AUTOMATED VERIFICATION FOR TRAIN CONTROL
SYSTEMS

Jan Peleskal, Daniel Grofle!, Anne E. Haxthausen? and Rolf Drechsler!

1 Universitit Bremen, TZI

Address: TZI, P.O. Boz 330440, D-2833} Bremen, Germany
Phone: +49-421-218-7092, Fax: +49-421-218-305} ,
E-Mail: {drechsle,grosse,jp} @tzi.de

2 Technical University of Denmark, Informatics and Mathematical Modelling
Address: IMM/DTU, building 322, DK-2800 Kgs.Lyngby, Denmark
Phone: +45-45-257510, Faz: +45-45-930074 , E-Mail: ah@imm.dtu.dk

Abstract: In this paper we present an approach for automated verification of train or
tram control systems which is based on model checking. The strategies and techniques
applied are distinguished from comparable concepts of other authors in the following ways:
(1) The control model to be verified is equivalent to executable machine code. As a con-
sequence, there is no need for stepwise refinement and associated formal verification, in
order to establish the conformance between the model and the executable software. (2) The
well-known state explosion problems occurring frequently when checking complete railway
control models are overcome by a combination of bounded model checking and inductive
or compositional reasoning. (3) Since the verification approach is fully automated, it can
be applied to each concrete control system, instantiated from a generic system using con-
figuration data encoding the railway network and the routes to be controlled. This offers
an alternative to more conventional (semi-formal) verification strategies, where the generic
system is fully verified (so-called type certification), but only partial verification is exercised
on the concrete instances.

Keywords: railway control systems, domain-specific language, formal methods, bounded

model checking

1. INTRODUCTION

Motivation. The development of safety-
critical railway control systems is usually
based on generic software code, applicable
to a well-defined variety of control tasks
and configurations. For a concrete system —
e.g., the interlocking controller for the rail-
way network of a specific train station —
the generic code is instantiated with con-
figuration data describing the railway net-
work topology and the user-specific oper-
ational requirements, such as pre-defined
train routes through the network and ad-
ditional site-specific safety constraints.
The conventional verification approach
follows this generic development paradigm:
A major verification effort is focused on
the so-called type certification, where it is
shown that the generic code is really suit-
able for the intended class of instantiations.
For concrete systems, a more restricted ver-
ification suite concentrates on checking the
correctness of configuration data and on
the verification of new software developed

for customised user requirements. At least
for German railways, verifications are per-
formed in a semi-formal way, using a com-
bination of reviews, inspections and testing.
Formal verification is only applied in a very
limited way.

Now practical experience shows that
this verification approach should be im-
proved, because the concrete configured
systems quite frequently exhibit faulty be-
haviour. Analysis of these malfunctions in-
dicates that there are three main causes for
these occurrences of errors: (1) The generic
system is not formally verified, that is, no
theorem has been established showing that
the generic code will really operate correctly
for all admissible instances. As a conse-
quence, new errors are often discovered in
the generic code when new variants of con-
figuration data are used for the first time.
(2) Even a full proof covering all possible
configurations cannot anticipate the differ-
ent hardware configurations concrete sys-
tems will operate in. As a consequence,
a second class of errors is caused by the

violation of hardware constraints, such as
CPU power, memory capacity or hardware
interface latency. (3) The restrictions to be
observed by legal instances of the generic
code are not specified in a formal way, so
that a mechanised exhaustive verification
of configuration data cannot be performed.
Therefore a third class of errors is caused
by incompatibilities between configuration
data, generic code and available hardware,
as well as inconsistencies within the config-
uration data itself.

Due to these considerations, the au-
thors advocate an alternative verification
approach: (A) For the generic system, the
verification investigates mainly whether the
generic code is sufficiently general to meet
all functional instantiation requirements.
This demonstrates the usability without
attempting to establish any safety-related
properties. (B) For each concrete system
instance, the re-usable code and the asso-
ciated configuration data are formally veri-
fied, thereby establishing the correct imple-
mentation of both safety and user require-
ments. (C) For demonstrating the compat-
ibility of hardware and embedded software,
hardware-in-the-loop testing is performed.

While the advantages of our approach
with respect to the correctness of concrete
systems are obvious, a critical issue remains
to be solved: If the effort for performing the
verification steps (B) and (C) is too high, it
will be infeasible to perform the large num-
ber of concrete system verifications. There-
fore it is a crucial aspect of our strategy that
the steps (B) and (C) should be performed
in an automated way.

Conceptual Model for Railway Con-
trol Systems. A well-accepted concep-
tual model for the domain of railway control
systems is depicted in Figure 1. The do-
main of control — also called physical model
— consists of the railway network portion
under consideration and the trains mov-
ing within. The railway network is com-
posed of track segments and track elements,
the latter are points, signals and sensors
indicating trains passing at known loca-
tions. Trains enter the domain of control
“non-deterministically”, that is, governed
by rules exercised by neighbouring domains.
These rules ensure that no safety require-
ments can be violated when a train enters
the domain of control, but otherwise our do-
main has no influence on the points in time
and the frequency of their occurrence.
‘While inside the domain’s network por-
tion, the controller shall protect trains
against hazardous situations. To this end,
the controller implements behaviour spec-
ified in the control model: The controller

observes sensor state changes, deriving from
them the current train locations within the
network. Trains may issue requests to pass
through the network on pre-define routes.
The controller issues commands to switch
signal and point states and monitors the
correct state of these track elements.

Hazardous situations are characterised
by states in the physical model where a
safety condition ® is violated. Typically, ®
involves train locations, the directions they
are moving in and point positions. Formally
speaking, the domain of control D and con-
troller C represent two communicating con-
current sub-systems. The design objective
for C is to restrict the possible state tran-
sitions of D, when operating in the paral-
lel configuration (D||C), so that each reach-
able state of D within (D||C) fulfills ®. The
concrete safety requirements encoded in @
depend on the applicable rules within the
domain of control. Tram control systems
have less stringent rules than railways, and
additional rules may be specified for con-
crete network instances, such as train sta-
tions.

