
EvoAl — Codeless Domain-Optimisation
Bernhard J. Berger∗
University of Rostock
Rostock, Germany

bernhard.berger@uni-rostock.de

Christina Plump
DFKI GmbH—Cyber-Physical Systems

Bremen, Germany
christina.plump@dfki.de

Lauren Paul
University of Bremen
Bremen, Germany

lau_pau@uni-bremen.de

Rolf Drechsler†
University of Bremen
Bremen, Germany

drechsler@uni-bremen.de

ABSTRACT

Applying optimisation techniques such as evolutionary computa-
tion to real-world tasks often requires significant adaptation. How-
ever, specific application domains do not typically demand major
changes to existing optimisation methods. The decisive aspect is
the inclusion of domain knowledge and configuration of established
techniques to suit the problem. Separating the optimisation tech-
nique from the domain knowledge offers several advantages: First,
it allows updating domain knowledge without necessitating re-
implementation. Second, it improves identification and comparison
of the optimisation methods employed. We present EvoAl, an open-
source data-science research tool suite that focuses on optimisation
research for real-world problems. EvoAl implements the separation
of domain-knowledge and detaches implementation from config-
uration, facilitating optimisation with little programming effort,
allowing direct comparability with other approaches (using EvoAl),
and ensuring reproducibility. EvoAl also includes options for surro-
gate models, data models for complex search spaces, data validation,
and benchmarking options for optimisation researchers.

CCS CONCEPTS

• Theory of computation → Evolutionary algorithms; • Com-

putingmethodologies→Genetic programming; Support vector
machines.
ACM Reference Format:

Bernhard J. Berger, Christina Plump, Lauren Paul, and Rolf Drechsler. 2024.
EvoAl — Codeless Domain-Optimisation. In Genetic and Evolutionary Com-
putation Conference (GECCO ’24 Companion), July 14–18, 2024, Melbourne,
VIC, Australia. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3638530.3664154

1 INTRODUCTION

Solving optimisation problems is a challenge faced across a wide
variety of different domains. While some problems can be solved
using deterministic and/or linear methods, the last few decades

∗Also with Hamburg University of Technology.
†Also with DFKI GmbH—Cyber-Physical Systems.

GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in Genetic
and Evolutionary Computation Conference (GECCO ’24 Companion), July 14–18, 2024,
Melbourne, VIC, Australia, https://doi.org/10.1145/3638530.3664154.

have seen a huge rise in meta-heuristics, such as evolutionary
computation and swarm intelligence methods. The versatility and
adaptability of these methods allows their application to many
different optimisation problems in many different domains. They
are even capable of handling constraints (frequent in real-world
applications) and black-box or expensive optimisation functions
(using surrogate models).

Therefore, it is unsurprising that evolutionary computationmeth-
ods are a common technique for solving domain-related optimisa-
tion tasks. Unfortunately, many research results are only presented
in closed form, and their specific software is not disclosed. This not
only hinders reproducibility, giving other researchers no choice but
to believe the presented results, it also leads to sustainability issues:
well-thought-out solutions that could be used for comparable cases
have to be redeveloped and might also be republished without a
sensible comparison of both tools.

We encountered this exact problem in several domain-applications
of optimisation, ranging from material sciences [4] to medical sci-
ence [8, 16] and applications in the hardware domain (e.g., optimis-
ing the usage of hardware accelerators [21]).We came across several
issues in these projects that finally inspired the development of
EvoAl1, a publicly available open-source data-science research tool
suite aimed at providing a platform for optimisation researchers
who work with real-world domain optimisation problems.

One important aspect of real-world problems is communication
with domain experts and the utilisation and implementation of
their expert knowledge. The inclusion of this knowledge is highly
important for developing an optimisation algorithm that yields
results that can actually be used in the respective domain. However,
domain experts frequently add or change information or variables
over the course of a project, which makes hard-coding such infor-
mation into optimisation algorithms impractical. EvoAl contains
a data description language that offers domain experts the oppor-
tunity to document their knowledge in a formalised but simple
manner. This information can then be used to modify and structure
the optimisation algorithm. Separating domain knowledge from
optimisation specifications is beneficial for several reasons: First, it
increases efficiency during project runtime, and second, it allows
the comparison of optimisation algorithms without being clouded
by the domain specifics.

