP"** and its operation at different degrees of
relaxation is compared to the fastest known method based
on A* [7,8]. The maximal solution path during operation
equals the number of variables of the BDD, in our case no
more than 25 variables. Consequently, the lowest relaxation
degree used (5%) guarantees a solution not greater than 1.8
times the optimal size (10%: 3.1 times, 15%: 5.4 times)
whereas at the highest degree (40%) a solution is guaran-
teed not greater than 57 times the optimal size. Although
this last bound may not appear perfectly tight, attention was
turned also to higher relaxation degrees: experiments with
simulation-based techniques have revealed that heuristics
may yield results from 100 up to 1000 times the optimum.

The implementation of the new algorithm APP"** is based
on the implementation of the A*-based approach. For a
comparison of plain concepts, we did not combine the meth-
ods with B&B. To put up a testing environment, both algo-
rithms have been integrated into the CUDD package [19].
By this it is guaranteed that they run in the same system
environment.

In a series of experiments A”P"** and A* have been ap-
plied to benchmark circuits of LGSynth93 [4]. The re-
sults are given in Table 1. In the first column the name of
the function is given. Column in (out) denotes the number
of inputs (outputs) of a function. Column time A* shows the
run time for computation of the minimum BDD size with
A*. Column opt shows the number of BDD nodes needed
for the minimal representation. The following five double-
columns 5%, 10%, 20%, 30%, and 40% show run time and
the sizes of the resulting BDDs when setting € to the corre-
sponding values 0.05, 0.1, 0.2, 0.3, and 0.4.

When comparing to A*, large reductions in run time can
already be observed for APP"** operating with ¢ = 0.05,
i.e. at a degree of relaxation of only 5%. The reduction is up
to 62.6% (e.g., see lal). On average, the reduction is 41.8%.
As the degree of relaxation is increasing in the range of 5
up to 30%, further reductions in run time are obtained. For
a degree of relaxation of 30%, the reduction is up to 92.0%
(e.g., see lal), i.e. a speed-up factor of more than 12. On
average, the obtained gain is 61.4%. However, beyond a
level of 30%, higher degrees of relaxation can change the
picture. Fig. 3 depicts several points on the space spanned
by the two dimensions total run time (in CPU seconds) and
solution quality (i.e. the number of BDD nodes). Note that
an additional measuring point for e = 0.25 has been added
which is not included in Table 1 due to space limitation.
Within the range of 0 up to 30%, the resulting plot forms a
monotonically decreasing hyperbola. For a degree of 40%
the total run time increases again.

Similar results have been observed in [3] where the TSP
has been used as a test vehicle for A*: there, and also in
our application, the number of states expanded is not al-
ways a monotonically decreasing function. The reason for
this phenomenon lies with the modified condition for the
selection of the next, most promising state. This directly in-
fluences the necessary condition for state expansion. While
A* guarantees that no state ¢ with ¢(q) > C* would be ex-
panded, A} (and with that, also A?P"**) only guarantees, that
states satisfying ¢(q) > (1 + €) - C* will be excluded from
expansion. Consequently, it is possible that some states g
satisfying the condition (1+¢€)-C* > ¢(q) > C* would be
expanded by the relaxed extensions of A*, but not by A*.

The same observation can be made when looking at the
run times of individual benchmarks, e.g., see comp. Note
that for comp a run time of only 184 CPU seconds has been
observed at a relaxation level of 50%), i.e. a speed-up factor
of more than 19 (not included in Table 1 due to space lim-
itation; the number of nodes obtained in this case was 101,
i.e. the solution is only 6.3% larger than the optimal BDD
size). This shows that sometimes, despite the general ten-
dency illustrated in Fig. 3, also higher degrees of relaxation
can be advantageous.

As the results show, the outlined speed-ups are obtained
with only minor degradation of solution quality. In fact this
degradation is usually very much less than the worst-case
degradation by a factor of (1 4 €)LZ) which is guaranteed
by the theory. Operating at 5% of relaxation, the observed
maximal degradation in solution quality is 4.0% (see tcon).
On average, the results are only 0.5% larger than the opti-
mum BDD size. When using a relaxation of 30%, the max-
imal degradation is 28.0% (see tcon). On average, the re-
sulting BDDs are still only 4.9% larger than the minimum
size.