Observe that trains only have to be pro-
tected from entering hazardous states while
residing within the domain of control. Af-
ter having passed along a finite number of
track segments, each train will either leave
the network portion under consideration or
stop in a stable safe state.

Development and Verification Ap-
proach. The underlying approach for sys-
tem development and verification comprises
the following steps:

(1) As inputs to the development pro-
cess, we require the specification of the rail-
way network portion under consideration
(i.e., track segments and elements) and a set
of tables describing the train routes through
the network (see Section 2).

(2) A generator applying generic rules
for the behaviour of trains moving through
networks automatically creates the concrete
transition relation for the operational se-
mantics of trains moving within the domain
of control given by the concrete railway net-
work. Moreover, this generator creates the
safety predicate ® and the proof obligations
to be verified in order to establish validity
of @ in all situations (Section 5).

(3) A second generator instantiates the
concrete transition rules for the control
model from a generic controller descrip-
tion. To this end, we exploit a previous re-
sult (Haxthausen and Peleska, 2003b) where
it has been shown that the instantiated code
and configuration data — if developed ac-
cording to a domain-specific framework for
railway control systems — can be directly

incoming trains

sensor-states

Domain of Control

signal-states

Controller

(Physical Model)

Railway network

point-states

(Control Model)

+ Trains
+ Safety Condition ®

route-requests

signal-ctri-cmds

point—ctri-cmds

\ \ outgoing trains

Fig. 1. Control model for the railway domain.

interpreted as a timed state-transition sys-
tem. As a consequence, it is unnecessary to
abstract the executable code and data to a
higher-level representation, in order to ob-
tain a model which is fit for model checking;:
The code and data may be checked directly,
or after application of a one-to-one adaption
to the specific syntactic requirements of the
model checker. As a consequence, no justi-
fication is required with respect to abstract
interpretations of code and their suitability
to uncover certain classes of errors, such as
safety violations.

(4) As a main verification objective,
the steps (1) to (3) result in the obliga-
tion to show that the transition rules for
the control model are sufficient to prove the
safety condition ® for the parallel compo-
sition (D||C) of concrete physical and con-
trol model. This is performed by bounded
model checking.

(5) The transition rules of the control
model are mapped to executable code. This
process is supported by a specification of
the available hardware resources which con-
tains, for example, a mapping from abstract
interface variables to concrete hardware in-
terface drivers.

(6) Automated hardware-in-the-loop
tests are exercised on the integrated
HW/SW system.

Related Work. The approach to derive
executable, semantically well-defined code
for railway control systems from domain-
specific descriptions has been published by
the authors in (Peleska et al., 2000; Hax-
thausen and Peleska, 2003b; Haxthausen
and Peleska, 2000b; Haxthausen and Pe-
leska, 2002). A prototype code genera-
tor following this approach has been im-
plemented (Haxthausen et al., 2004). The

complete verification strategy comprising
steps (A) to (C) has been introduced
in (Haxthausen and Peleska, 2003a). Alter-
native verifications methods for the railway
domain which are based on theorem prov-
ing have been considered in (Haxthausen
and Peleska, 2000a). The inductive rea-
soning style applied there is re-used in the
present paper to establish a verification
strategy which is suitable for the appli-
cation of bounded model checking (BMC)
techniques. The general BMC approach is
described in (Biere et al., 1999; Biere et
al., 2003).

The application of model checking to
problems of railway control has been inves-
tigated by several authors; we name (Damm
et al., 1999) as an example. It is a well-
known problem that conventional model
checking approaches in this domain fre-
quently fail due to state explosions, when
applied to railway control systems of realis-
tic size. This has been observed, for exam-
ple, by (Clarke et al., 2001), where the au-
thors also suggest BMC techniques to over-
come these difficulties.

Overview. To illustrate the application
of model checking techniques, we investi-
gate a case study about a tram control sys-
tem which is introduced in Section 2. The
focus on trams is more suitable for a short
presentation than a railway control system,
since the set of safety conditions is smaller:
For trams it is not necessary to consider
shunting and flank protection. The domain
of control D, its operational execution rules
and the associated safety requirements &
applicable for the case study are formally
described in Section 3, using description
techniques for timed state transition sys-
tems (TSTS) introduced in (Haxthausen

and Peleska, 2000b; Haxthausen and Pe-
leska, 2002). The associated controller
model C —i. e., the representation of the ex-
ecutable control system software — is shown
in Section 4. While it is our strategy to gen-
erate this code automatically from domain-
specific descriptions, the development tech-
nique applied is not relevant for the ver-
ification techniques introduced in this pa-
per: We only rely on the availability of
TSTS representations which are known to
be equivalent to the executable machine
code. In Section 5 the bounded model
checking approach is illustrated, using the
case study modelled in the previous sec-
tions. Section 6 contains the conclusion.

2. CASE STUDY - TRAM
CONTROL SYSTEM

In this section, we introduce the domain
of control and the associated requirements
for the tram controller in an informal way.
Formal representations follow in subsequent
sections.

Figure 2 shows the static part of the
domain of control. The track elements —
signals, points and sensors — are marked by
Sty, Wabc and Gzy.z, respectively. Track
segments within the domain of control are
identified by sensor pairs which also as-
sign a fixed direction of driving trams to
the segment: The pair (G20.2, G21.0) de-
notes the middle segment on the left-hand
track, to be passed by trams in North-
South direction, starting at G20.2 and end-
ing at G21.0. The segments where trams
enter the domain of control are identified
by their destination sensor. For example,
the North-South track on the left-hand side
may be entered from a neighbouring domain
at (—, G20.1). Analogously, segments leav-
ing the domain of control are denoted by
their source sensor, as in (G21.1,—). Sig-
nals are positioned at sensors and apply to
the driving direction of the associated seg-
ment. FEach segment is associated with a
maximal number of trams which are allowed
to reside simultaneously on the same seg-
ment, when driving in the same direction;
for the case study, we allow at most one
tram per segment.