One further benefit is the ability of all involved experts to focus
on their respective areas of expertise. Domain experts should focus

1EvoAl is publicly available at https://www.evoal.de.

https://orcid.org/0000-0001-6093-9229
https://orcid.org/0000-0003-0392-6397
https://orcid.org/0009-0008-9225-8880
https://orcid.org/0000-0002-9872-1740
https://doi.org/10.1145/3638530.3664154
https://doi.org/10.1145/3638530.3664154
https://doi.org/10.1145/3638530.3664154
https://www.evoal.de


GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia Bernhard J. Berger, Christina Plump, Lauren Paul, and Rolf Drechsler

on solving their domain problem and supplying data-science ex-
perts with the necessary domain knowledge. Data-science experts
should focus on choosing the right technique with the best configu-
ration for the task at hand instead of implementation details. There-
fore, EvoAl offers a collection of pre-implemented data-science
techniques (optimisation as well as machine learning) that can
be configured with the help of domain-specific languages. Hence,
the data scientist can focus on his primary task: putting his ex-
pert knowledge to good use. Additionally, comparisons of different
solutions can be traced back to different configurations, i.e., pa-
rameter settings or technique choices, and are less dependent on
implementation issues.

EvoAl is designed in a way that fosters extensions in an open-
source setting 2. All tools and algorithms provided in EvoAl are
extensible, and EvoAl offers configuration-based orchestration
and execution of these components. Internally, EvoAl integrates
model-driven software engineering practices, compiler-techniques
for parsing configuration files, and static model validation. EvoAl
builds upon an extensible component architecture that can be ex-
tended at runtime by using the provided plugin mechanism, thus
allowing the addition of different optimisation or machine-learning
techniques, benchmarks, and evaluation policies.

The remainder of the paper is structured as follows: Section 2
introduces the open-source software EvoAl. Next, Section 3 illus-
trates several use-cases of EvoAl based on a simple running exam-
ple. After showing EvoAl’s usage, Section 4 introduces EvoAl’s
current and planned features and shows how EvoAl can be ex-
tended to support project-specific features. Afterwards, Section 5
discusses the advantages and challenges of EvoAl and compares
it to other existing optimisation tools. Finally, Section 6 concludes
the paper.

2 EVOAL

This section introduces EvoAl—an optimisation research tool suite.
First, Subsection 2.1 describes some of EvoAl’s use cases. Subsec-
tion 2.2 describes the design goals that were considered during
EvoAl’s development. Finally, Subsection 2.3 gives an overview of
additional design decisions made during development.

2.1 Use Cases

In real-world projects, there are—typically—three groups of stake-
holders that collaborate while solving an optimisation problem.
First, there is the Domain Expert, who knows details of the particu-
lar problem to solve and the corresponding domain data. Second, in
projects where the optimisation function is a) unknown, or b) too
expensive to compute, a Machine-Learning Expert may be tasked
with creating a surrogate model. Lastly, the Optimisation Expert
maps the optimisation problem to an appropriate optimisation al-
gorithm using the information provided by the domain expert and
the machine-learning expert.

Figure 1 shows a UML use-case diagram including the stakehold-
ers and their related use-cases, which are described below.
define optimisation problem The domain expert defines the ac-
tual domain problem. Therefore, she first describes the data (see

2EvoAl is published under the Apache 2.0 license and its source code is available at
https://gitlab.informatik.uni-bremen.de/evoal/source/evoal-core.

EvoAl

Domain Expert

Optimisation Expert

ML Expert

learn surrogate model

describe data

solve optimisation problem

«include»

«include»

validate data

«include»

«include»

«include»

«include»

define optimisation problem

«include»

Figure 1: Overview of EvoAl’s default use cases

next use case) relevant to the problem and which properties should
be maximised or minimised. This information is the foundation of
the following use cases.
describe data The domain expert describes the domain data in
terms of which data exists, the measurement scales which apply to
it, and the data constraints of which she is aware. This information
significantly influences the later use cases, as they all work with
the domain data.
validate data In this use case, the domain expert makes sure that
the domain data is specified correctly. This aids in verifying the
validity of potential solutions from the surrogate model or the
optimisation process. This use case applies to the domain expert
when the data collection process is unstable or the data constraints
are not yet clear. In such situations, the domain expert may want
to validate the domain data according to the data description she
made to make sure that her understanding of the domain data is
correct. Data validation helps the machine-learning expert validate
predicted values from the machine-learning model as an additional
quality measure. Furthermore, it supports the optimisation expert in
checking candidate solutions for validity and determining whether
a suggested solution is—for some reason—infeasible.
train surrogate model In cases where the optimisation function
is a) unknown, or b) too expensive to compute, a surrogate model
is necessary to solve the optimisation problem. A machine-learning
expert constructs a surrogate model based on the data the domain
expert provides. The data description helps her map the domain
data to a proper algorithm that is appropriate for the data scales and
constraints. The training process usually happens offline, which
means the model is fixed for optimisation. However, there are sev-
eral situations where additional data points could be collected,
prompting an update to the model (this is the case with, for exam-
ple, online-learning algorithms). At other times, collecting new data
points is impossible or too expensive, in which case the optimisation
algorithm needs to account for imprecision in predictions.