7 Conclusion

An algorithm for the computation of a quasi-optimal
variable ordering of BDDs has been presented. It is based
on an extension of the A*-algorithm designed to toler-
ate worst-case increases in solution cost. This happens in
favour of smaller search efforts required to complete the al-
gorithm. In contrast to previous extensions of A*, the new
method expands every state exactly once if provided with a
monotone heuristic function. This result can be transferred
to other applications of relaxed best-first search. In this,
the new method effectively accounts for aspects of run time
while still guaranteeing that the cost of the solution will not
exceed the optimal cost by a factor greater than (1 + €)%
where n is the maximal length of a solution path. Within
a practical range of a few percents up to 30% degree of re-
laxation, the user can trade off run time for quality of the
solution.

Experimental results are reported that clearly demon-
strate the efficiency of the presented approach. A compar-
ison to the best known exact BDD minimization algorithm
(which is based on A*) shows reductions in run time by
up to one order of magnitude. This is obtained while the

degradation of solution quality stays below a few percents
on average.

References

[1] B.Bollig and I. Wegener. Improving the variable ordering of
OBDDs in NP-complete. IEEE Trans. on Comp., 45(9):993—
1002, 1996.

[2] R. E. Bryant. Graph-based algorithms for Boolean function
manipulation. I[EEE Trans. on Comp., 35(8):677-691, 1986.

[3] E. Cerny and J. Gecsei. Studies in semi-admissible heuris-
tics. IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, PAMI-4(4):392-399, 1982.

[4] Collaborative Benchmarking Laboratory. 1993 LGSynth
Benchmarks. North Carolina State University, Department
of Computer Science, 1993.

[5] R. Dechter and J. Pearl. Generalized best-first search strate-
gies and the optimality of A*. Journal of the Association for
Computing Machinery, 34(1):1-38, 1987.

[6] R. Ebendt, W. Giinther, and R. Drechsler. An improved
branch and bound algorithm for exact BDD minimization.
IEEE Trans. on CAD, 22(12):1657-1663, 2003.

[7]1 R. Ebendt, W. Giinther, and R. Drechsler. Combining or-
dered best-first search with branch and bound for exact BDD
minimization. In Asian and South Pacific Design Automa-
tion Conf., pages 876-879, 2004.

[8] R. Ebendt, W. Giinther, and R. Drechsler. Combining
ordered-best first search with branch and bound for exact
BDD minimization. /EEE Trans. on CAD, 2005.

[9] S. Friedman and K. Supowit. Finding the optimal vari-
able ordering for binary decision diagrams. IEEE Trans. on
Comp., 39(5):710-713, 1990.

[10] H. Fujii, G. Ootomo, and C. Hori. Interleaving based vari-
able ordering methods for ordered binary decision diagrams.
In Int’l Conf. on CAD, pages 38-41, 1993.

[11] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. /EEE Trans.
Syst. Sci. Cybern., 2:100-107, 1968.

[12] N. Ishiura, H. Sawada, and S. Yajima. Minimization of bi-
nary decision diagrams based on exchange of variables. In
Int’l Conf. on CAD, pages 472475, 1991.

[13] A. Kolpakov and R. Latypov. Approximate algorithms for
minimization of binary decision diagrams on the basis of
linear transformations of variables. Automation and Remote
Control, 65(6):938-954, 2004.

[14] L. Macchiarulo, L. Benini, and E. Macii. On-the-fly layout
generation for PTL macrocells. In Design, Automation and
Test in Europe, pages 546-551, 2001.

[15] A. Mukherjee, R. Sudhakar, M. Marek-Sadowska, and
S. Long. Wave steering in YADDs: a novel, non-iterative
synthesis and layout technique. In Design Automation Conf.,
pages 466471, 1999.

[16] J. Pearl. Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley, 1984.

[17] R.Rudell. Dynamic variable ordering for ordered binary de-
cision diagrams. In Int’l Conf. on CAD, pages 4247, 1993.