Observe that the places where two track
segments meet in the direction of driv-
ing trams are depicted light gray: These
places do not represent switchable points,
but solid track components where trams
may enter a new track segment from an-
other one.

The network should have the property
that any potential route through the net-
work going from one of the designated entry
sensors to an exit boarder sensor respects

the driving directions of the involved seg-
ments. Furthermore, the set of entry sen-
sors and exit sensors are disjoint.

The user requirements define a collec-
tion of routes along which trams should
cross the network. These routes are defined
in a route definition table, as, for example,

[Route definition table |
Route | Route Sensor Sequence

(G20.1, G20.2, G21.0, G21.1)
(G20.1, G20.3, G25.0, G25.1)
(G221, G22.2, G23.0, G23.1)
(G221, G22.3, G25.0, G25.1)
{)
{)

G241, G243, G23.0, G23.1
G241, G242, G21.0, G21.1

Y | W[N] | D

Each route is represented as a sequence
of neighbouring sensors. To enter a route,
certain conditions on signal and point states
must be satisfied, and other routes cur-
rently occupied by trams must not cross
the new route and introduce collision haz-
ards. Only if these requirements are ful-
filled, the entering signal of a route switches
to “GO” and the waiting tram may enter
the requested route. The requirements for
each route are specified as part of the con-
figuration data and may be represented by
the following tables:

[Point position table |
[Route | W100 [W102 | WI18 |

0 — straight
1 — Teft —
2 — — straight
3 — — right
4 right — —
5 straight — —
[Signal setting table |
Route [Signal Setting
0 520 go-straight
1 S20 go-left
2 S21 go-straight
3 521 go-right
4 522 go-right
5 522 go-straight
[Route conflict table |
[Route] Conflicts with |
| [0 [T [2]3]47]5]
0 D o
1 . o o o
2 o 0 [o
3 o .
4 o °
5 o o o °

G200 [~ G231 (-

G201

5206L

G2 |

G230 LI

TRAMWAY MAIN ROUTES:
1: $20-G21 (NORTH-SOUTH)
3: 521-G23 (SOUTH-NORTH)

\ ROUTE4: §22-G23

G203
ROUTE 2|
521-G23

mOﬂ

$22 TRAM MAINTENANCE SITE
I | !

G242

Rou%

520-G25

ROUTE 0;
Spo-G21

T T H
Gu1 G240 :
650 c251 '
I 1 i

J

ROUTE 5:
$22-G21

6222 My

rf c2Lo
G22

9521
G221

G220 L}

B G21.1

Fig. 2. Network description — the static part of the physical model.

The static part of the physical model
is complemented by the behavioural model,
described by a cartesian product space con-
taining state vectors! and rules for tran-
sition between them. The components of
state vectors describe the actual states of
signals, points and sensors, as well as the
number of trams residing on each track seg-
ment. For transitions between state vec-
tors, the following rules — described more
formally below — have to be observed: (1) A
tram may be placed on a segment entering
the domain of control whenever this place
is empty. (2) When passing along a point
from stem to branch, trams will enter the
segment connected to the branch associated
with the current point position. (3) A tram
located in front of a signal in HALT state
will not move. (4) A tram located in front
of signal in GO state may or may not move.
(5) A tram located at a signal at an entry
point to one or more routes may request to
pass along any of these routes. (6) A tram
does not change driving direction.

The safety requirements ® can be spec-
ified informally by the following rules:

(SF1) No two trams are simultaneously
driving in opposite directions on the same
segment. (SF2) No two trams are simul-
taneously driving towards the same sen-
sor from different directions. (This holds
for sensors connecting two segments as well
as for sensors like G21.0 connecting 3 seg-
ments.) (SF3) For each segment the num-

ber of trams residing simultaneously on it
is less than a predefined maximum maz
which is chosen to be 1 in our case study).
SF4) For each point the number of trams
that drive simultaneously on its branches is
less maz. (SF5) There are not trams re-
siding simultaneously on two different seg-
ments that cross each other.

Note that due to the network assump-
tions (SF1) is trivially fulfilled.

3. MODELLING THE DOMAIN OF
CONTROL

In this section we present the behavioural
part of the physical model as a timed state
transition system (TSTS) denoted by D, us-
ing a notation introduced in (Haxthausen
and Peleska, 2003b). The TSTS semantics
is not based on the maximal progress prin-
ciple: Applicable transitions may be ap-
plied, but instead the time tick might be
incremented. If several rules apply to the
same component, a rule may be selected in
a non-deterministic way. However, tran-
sitions marked as urgent must be taken
whenever they may fire in the current state.

In the context of the case study pre-
sented here we focus on normal (not failing)
behaviour of the track elements.

1 Observe that the term configuration is often used in the literature in place of state vector, when explain-
ing the operational semantics of specification formalisms. We prefer the latter term within this paper, in order
to avoid confusion with the different possible configurations of the tram control systems under consideration.

3.1 Notation

In the following let PointState = { LEFT,
STRAIGHT, RIGHT SigState = {
HALT, GO-LEFT, GO-STRAIGHT, GO-
RIGHT } and SenState = { HIGH, LOW }
be the respective element state values.

All track elements and routes are iden-
tified by numbers i¢d € N. For the concrete
system to be analysed in our case study, the
identifier sets are instantiated by the con-
crete ranges of numbers required for signals,
points, sensors and routes:

Sigld = {0(= S20),1(= S21),2(= S22)}
Pointld =

{0(= W100), 1(= W102),2(= W118)}
Senld =

{0(= G20.0),...,17(= G25.1)}
Routeld = {0,...,5}.