https://gitlab.informatik.uni-bremen.de/evoal/source/evoal-core


EvoAl — Codeless Domain-Optimisation GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia

EvoAl

Surrogate API

«extension»
Density Estimation

«extension»
Support Vector Regression

Fitness API

Surrogate
Information API

«extension»
Formula Calculator

«extension»
Adjusted Fitness

Chromosome APIFitness Comparator

Evolutionary Algorithm

Main

«Use-Case»
Optimization

Optimizer

«Use-Case»
Data Generator

«Use-Case»
Surrogate Training

«extension»
Distance

Statistics API

Component

Provided Interface Used Interface

Component

Figure 2: Excerpt of EvoAl’s component diagram [2]

solve optimisation problem In the solve optimisation problem
use case, the optimisation expert decides on an optimisation algo-
rithm and chooses a way to map the domain data to the algorithm.
The optional surrogate model helps her to deal with unknown
optimisation functions or expensive to compute problems.

2.2 Design Goals

Besides implementing the use cases introduced in the last section,
which correspond to the functional requirements implemented in
EvoAl, we had additional design goals (non-functional require-
ments) that we respected during development.

Adaptability Designing and implementing optimisation software
that can be configured to different domain problems requires great
adaptability. Thus, EvoAl has a modular and configurable design,
which is necessary to allow easy integration of changes to the
domain data, optimisation strategy, or surrogate model.
Usability The different stakeholders are not necessarily program-
ming experts, and some may not have any programming experi-
ence at all. Therefore, we made supporting easy configuration and
code-free usage of EvoAl one of our central design goals during
development. The configuration process of all problem-solution
components is constantly checked for internal correctness, such as
correctness of used data scales.
Extensibility Because most research projects are aimed at inves-
tigating new techniques, one of EvoAl’s core design goals is ex-
tensibility. We implemented two levels of extensibility in EvoAl:
functional and configuration extensibility.
Functional extensibility requires a well-defined architecture for all
configurable elements in, for instance, an evolutionary algorithm.
The use of interfaces allows for integration of new functionality
without having to rewrite the application. At the same time, this

compartmentalisation supports reconfigurability, since the orches-
tration of an algorithm must be dynamic to compose a domain
solution without implementation work.
The second level, configuration extensibility, makes configuration
accessible even to non-programmers. To this end, EvoAl supports
new functional features via extensible configurations and also offers
automatic validation to help users apply these features correctly.
Reproducibility Reproducibility is an important factor for do-
main experts and researchers for many reasons.
When the solved problem occurs frequently, domain experts are
interested in using the problem solution (the actual optimisation
solution) over and over again to find an optimal solution every time.
They might even adapt their knowledge on the domain data or
want to retrain the surrogate model as more training data becomes
available.
Optimisation researchers have also identified the need to improve
the reproducibility of experiments [1]. Additionally, FAIR prin-
ciples, including data reusability, are becoming more and more
important [20].

2.3 Design Decisions

EvoAl’s goal is not to provide new optimisation algorithms but to
make them easier to access for non-programming experts through
a configuration mechanism.

We chose to use Java over Python, although the latter is more
widely used in data science applications. Unlike Python, Java sup-
ports a static type system and compile-time checks that allow errors
to be identified at compile time rather than at run time. This is use-
ful in the application scenario of EvoAl, because the number of
possible configuration combinations is very high. In a dynamic
programming paradigm such as what Python offers, this would



GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia Bernhard J. Berger, Christina Plump, Lauren Paul, and Rolf Drechsler

Listing 1: Data description of the running example

require a very high number of integration tests to ensure smooth
functionality.

To support extensibility and usability, we decided to use model-
driven software engineering techniques and domain-specific lan-
guages. Internally, EvoAl has a model of all algorithms, extension
points, and existing extensions that is based on the EclipseModeling
Framework3. Figure 2 shows a small excerpt of EvoAl’s component
view taken from a previous publication [2]. The domain-specific
languages—which are realised using Xtext [5]—are used to describe
all aspects of the problem solution, including the domain data, and
a component orchestration plan. At configuration time, the or-
chestration plan is statically checked for correctness using Xtext’s
validation mechanism. At runtime, the orchestration plan is used
to instantiate, configure, and connect the components accordingly.
Therefore, EvoAl uses a blackboard architecture and CDI [9] for
the orchestration process.