[18] D. Sieling. Nonapproximability of OBDD minimization. In-
formation and Computation, 172(2):103-138, 2002.

[19] E. Somenzi. CU Decision Diagram Package Release 2.4.0.
University of Colorado at Boulder, 2002.

[20] C. Yang and M. Ciesielski. BDS: a BDD-based logic op-
timization system. [EEE Trans. on CAD, 21(7):866-876,
2002.

total runtime in seconds

14000

13000 |-
12000 |-
11000 |-
10000 [
9000
8000
7000
6000

5000

S 0%

30%

| <

40%

<l

3350

3400

3450

3500
total number of BDD nodes

3550

Figure 3. Trading off run time for solution quality with A7,

3600

Table 1. Results of A”7"* for different degrees of relaxations
name in | out | time A* | opt degree of the relaxation applied in A””** in percent
5 10 20 30 40

time | size time | size time | size time | size time | size
cc 21| 20 46s | 46 47s | 46 455 | 46 32s | 47 27s | 47 37s 48
cml50a | 21 1 109s | 33 110s | 34 101s | 36 91s | 34 29s | 35 27s 37
cml63a | 16 5 0.5s | 26 0.6s | 27 04s | 26 0.5s | 26 0.5s | 26 0.5s 26
cmb 16 4 0.2s | 28 0.2s | 28 0.2s | 28 0.2s | 28 0.2s | 28 0.2s 28
comp 32 3 3519s | 95| 2017s | 95 || 1280s | 95 || 2168s | 98 || 1839s | 101 || 2690s | 104
cordic 23 2 l4s | 42 1.3s | 42 09s | 42 1.2s | 43 Is | 44 2s 49
cps 24 | 102 1132s | 971 || 1390s | 980 || 1568s | 977 || 1224s | 980 375s | 996 531s | 1133
il 25 16 17s | 36 17s | 36 17s | 36 87s | 36 || 13.7s| 36 37s 37
lal 26 | 19 661s | 67 247s | 67 249s | 67 228s | 67 53s | 67 86s 67
mux 21 1 110s | 33 109s | 34 101s | 36 91s | 34 29s | 35 26s 37
pcle 19 9 4s | 42 4s | 42 39s | 43 38s | 43 2s | 43 2.6s 43
pml 16 | 13 0.4s | 40 04s | 40 04s | 40 04s | 40 0.3s | 41 0.3s 40
s208.1 18 9 39s | 41 39s | 41 3s | 41 43s | 42 1.7s | 44 2.4s 45
s298 17 | 20 4.7s | 74 4.5s | 74 47s | 74 47s | 74 49s | 74 2.7s 80
s344 24| 26 1136s | 104 516s | 104 565s | 104 418s | 106 543s | 104 680s | 110
s349 24| 26 1137s | 104 515s | 104 564s | 104 417s | 106 543s | 104 683s | 110
s382 24| 27 477s | 119 327s | 119 329s | 119 124s | 119 192s | 120 299s | 119
s400 24| 27 479s | 119 326s | 119 329s | 119 123s | 119 192s | 120 300s | 119
s444 24| 27 442s | 119 294s | 119 287s | 119 112s | 119 159s | 120 259s | 119
$526 24| 27 1370s | 113 286s | 113 3525 | 114 339s | 115 130s | 113 231s | 113
$820 23 | 24 767s | 220 645s | 222 667s | 222 702s | 225 469s | 259 601s | 224
s832 23 | 24 736s | 220 644s | 222 665s | 222 699s | 225 465s | 259 545s | 225
sct 19| 15 52s | 48 48s | 48 S54s | 48 43s | 48 49s | 48 4.3s 48
481 16 1 0.2s | 21 03s | 21 0.2s | 21 03s | 21 02s | 21 0.2 21
tcon 17| 16 0.5s | 25 1.0s | 26 1.1s | 27 1.8s | 29 04s | 32 Is 26
ttt2 24| 21 1320s | 107 323s | 107 346s | 108 335s | 108 118s | 114 192s | 107
vda 17 | 39 20s | 478 21s | 480 21s | 481 20s | 484 || 14.5s | 504 || 19.6s | 481