3.2 State space SD

The global state SD of the domain of con-
trol is a cartesian product

SD = TM X
SIG x SIGREQ x SIGREQTM X
PT x PTREQ x PTREQTM X

SEN X SENTM x SENCNT
with typical vector

(t, actsig, regsig, regsigtm,
actpt, regpt, regpttm, sen, sentm, c)

and product components

TM = N
SIG = Sigld — SigState
SIGREQ = Sigld — SigState
SIGREQTM = Sigld > N
PT = Pointld — PointState
PTREQ = Pointld — PointState
PTREQTM = Pointld - N
SEN = Senld — SenState
SENTM = Senld - N
SENCNT = Senld - N

with the following interpretation: ¢ : N de-
notes the current clock tick. actsig(s)

SigState denotes the actual state of sig-
nal s. regsig(s) : SigState denotes the re-
quested state for the signal. The point in
time when this request has been issued by
the controller is stored in regsigtm(s). For
each point, p, its actual state actpt(p
PointState, its requested state regpt(p

PointState and the request time regpttm(p)
are defined analogously. For each sensor, g,
sen(g) : SenState denotes its actual state,
sentm(g) : N a time stamp defined when
the transition into HIGH state occurred.
¢(g9) : Nis a “virtual” (not physically exist-
ing) counter, the role of which is to indicate
the number of trams that have passed the
sensor. From the counters one can for in-
stance calculate the number of trams driv-
ing on a segment from one sensor towards
another sensor using discrete flow equations
similar to continuous flow equations known
from fluid mechanics. The counters are use-
ful for modelling conditions for when the
sensors can go from LOW to HIGH state
and for modelling the safety requirements.

3.3 Parallel Composition of Compo-
nents

The TSTS for the domain of control is
the parallel composition of the TSTS de-
scribing the behaviour of the time ticks
and each signal, point and sensor. There
are no additional components modelling
trams, since their movements through the
tramway network are reflected by the sensor
counter state changes (vector component c :
Senld — N). As described in (Haxthausen
and Peleska, 2003b), the transition rules
for the composite system are obtained by
simultaneous application of the transition
rules applicable for each signal, point and
sensor in the current state. We will see be-
low, that all assignments to variables dur-
ing a transition are atomic, so that this si-
multaneous application of transition rules
is well-defined by the statement that each
interleaving of simultaneous assignments is
possible.

3.4 Transition relations

The transition relation of D is defined as the
concurrent composition of transition rela-
tions for each sensor, point and signal, and
a time ticks described below.

Transition relation for time ticks. We
model the passage of time as a discrete in-
crement of the 7'M state component.

if (true) { t =t + 1; }

Transition relation for signals. The
following transition rule is instantiated for
each s € Sigld. It states that if the actual
state is different from the requested state, it
will reach the requested state when delta_s
time units have elapsed after the request
was issued.

if (t == reqgsigtm(s) + delta_s and
reqsig(s) !'= actsig(s)) {
urgent : actsig(s) = reqgsig(s);

}

Expressions like actsig(s) =
reqsig(s) denote function overriding: The
state change caused by the transition re-
sults in a new function actsig : Sigld —
SigState which differs from the previous
at argument s, where it maps to value
reqsig(s).

Transition relation for points. The
transition rule for a point is similar to that
of a signal, except that the relevant point
state component is changed instead of a sig-
nal state component and another deadline
constant delta_p is used.

Transition relation for sensors. For
each sensor g € Senld there are two tran-
sition rules, one for going from state LOW
to state HIGH and one for going from state
HIGH to state LOW.

The “HIGH-to-LOW?” rule has the fol-
lowing form:

if (t == sentm(g) + delta_l and
sen(g) == HIGH) {
urgent : sen(g) = LOW;

It states that when the sensor has been sta-
ble in the HIGH state for delta_1 time
units (so that the controller has a chance to
detect the HIGH state) it becomes LOW.

The form of the “LOW-to-HIGH” rule
depends on the sensor location: (1) net-
work entry, (2) network exit, (3) between
two neighbouring segments without a point
and (4) at stem and branches of a control-
lable point, or (5) at stem and branches of
a non-controllable point. Furthermore, it
depends on whether a signal is associated
with the sensor or not.

Due to the usual space limitations, we
only give the form for the “LOW-to-HIGH”
transition rules of a few of the above men-
tioned cases.

For an entry border sensor g having a
(single) neighbouring sensor g2 the form is:

if (t > sentm(g) + delta_tram and
sen(g) == LOW and
c(g) == c(g2)) {
sen(g) = HIGH;
c(g) +=1;
sentm(g) = t;

The rule states that the sensor g may per-
form a transition to state HIGH, incre-
menting its counter, and updating its time
stamp, when it has been in state LOW for
at least delta_tram time units (so that the
physical requirement “there is a minimum
amount of time which has to pass before
the next tram reaches a sensor” is fulfilled)
and its counter has the same value as the
counter of its neighbour (so that the phys-
ical requirement “a tram only enters an
empty entry segment (g, g2)” is fulfilled).

This rule applies for instance to g =
1 = G20.0 and g2 = 2 = (G20.1 for our case
study.

For all rules the pattern of actions is the
same, however the conditions differ. For a
route entry sensor g like G20.1 which is in
the front of a point, the form of the rule is:

if (sen(g) == LOW and
c(g) < c(gl) and
actsig(s) != HALT and
c(g) == c(g2) + c(g3)) {
sen(g) = HIGH;
c(g) += 1;
sentm(g) = t;

where s is the signal associated with the
sensor, gl is the preceeding sensor, and
92 and ¢3 are the following sensors (e.g.
s = 520.0, g1 = G20.0, g2 = G20.2 and
93 = G20.3 for ¢ = G20.1). Here the
conditions express that the counter of the
sensor is less than the counter of the pre-
ceeding sensor (meaning that a tram is ap-
proaching g from g1) and the signal is not
showing HALT. Moreover, the position at
g must not be blocked by another tram,
which is expressed by the condition ¢(g) =
c(92) + ¢(g3), meaning “All trams having
passed g have also passed either g2 or g3.”.