3 APPLYING EVOAL

In this section, we describe the application of EvoAl using a simple
exampleThe example and its assumptions are first described in
Subsection 3.1. Then, Subsection 3.2 shows the DSL-based domain-
data description. Subsection 3.3 describes how a surrogate model
can be trained for later usage. Finally, Subsection 3.4 shows the
final optimisation solution.

3.1 Running Example

Please note that this example is for demonstration purposes only
and is neither complete nor completely representative of reality.

We assume a situation where a domain expert on sleep quality
(maybe from the medical domain) works on identifying the best
conditions for a good night’s sleep. To that end, he considers pa-
rameters like day temperature, night temperature, humidity, and
potentially others. Sleep quality is, for example, measured by the
proportion of REM-sleep relative to a person’s total sleeping hours.
The domain expert may have some data from experimental setups,
including day temperature, humidity, and sleep quality of test sub-
jects. He wants to determine which combination of humidity and
day temperature leads to optimal sleep quality. In the following
subsections, we will describe the standard process of configuring
this problem in EvoAl, starting with the data description.

3.2 Data Description

First of all, it is important to specify the relevant data and to de-
scribe its properties and features. In this small example, we consider
four different variables: day temperature, night temperature, hu-
midity and sleep quality. In general, data is introduced with its scale
(nominal, ordinal, cardinal, quotient), its storage type (real,
integer, string, etc) and its name4. Additionally, constraints can
be added. Listing 1 shows the data description. Humidity and sleep
quality demonstrate the above-mentioned structure exactly. Both
are measured as percentages, i.e., have quotient scale, storage
type real, and the respective constraints to enforce the percent-
age property (not smaller than zero, and not higher than 100). The
temperature-related variables show an additional feature of our
data description language, namely types. Types can be used for
data that have the same general properties (i.e., the same type). In
this example, both variables stand for temperatures measured in
degrees Fahrenheit. Their storage type and scale are identical, as
well as the general constraint (no temperatures below −459.67°𝐹
are possible). The specific data description then refers to this type,
and inherits its properties but can, however, be extended with fur-
ther constraints. In our case, we restrict the possible day and night
temperature to more realistic values on the earth’s surface.

Finally, besides univariate constraints (containing only one vari-
able) that are defined within the data definition itself, bivariate or
multivariate constraints (containing more than one variable), can
be added at the end of the data description file (see lines 31–33).

3.3 Surrogate Learning

In our example, there is no direct relationship between the temper-
atures, humidity, and sleep quality known to the domain expert. He
is, however, equipped with experimental data mapping these vari-
ables to one another. To solve his optimisation problem, he needs
to develop a model which relates temperatures, humidity, and sleep
quality. Listing 2 shows the corresponding configuration in our ma-
chine learning language. The first important step is to include the
information from the data description (cf. line 5). This is necessary

3https://eclipse.dev/modeling/emf/
4Not all combinations of storage type and scale are probable. However, storing nominal
or ordinal data as integer is quite common, and should not lead to mistaking it as
cardinal.

https://eclipse.dev/modeling/emf/


EvoAl — Codeless Domain-Optimisation GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia

Listing 2: Surrogate learning of the running example

to ensure that the chosen ML-techniques can indeed be used for
the given data properties. Lines 8–20 define the actual ML model.
They specify input and output parameters (using keywords maps
and to) and the ML-technique to be used (keyword function) as
well as the respective hyperparameters. Finally, we specify which
training data to use and how to assess the quality of the final model.
In our case, we decide on a 10-fold cross-validation measure and
the determination coefficient. In order to be able to use the trained
model later on, we store the respective information in a special file.

3.4 Optimisation

After specifying the data and training an ML model for predicting
sleep quality from day temperature and humidity, the domain expert
or the optimisation expert (depending on the project structure) can
finally focus on the improvement of sleep quality. To that end, he
needs to specify two major aspects: First, the actual optimisation
problem, and second, the algorithm used for its solution.

An optimisation problem (lines 7–12) as such can be specified by
defining search and optimisation spaces, an optimisation function
and optimisation direction, i.e., whether it is a maximisation or a
minimisation problem (they can, of course, be transferred to one
another, this just makes it easier). Both the search and optimisation
spaces refer to data defined in the data description. Similar to the
ML case, this makes it possible to check whether a given algorithm
can actually be used on this data. The optimsation function can be
explicitly stated (if known), or specified as an unknown function
which will lead to a required definition later on.