4. CONTROL MODEL

In this section we present the controller
model, C, in the form of a timed state tran-
sition system. The controller consists of a
parallel composition of

e a route dispatcher, RD, that regis-
ters route requests and makes reser-
vations of requested routes in com-
pliance with the requirement that
two conflicting routes must never be
reserved at the same time,

e for each route, r, a route controller,
RC(r), that is responsible for setting
points and signals during allocation,
use and de-allocation of the route,
and,

e for each sensor, g, a counter con-
troller, CC(g), that each time a tram
passes the sensor increments a con-
trol counter associated with the sen-
sor.

In a real-world application there would be a
safety monitor as well capturing exceptional
behaviour.

4.1 State space SC.

The controller shares all state components
of SD, except sensor counters SENCNT
with the domain of control. Technically,
this means that the controller acts on a de-
vice abstraction layer (see (Haxthausen and
Peleska, 2002)) encapsulating the interface
drivers and providing an interface abstrac-
tion equivalent to TM, SIG, ...to the con-
trol software. To this end, hardware inter-
face boards provide dual-ported RAM in-
terfaces to the control software, where the
state of each controlled device is visible as
a static actual state data structure. Re-
quests from control software to interface
drivers are placed into request data struc-
tures within the dual ported RAM. As soon
as the requested state differs from the cur-
rent state of a signal or point, the associ-
ated drivers issue the corresponding switch-
ing commands to the device.

For example, signal states are visible to
the control software in read-only mode as
an array

SigState actsig[NUM_SIGS];

with NUM_SIGS = #Sigld. This array is up-
dated by the device abstraction layer. It
can be identified with the state component
actsig : Sigld — SigState in a direct way.
State requests are written by the control
software to an array

SigState reqsig[NUM_SIGS];

which is identified with reqsig : Sigld —
StigState.

The controller also has a number of ad-
ditional state components (to be explained
below) which are not shared with the phys-
ical model. Hence, the state space of the
controller is:

SC = ..
CCTR X RTREQ X RTRES X
RCMV x CCMV

where ... represents the shared compo-
nents. The new product components are

CCTR = Senld - N
RTREQ = Routeld — Bool
RTRES = Routeld — Bool
RCMV = Routeld - RCMode
CCMV = Senld - CCMaode
where
RCMode = {FREE,ALLOCATING,
ALLOCATED, OCCUPIED}
CCMV = {READY,COUNTED}

are the sets of possible control modes for
route controllers and counter controllers, re-
spectively. A typical state vector is:

(eees Cy TEQ, TES, TC_CTRY, CC_CTIV)

The interpretation of the new compo-
nents is as follows: For any sensor g, cc(g)?
is the internal image of the counter ¢(g) in-
troduced in the domain of control. reg(r) :
Bool and res(r) : Bool indicate whether
route r has been requested and reserved,
respectively. rc_cmu(r) holds the current
control mode of route controller RC(r) for
route r. cc_cmwv(g) holds the current con-
trol mode of counter controller CC(g) asso-
ciated with sensor g.

4.2 Transition relations.

Observe that all transitions of the controller
are urgent, so we drop this key word in the
following transition rules.

Route dispatcher The route dispatcher
has a transition rule for each route. It ap-
plies these in a specific order, this may be
expressed by using a C-style for-loop:

const int NUM_ROUTES 6;

for (r=0; r < NUM_ROUTES; r++) {
if (req(r) and “res(r) and
forall rl in {1..NUM_ROUTES}
“(conflict(r,rl) and res(ril))
) o
res(r) = TRUE; req(r) = FALSE;
T

}

2The sensor counters used in the model for the domain of control are “virtual” state components which
have been introduced to model the “flow” of trams through the network. Counter values cannot be read
directly from the sensor equipment but have to be derived by the control software from the trace of the
HIGH/LOW state changes of physical sensors. As a consequence, the controller manages the additional state
component CCTR.

Observe that - though written in a C-style
notation - the specification is not code, but
a set of transition rules associated with
an application order. The constants re-
flect instantiations of the transition rules,
as derived from the domain-specific descrip-
tion of the concrete system. Likewise the
conflict relation is derived from domain-
spe)ciﬁc description (the route conflict ta-
ble).

The rule for a route r states that when
the route is requested and not yet reserved
and none of its conflicting routes are re-
served then the route may be reserved and
the request deleted.

Route controllers Any route controller
RC(r) for a route r goes through four pos-
sible control modes and has five transition
rules.

Initially it is in mode FREE. The first
rule states that it may perform a transi-
tion from the FREE mode to the ALLO-
CATING mode by initiating allocation of
the route, if the route is reserved and all
its conflicting routes marked with o in the
route conflict table have their entry signal
on HALT. Initiating the allocation means
to request the points of the route to be
switched as specified in the point position
table.

The second rule states that it may per-
form a transition from the ALLOCATING
mode to the ALLLOCATING mode by re-
questing the entry signal of the route to
show the GO setting described in the sig-
nal setting table if the points of the route
have reached their requested settings.

The third rule states that it may per-
form a transition from the ALLOCATING
mode to the ALLLOCATED mode if the
entry signal of the route has reached its
requested setting and the entry sensor is
HIGH (i.e. the tram touches the sensor).

The fourth rule states that it may per-
form a transition from the ALLLOCATED
mode to the OCCUPIED mode by request-
ing the entry signal to show HALT, if the
entry counter is equal to the sum of the
counters of the immediate neighbour sen-
sors (i.e. the nose of tram has passed the
second sensor of the route).

The fifth rule states that it may perform
a transition from the OCCUPIED mode to
the FREE mode by deallocating the route
(i.e. decrementing the counters of the route
with the amount of trams that have left the
route and removing the reservation), if the
second and the last counters of the route
have the same values and the entry signal
has reached its requested state HALT. The
former condition ensures that there are no
trams between the second sensor and the

last sensor of the route, and the latter con-
dition ensures that there are no trams be-
tween the two first sensors. Together this
means that the route is free.

As an example the transition rules for
the route controller of route 0 is as follows:

if (rc_cmv(0) == FREE and
res(0) and
actsig(822) == HALT) {
reqpt (W102) = STRAIGHT;
reqpttm(W102) = t;
rc_cmv(0) = ALLOCATING;

if (rc_cmv(0) == ALLOCATING and
actpt(W102) == STRAIGHT) {
reqsig(520) = GO-STRAIGHT;
reqsigtm(S20) = t;

if (rc_cmv(0) == ALLOCATING and
actsig(820) == GO-STRAIGHT and
sen(G20.1) == HIGH) {
rc_cmv(0) = ALLOCATED;
}

if (rc_cmv(0) == ALLOCATED and
cc(G20.1) ==
cc(G20.2) + cc(G20.3)) {
reqsig(820) = HALT;
reqsigtm(S20) = t;
rc_cmv(0) = OCCUPIED;

if (rc_cmv(0) == OCCUPIED and
cc(G21.1) == cc(G20.2) and
actsig(S20) == HALT) {
res(0) = FALSE;

rc_cmv(0) = FREE;

cc(G20.0) = ¢cc(G20.0) - cc(G20.2);
cc(G20.1) = ¢cc(G20.1) - cc(G20.2);
cc(G20.2) = 0;

cc(G21.0) = 0;

cc(G21.1) = 0;

}

Counter controllers Any counter con-
troller CC(g) for a sensor g goes cyclically
through its two possible control modes. It
has the following two transition rules:

if (cc_cmv(g) == READY and
sen(g) == HIGH) {
cc(g) += 1; cc_cmv(g) = COUNTED;

if (cc_cmv(g) == COUNTED) and
sen(g) == LOW) {
cc_cmv(g) = READY;

The first rule states that the counter con-
troller may perform a transition from the

READY control mode into the COUNTED
mode by incrementing the control counter
by one, but only if the sensor to which it
belongs is HIGH. When the sensor becomes
LOW again, the counter controller may
perform a transition back to the READY
mode.

5. VERIFICATION BY BOUNDED
MODEL CHECKING

In this section we describe the formal verifi-
cation approach to system verification. We
briefly explain the basic ideas of bounded
model checking and then introduce the
modelling language SystemC and the for-
malism for specifying properties. Next our
SAT based property checker for SystemC
designs is described. The property checker
is an extenstion of the work in (Grofile and
Drechsler, 2003) and supports a larger set of
SystemC constructs due to a new frontend
(Fey et al., 2004). Then the verification ap-
proach is demonstrated for parts of the case
study modelled in previous sections.

5.1 Bounded Model Checking

In Model Checking (also called Property
Checking) for a given system properties
are formulated in a dedicated “verifica-
tion language”. It is then formally proven
whether these properties hold under all
circumstances. While “classical” CTL-
based model checking (Burch et al., 1990)
can only be applied to medium sized de-
signs, approaches based on Bounded Model
Checking (BMC) as discussed in (Biere et
al., 1999) give very good results when used
for complete blocks with up to 100k gates.
In BMC the properties only argue over a fi-
nite interval. BMC has originally been pro-
posed for circuit verification and in this con-
text considering a finite number of steps is
reasonable. The underlying techniques are
outlined below.

5.2 Specification Languages

In the following systems are modelled in
SystemC (Grotker et al., 2002). Therefore,
first a short overview on SystemC is given.
Then the formalism for specification of tem-
poral properties is described.

5.2.1

The main features of SystemC for modelling
a system are based on the following:

SystemC

e Modules are the basic building
blocks for partitioning a design. A

10

module can contain processes, ports,
channels and other modules. Thus,
a hierarchical design description be-
comes possible.

e Communication is realized with the
concept of interfaces, ports and
channels. An interface defines a
set of methods to access channels.
Through ports a module can send or
receive data and access channel in-
terfaces. A channel serves as a con-
tainer for communication functional-
ity, e.g. to hide communication pro-
tocols from modules.

e Processes are used to describe the
functionality of the system, and al-
low expressing concurrency in the
system. They are declared as spe-
cial functions of modules and can be
sensitive to events, e.g. an event on
an input signal.

e Hardware specific objects are sup-
plied, like e.g. signals, which rep-
resent physical wires, clocks, and a
set of data-types useful for hardware
modelling.

Besides this, SystemC provides a simulation
kernel. The functionality is similar to tradi-
tional event-based simulators. Note that a
SystemC description can be compiled with
a standard C++ compiler to produce an
executable specification. The output of a
system can be textual, using C++ routines
like cout for instance, or waveforms. As a
C++ class library SystemC can easily be
extended by using the facilities of C++.

5.2.2 Property Language

Describing temporal properties for verifica-
tion can be done in many different ways,
since there exist several languages and tem-
poral logics. We use the notation of the
property checker from Infineon Technolo-
gies AG (see e.g. (Johannsen and Drech-
sler, 2001; Bormann and Spalinger, 2001)
for more details). A property consists of
two parts: a list of assumptions (assume
part) and a list of commitments (proof
part). An assumption/commitment has the
form

at t+a: expression;
or during[t+a,t+b]: expression;
or within[t+a,t+b]: expression;

where t is a time point, and a, b € N are
offsets. If all assumptions hold, all commit-
ments in the proof part have to hold as well.