The optimisation algorithm (lines 13–61) describes the solution
approach to the problem. In our case, the experts decide to use
a standard genetic algorithm. They specify standard parameters
such as the population size, maximum number of generations, and
maximum age of an individual (lines 15–19). Then, search space
data is mapped to an encoding in the genotype definition. It is
possible to combine different chromosome types in one genotype.

Linking these encoding definitions to the search and, therefore, the
data description allows semantic crosschecks and enables repair
mechanisms for constraint handling or the computation of penalty
functions, as the data properties are always known. The follow-
ing lines define standard operators of genetic algorithms: Which
crossover and mutation operator to use, which selection operators
to use, and how to treat constraints. Line 35 ff. show an additional
feature that was introduced in [14]: The severity of constraints:
Some constraints may have to be strictly upheld (physical laws,
e.g., the basic constraint for temperatures). Others, however, could
be closer to guidelines than strict constraints, i.e., that day temper-
ature always exceeds the night temperature. There may be some
weather hiccup (thunderstorm during the day, for example) for
which this constraint wouldn’t hold. They can then be marked with
a constraint category (in this case: vague) and their handling can
be defined accordingly inside the constraint-handling.

Finally, since we are using a surrogate model as a fitness function,
we specify this at the end of our optimisation language file. Here,
it would also be possible to add other modifications to the fitness
functions. Documentation for statistics can also be included to
specify which information to document for optimisation runs.

4 FEATURES OF EVOAL

In this section, we describe the currently available features of EvoAl
(as of April 2024) and give an outlook on features planned for the
upcoming months. Additionally, we describe how EvoAl can be
extended to showcase its usability for the research community.

4.1 Current Features

4.1.1 Optimisation.

Genetic algorithm and evolutionary strategies. EvoAl supports
general genetic algorithms and evolutionary strategies. To that
end, it is based on the Java-based library Jenetics [19]. It supports
standard operators for different genotype encodings, like gauss-
ian mutators, and bit flip mutators (as representants for mutation
operators), line crossovers, single point crossover, and uniform
crossover (as representants for recombination operators). Addition-
ally, it offers a wide variety of selection operators, such as strictly
elitist selectors, tournament selectors, roulette-wheel selectors, and
others. EvoAl has wrapped them to introduce the configurability
necessary for separating configuration from implementation.

Over the course of several publications, EvoAl has also been
extended with correlation-aware recombination and mutation op-
erators [11, 13]. Furthermore, EvoAl supports standard constraint-
handling techniques such as penalty-functions, kill-at-birth, or
repair mechanisms [14]. For handling constraints, we also intro-
duced the ability to define constraints of varying severity and to
define a unique constraint-handling technique for each severity
level. Besides penalty functions inside the fitness function, EvoAl
also supports surrogate models and related adaptions as fitness
functions. It is, e.g., possible to include the precision of a surrogate
model’s estimation in the computation of the fitness function (see,
e.g., [12, 15]).

EvoAl also supports different encoding variants. Standard en-
codings like double or bit encoding are supported by Jenetics and
have simply been included. More specialised encodings such as gray



GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia Bernhard J. Berger, Christina Plump, Lauren Paul, and Rolf Drechsler

Figure 3: Problem solution of the running example

encoding or genotypes with chromosomes of different encodings
have been added over time. Additionally, an encoding technique for
repetitive processes has been developed to allow a dynamic growth
of genotype length.

Genetic Programming. Besides the standard genetic algorithms
and evolutionary strategies, EvoAl also supports the basics of ge-
netic programming. It is possible to define expression operators (e.g.,
for mathematical functions, such as addition, subtraction, square
root, and the like), the depth of the tree, as well as the number and
constraints for ephemeral variables. EvoAl also has mutation and
crossover operators that work on trees and can, therefore, be used
in this structure.

Swarm Intelligence Algorithms. EvoAl supports two types of
swarm intelligence algorithms at the moment: Particle Swarm Op-
timisation (PSO), and Ant Colony Optimisation (ACO). Both are
supported in their standard variants with configurable parameters.

The distinction between optimisation problem and algorithmic
solution allows a sensible comparison between swarm intelligence
algorithms and evolutionary computation methods. The difference
in results can be traced back to the choice of algorithm and configu-
ration, not the problem specification, as this is equal for all solution
approaches.