Since a and b are finite a property argues
only over a finite interval, which is called
observation window.

Example 1 The property test says that
whenever signal becomes 1, two clock cy-
cles later signal y has to be 2.

theorem test is
assume:

at t: x = 1;
prove:

at t+2: y = 2;
end theorem;

In general a property states that when-
ever some signals have a given value, some
other (or the same) signals assume speci-
fied values. Of course it is also possible to
describe symbolic relations of signals. Fur-
thermore the property language allows to
argue over time intervals, e.g. that a sig-
nal has to hold in a specified interval. This
is expressed by using the keywords during
and within, whereas during states that the
expression has to hold all the times in the
interval and with within the expression has
to hold at least once in the specified inter-
val. Also a set of advanced operators and
constructs is provided to allow for express-
ing complex constraints more easily.

5.3 Property Checker

The initial sequential property checking
problem is converted into a combinational
one by unrolling the design, i.e. the current
state variables are identified with the pre-
vious next state variables of the underlying
finite state machine (FSM). The process of
unrolling is shown in Figure 3.

A BMC instance b of a property P ar-
guing over the finite interval [¢,¢ + ¢] for a
design D is given by:

c—1
b= A Ts(i(t+35),s(t+35)s(t+35+1))
=0

A _'P(Z(t)a S(t), O(t), EREX
i(t +¢),s(t +¢),0(t + ¢))

with

e i(t) = (if,...,it) inputs at time
point ¢,

o s(t) = (sf,...,sl) states at time
point ¢,

o o(t) = A(i(t), s(t)) outputs at time
point ¢ and

o T; the transition relation.

The BMC instance b depends only on the
states s(¢) and the inputs i(t), ..., i(t + c).
It is unsatisfiable if for all states s(¢) and all
input sequences i(t), ..., i(t + ¢) the prop-
erty P over the interval [t,¢ + c] holds for
the design D. If b is satisfiable a counter-
example for the property P has been found.
The SystemC property checker takes
the FSM representation of the SystemC de-
sign and a property as input. Then the
property is translated into an expression
using only inputs, states and outputs of
the SystemC design annotated with time
points. The unrolled FSM representation
and the property expression are converted
into a bit-level representation. Here hash-
ing and merging techniques for minimisa-
tion are used. The bit-level representation
is given to the SAT solver zchaff (Moskewicz
et al., 2001) which has been integrated into
the property checker. In case of a counter-
example a waveform in VCD format is gen-
erated to allow for an easy debugging.

5.4 Verification

Examples for the SystemC representation
of transition rules as used within the case
study have been shown already in Sections 3
and 43. In the subsequent paragraphs, we
describe the verification steps performed on
these models.

Since all of our crucial safety proper-
ties are invariants P, they can be verified
according to the following inductive prin-
ciple: (1) Show that P holds after system
initialisation. (2) Assume that P holds at
t. (3) Prove that P holds at ¢t 4 1.

We illustrate the verification strategy
by means of the portion of the safety prop-
erty ® dealing with rule (SF5) — “there are
not trams residing simultaneously on two
different segments that cross each other”
— introduced in Section 2. For our con-
crete domain of control, a crossing ex-
ists between segments ((G20.3, G25.0) and
(G22.2, G23.0). A tram residing on a seg-
ment is modelled by corresponding counter
differences: ¢(G20.3) > ¢(G25.0) mod-
els “tram resides on (G20.3, G25.0) and
¢(G22.2) > ¢(G23.0) models “tram resides
on (G22.2, G23.0). Therefore, ® requires at
all times ¢

- (¢(G20.3) > ¢(G25.0) A
¢(G22.2) > ¢(G23.0))

3In the examples given, we allowed for some minor syntactic deviations from machine-readable SystemC,

in order to improve readability.

t t+1 t+c

i(t) i(t+1) i(t+c)
S(OAA> (: ;?5 (: 4§Z4b 77777 ™ (:

é(t) o(t+1) o(t+c)

Fig. 3. Unrolling.

In order to prove this, we first relate
the “virtual” counters c(g) of the physi-
cal model to the internal counters cc(g)
of the controller by proving the following
property via BMC for each sensor g €
{G20.0, G20.1,...}:

theorem th_counter is
assume:
during[t,t+1]:
<...additional properties...>
at t+l:
(c(g) = cc(g))
or (sen(g) = HIGH

and prev(sen(g)) = LOW
and c(g) = cc(g) + 1);
prove:
during [t+2,t+4]:
(c(g) = cc(g))
or (sen(g) = HIGH
and prev(sen(g)) = LOW
and c(g) = cc(g) + 1);

end theorem;

This theorem establishes an invari-
ant (since the “additional properties” not
shown in an explicit way have been estab-
lished as invariants before) stating that the
virtual sensor counters ¢(g) of the domain
of control either carry the same values as
the counters cc(g) managed by the con-
troller, or a LOW — HIGH transition of g
has just occurred, so that ¢(g) = cc(g) + 1.
If this is the case, values will coincide again
by the next time tick. To establish this
property for all sensors, our model checker
requires 12s on a personal computer with
1.6GHz CPU.

With this theorem at hand, we can re-
late the counter relations referenced in ®
to the internal route controller states OC-
CUPIED and ALLOCATED. Similar to the
theorem above, we prove by BMC that

(¢(G20.3) = ¢(G25.0)) v
(¢(G20.3) > c(G25{.

0) A
rc_cmu(l) € {ALL.,0CC.})

12

and

(e(G22.2) = ¢(G23.0)) V
(c(G22.2) > ¢(G23.0) A
rc_emv(2) € {ALL., OCC.})

are invariants. The associated BMC runs
take 3s per route. This leaves us with a fi-
nal theorem to be established, showing that
routes 1 and 2 can never be allocated or oc-
cupied at the same time. Again, the verifi-
cation takes about 3s.

6. CONCLUSION

In this paper, an automated verification
strategy for railway or tram control systems
based on bounded model checking has been
described. The invariant nature of safety re-
quirements is well-suited for inductive rea-
soning over the transition system structure,
establishing safety at time ¢ and inferring
that the safety invariant still holds at ¢ + 1.
As a consequence, it is not required to ex-
plore complete histories starting from sys-
tem initialisation, as typically performed
by classical model checking. Instead, the
bounded model checking approach is ap-
plied to the inductive verification over a lim-
ited number of time steps. This approach
allows for mechanised verification of much
larger models without running into state ex-
plosion problems.

Future work. In sections 3 and 4 it has
been explained how the transition rules for
the domain of control (D) and the con-
troller (C) can be systematically derived
from a domain description (a network de-
scription and four route tables). In a sim-
ilar way proof obligations can be system-
atically derived. Future work includes im-
plementing generators performing each of
these derivation tasks. Since, an XML for-
mat has already been defined for domain
descriptions, cf. (Haxthausen et al., 2004),

a possibility would be to implement the gen-
erators as transformations using the Exten-
sible Stylesheet Language XSL that is asso-
ciated with XML.

REFERENCES

Biere, A., A. Cimatti, E. Clarke, O. Strich-
man and Y. Zhu (2003). Bounded Model
Checking. Vol. 58 of Advances in Com-
puters. Academic press.

Biere, A., A. Cimatti, E.M. Clarke, M. Fu-
jita and Y. Zhu (1999). Symbolic model
checking using SAT procedures instead
of BDDs. In: Design Automation Conf..
pp. 317-320.

Bormann, J. and C. Spalinger (2001). For-
male Verifikation fiir Nicht-Formalisten
(Formal verification for non-formalists).
Informationstechnik und Technische In-
formatik 43, 22-28.

Burch, J.R., E.M. Clarke, K.L. McMillan and
D.L. Dill (1990). Sequential circuit verifi-
cation using symbolic model checking. In:
Design Automation Conf.. pp. 46-51.

Clarke, E., A. Biere, R. Raimi and Y. Zhu
(2001). Bounded model checking using
satisfiability solving. Formal Methods in
System Design 19, 22-28.

Damm, W., G. Déhmen and J. Klose (1999).
Secure decentralized control of rail-
way crossings. In: Fourth International
ERCIM Workshop on Formal Methods
in Industrial Critical Systems. pp. 115—
132.

Fey, G., D. Grofle, T. Cassens, C. Genz,

T. Warode and R. Drechsler (2004).

ParSyC: an efficient SystemC parser. In:

Workshop on Synthesis And System In-

tegration of Mized Information tech-

nologies (SASIMI).

Grofle, D. and R. Drechsler (2003). Formal
verification of LTL formulas for Sys-
temC designs. In: IEEE International
Symposium on Circuits and Systems.
pp. V:245-V:248.

Grotker, T., S. Liao, G. Martin and S. Swan
(2002). System Design with SystemC.
Kluwer Academic Publishers.

Haxthausen, A. E. and J. Peleska (2000a).
Formal Development and Verification of
a Distributed Railway Control System.
IEEE Transaction on Software Engi-
neering 26(8), 687-701.

13

Haxthausen, A. E. and J. Peleska (20000).
Formal Methods for the Specification
and Verification of Distributed Railway
Control Systems: From Algebraic Spec-
ifications to Distributed Hybrid Real-
Time Systems. In: Forms ’99 - Formale
Techniken fir die Eisenbahnsicherung
Fortschritt-Berichte VDI, Reihe 12, Nr.
436. VDI-Verlag, Diisseldorf. pp. 263—
271.

Haxthausen, A. E. and J. Peleska (2002). A
Domain Specific Language for Railway
Control Systems. In: Proceedings of the
Sizth Biennial World Conference on In-
tegrated Design and Process Technol-
ogy, (IDPT2002), Pasadena, Califor-
nia.

Haxthausen, A. E. and J. Peleska (2003a). Au-
tomatic Verification, Validation and Test
for Railway Control Systems based on
Domain-Specific Descriptions. In: Pro-
ceedings of the 10th IFAC Symposium
on Control in Transportation Systems.
Elsevier Science Ltd, Oxford. ISBN 0-
08-044059-2.

Haxthausen, A. E. and J. Peleska (2003b).
Generation of Executable Railway Con-
trol Components from Domain-Specific
Descriptions. In: Proceedings of the
Symposium on Formal Methods for
Railway Operation and Control Systems
(FORMS’2003). L’Harmattan Hongrie.
pp. 83-90.

Haxthausen, A. E., N. Christensen and
R. Dyhrberg (2004). From Domain Model
to Domain-specific Language for Rail-
way Control Systems. In: Proceed-
ings of Formal Methods for Automa-
tion and Safety in Railway and Au-
tomotive Systems (FORMS/FORMAT
2004)), Braunschweig, Germany.

Johannsen, P. and R. Drechsler (2001). Formal
verification on register transfer level —
utilizing high-level information for hard-
ware verification. In: IFIP Int’l Conf. on
VLSI. pp. 127-132.

Moskewicz, M.W., C.F. Madigan, Y. Zhao,
L. Zhang and S. Malik (2001). Chaff: En-
gineering an efficient SAT solver. In: De-
sign Automation Conf.. pp. 530-535.

Peleska, J., A. Baer and A. E. Haxthausen
(2000). Towards Domain-Specific For-
mal Specification Languages for Rail-
way Control Systems. In: Proceedings
of the 9th IFAC Symposium on Control
in Transportation Systems 2000, June
13-15, 2000, Braunschweig, Germany.
pp. 147-152.