4.1.2 Machine Learning. EvoAl supports different machine-learn-
ing algorithms for training surrogate models. Currently, there is
support for various learning techniques based on the Java SMILE
library [10]. SMILE supports Support Vector Regression with dif-
ferent kernels, random forest, gradient boosting, and Gaussian pro-
cesses. We also support standard goodness-of-fit measures for these
techniques, e.g., the determination coefficient 𝑅2, a k-fold cross-
validation with𝑀𝑆𝐸,𝑀𝐴𝑃𝐸, and 𝑅𝑀𝑆𝐸, which can be configured
as well.

4.1.3 Benchmarking. For benchmarking purposes, EvoAl inte-
grates the COCO benchmark suites [7] and several standard func-
tions, such as the Sphere function, the Rastrigin function, the Ackley
function, and the Rosenbrock function, just to name some standard
examples. Usually, these functions come with parameters which
can be configured when defining their choice. These benchmarks
are not necessary for every usage of EvoAl or every evaluation
of evolutionary algorithms, but come into play when testing new
methods on synthetic data.

4.1.4 Data Generation. For evaluation purposes, EvoAl imple-
ments a configurable training-data generator, which facilitates the
construction of surrogate models for benchmark functions. Similar
to other tools from the EvoAl suite, the generator can be configured
using a domain-specific language. Typically, normally or multivari-
ate normally distributed input data are generated. The input data
can then be fed into a benchmark function to generate the correct
benchmark distribution given the input data. Afterward, some or all
of the data can be noised to mimic measurement noise that can be
found in real-world projects. If required, the generated data can be
validated using constraints specified in the data description. Finally,
the resulting data can be used as input for ML methods to train
surrogate models for an optimisation algorithm. Besides this, the
data generator can be used to generate initial populations for the
evolutionary algorithm.

4.2 Planned Features

We have a long list of planned features in our backlog that will
find their way into upcoming EvoAl releases. Currently, we are
working on

• supporting additional learning techniques for surrogate-model
learning. A first demonstrator plugin for neural nets exists that
uses Eclipse Deeplearning4j 5 to configure and train neural
nets.

5Eclipse Deeplearning4j is available online https://deeplearning4j.konduit.ai.

https://deeplearning4j.konduit.ai


EvoAl — Codeless Domain-Optimisation GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia

• a hyper-parameter optimisation mechanism that uses the model
information on available machine-learning, or optimisation pa-
rameters and their value ranges to automatically map the param-
eters to an optimisation algorithm that can be optimised.

• more detailed semantic checks at the configuration level to sup-
port users in selecting the correct configuration for their problem.

• a visualisation framework for teaching optimisation algorithms.
First—partly interactive—visualisations for fitness evolution, in-
dividual inheritance, and dynamic environment changes already
exist but need some improvement.

A major change for end-user usability and accessibility of EvoAl is
the current switch to Eclipse Theia 6. Theia, a Cloud-enabled editor,
offers simpler deployment options compared to the current Eclipse-
based implementation. Combining configuration and visualisation
ideas in a Cloud environment makes EvoAl more accessible to
students and end users.

4.3 Adding custom features

This subsection will show a simple custom optimisation-function
plugin for the sleeping quality example introduced in Section 3. For
this purpose, we assume that the actual function that maps night
temperature and humidity to sleeping quality is now known to the
domain expert. Thus, the machine-learning expert only has to train
a model that predicts night temperature based on day temperature
and humidity. For this example, we assume that the mapping be-
tween night temperature, humidity, and sleep quality that is now
known to the domain expert is given as follows:

𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = max
{
−0.01(𝑛𝑖𝑔ℎ𝑡 − 63)2 − 0.04(ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 − 50)2 + 100; 0

}
This requires us to extend EvoAl such that it can use a cus-

tom fitness function, using the ML model for predicting the night
temperature and the given formula for computing the sleep quality.

To implement an EvoAl plugin, the best starting point is to clone
the EvoAl template project 7. Usually, it is necessary to take care
of two aspects: First, the actual implementation of the extension
and second, the extension (if necessary) of the configuration. We
will describe both in the following paragraphs.

Listing 3 shows the exemplary implementation of a custom op-
timisation function. The Named annotation states the name that
can be used in the configuration to access the component. Since
this component should be an optimisation function, it has to im-
plement the OptimisationFunction interface. During creation,
EvoAl will inject the loaded surrogate model into the annotated
attribute function for later usage, and then call the init func-
tion. The initialisation function receives the instance configuration
parsed from the configuration file as a parameter and thus allows
the component to configure itself according to the user’s choices.
The evaluate function, which receives a possible candidate solu-
tion properties8, calculates the fitness of the passed candidate.
In the example case, the candidate will contain the day tempera-
ture and the humidity, which it passes to the surrogate model. The
surrogate model predicts the night temperature, and the predicted

6Online available at https://theia-ide.org.
7The project can be accessed at https://gitlab.informatik.uni-bremen.de/evoal/source/
evoal-template.
8Please note that the Properties is a EvoAl implementation that does automatic type
checks and conversions according to the configuration.

17 */
18 @Dependent
19 @Named("com.example.fitness.gecco.custom-fitness")
20 @Slf4j
21 public class CustomFitness implements OptimisationFunction {
22 @Inject
23 private SurrogateFunction function;
24
25 private final static double idealTemp = 63;
26 private final static double idealHumidity = 50;
27
28 @Override
29 public double[] evaluate(final Properties properties) {
30 int hIndex = properties.getSpecification().indexOf("humidity");
31 final Properties oFeatures = function.apply(properties);
32
33 double oFeature = Math.max(0.0,
34 -0.01 * Math.pow(oFeatures.getAsDouble(0) - idealTemp, 2.0)
35 -0.04 * Math.pow(properties.getAsDouble(hIndex) -

idealHumidity,2.0)↩→
36 +100.0
37 );
38
39 return new double[] {oFeature};
40 }
41
42 @Override
43 public OptimisationFunction init(final Instance configuration) throws

InitializationException {↩→
44 log.info("Creating a custom optimisation function");
45
46 return OptimisationFunction.super.init(configuration);
47 }
48 }

Listing 3: Implementation of the custom optimisation func-

tion

value is then used to calculate the actual sleeping quality based on
the given formula. The result is returned to the function’s caller.

After implementing the fitness function, it is necessary to adapt
the configuration to use the newly created fitness function. List-
ing 4 shows the unified diff between the two optimisation solution
configurations. First, an import statement is added to the configu-
ration file that imports the newly created module containing our
fitness function. The name corresponds to the name in the afore-
mentioned annotation without the name part after the last dot
(cf. Listing 3). This import allows the usage of the custom optimi-
sation function. Second, we substitute the definition of the fitness
function as surrogate through the custom fitness function, which
refers to our newly implemented fitness function.

5 DISCUSSION

Section 5.1 discusses the advantages and Section 5.2 the disadvan-
tages of EvoAl. Section 5.3 gives an overview on related research.

5.1 Advantages

One major advantage of EvoAl is the built-in documentation and
reproducibility of conducted experiments. The configuration files
associated with a given experiment state which algorithms and
parameter settings were used. All configurable information is cap-
tured and documented. This allows anyone to a) use EvoAl to
repeat the algorithm on different data9 or b) to implement the algo-
rithm themselves10. The high-level algorithm description provided
in EvoAl’s configuration files is better than a source-code-based

9Compare ACM’s definition of reproduction: Different Team, Same Setup
10Compare ACM’s definition of reproduction: Different Team, Same Setup

https://theia-ide.org
https://gitlab.informatik.uni-bremen.de/evoal/source/evoal-template
https://gitlab.informatik.uni-bremen.de/evoal/source/evoal-template


GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia Bernhard J. Berger, Christina Plump, Lauren Paul, and Rolf Drechsler

1 --- weather1.ol
2 +++ weather2.ol
3 @@ -1,6 +1,7 @@
4 import "definitions" from de.evoal.core.optimisation;
5 import "definitions" from de.evoal.core.ea.optimisation;
6 import "definitions" from de.evoal.surrogate.optimisation;
7 +import "definitions" from com.example.fitness.gecco;
8 import "data" from weather;
9
10 module weather {
11 @@ -56,7 +57,7 @@
12 'probability-mutator' { probability := 0.5; }];
13 };
14
15 - 'optimisation-function' := surrogate {};
16 + 'optimisation-function' := 'custom-fitness' {};
17 documenting := ['best-candidate-per-generation' {}];
18 }
19 }

Listing 4: Difference between the configuration shown in

Figure 3 and new configuration that uses the custom optimi-

sation function

solution, where it is necessary to understand the entire implemen-
tation to extract the algorithm configuration. Thus, the domain
language acts as a documentation of optimisation solutions.

As part of an experiment, we even implemented a Python-based
model interpreter for our configuration language that can execute
the described model using Python libraries, showing that the config-
uration language is not only bound to EvoAl and the Java language.
Another evident and prominent advantage is the required time-
to-solution for new domain problems that can be solved with off-
the-shelf algorithms and parameter adaptations. Even fundamental
changes, such as switching data encoding or changing constraint-
violation handling, can be done by experienced users in a matter of
minutes, dwarfing the time required to make changes to a manually
created solution. This allows the optimisation expert to focus on
identifying the best algorithm and settings without spending too
much time on implementation efforts. It also fosters the longevity of
project solutions. When domain information slightly changes after
a project officially ends, domain experts are capable of addressing
these changes on their own. EvoAl’s data description language
allows them to handle changes without any relevant coding experi-
ence.

5.2 Disadvantages

One downside of our approach is the modeling and engineering
effort required to design algorithms and adaptations in the most
generic way possible. Even for trained software engineers and archi-
tects, finding algorithms and implementing programs that can be
applied to all problem instances is challenging. Since EvoAl can be
understood as a highly flexible frontend to different data science li-
braries, a large amount of integration testing is required. Currently,
we are working on improving the automated integration-test cover-
age of EvoAl. However, this is a standard and well-known problem
for configurable software systems and not specific to EvoAl.

5.3 Related Tools

A plethora of open-source tools and libraries for optimisation, and
especially machine learning, exists. First, there are different li-
braries, such as Jenetics [19], motipy [18], scipy.optimize11, or
the MOEAFramework12, that offer variants of optimisation algo-
rithms. The MOEA Framework also focuses on visualising the opti-
misation process by plotting fitness values. Similarly, HeuristicLAB
offers a wide range of optimisation algorithms and well-known
problem instances and visualises the results of optimisation runs [17].
These tools offer great options for using or benchmarking optimi-
sation and/or machine learning algorithms. Nevertheless, these
libraries require programming skills to create customised domain-
specific tools. EvoAl offers non-programmers the chance to use
these techniques and focus on the actual problem instead of typical
implementation and integration issues.

Themodelling community focuses onmodel optimisation (search-
ing for an optimal model, which is similar to genetic programming)
tools that are available as open-source. MOMoT combines model-
driven engineering and search-based optimisation to search for
optimal model instances [6]. The MDEoptimiser, for instance, uses
modelling techniques and domain-specific languages [3]. Similar to
EvoAl, these approaches use modelling techniques, and in the case
of MDEoptimiser even a domain-specific language. Nevertheless,
the approaches are limited to genetic programming-like problems.

6 CONCLUSIONS

In this paper, we presented the open-source data-science tool suite
EvoAl with a strong emphasis on optimisation. We showed a subset
of the use cases EvoAl supports and how these are mapped to its
component architecture, which is designed for extensibility. Using
a running example, we showed how EvoAl can be configured to
solve optimisation tasks that employ a learned surrogate function
without additional programming effort. Furthermore, the paper
gives a brief overview of EvoAl’s current and planned features and
shows with a simple example how EvoAl can be extended.

While EvoAl showed first good results in terms of usability for
domain experts, we plan to do more experiments on the usability
aspects for the other roles. As EvoAl configures at runtime, it is im-
portant to compare its performance with a hand-written algorithm
implementation.

ACKNOWLEDGEMENT

The work was partially funded by the AI Center for Health Care
of the U Bremen Research Alliance, financially supported by the
Federal State of Bremen in Germany.

REFERENCES

[1] Thomas Bartz-Beielstein, Carola Doerr, Jakob Bossek, Sowmya Chandrasekaran,
Tome Eftimov, Andreas Fischbach, Pascal Kerschke, Manuel López-Ibáñez, Kather-
ine M. Malan, Jason H. Moore, Boris Naujoks, Patryk Orzechowski, Vanessa Volz,
Markus Wagner, and Thomas Weise. 2020. Benchmarking in Optimization:
Best Practice and Open Issues. CoRR abs/2007.03488 (2020). arXiv:2007.03488
https://arxiv.org/abs/2007.03488

[2] Bernhard J. Berger, Christina Plump, and Rolf Drechsler. 2023. EVOAL: A Domain-
Specific Language-Based Approach to Optimisation. In 2023 IEEE Congress on

11Available online at https://docs.scipy.org/doc/scipy/tutorial/optimize.html
12Available online at http://moeaframework.org

https://arxiv.org/abs/2007.03488
https://arxiv.org/abs/2007.03488
https://docs.scipy.org/doc/scipy/tutorial/optimize.html
http://moeaframework.org


EvoAl — Codeless Domain-Optimisation GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia

Evolutionary Computation (CEC). 1–10. https://doi.org/10.1109/CEC53210.2023.
10253985

[3] Alexandru Burdusel, Steffen Zschaler, and Daniel Strüber. 2018. MDEoptimiser:
a search based model engineering tool. In Proceedings of the 21st ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings (Copenhagen, Denmark) (MODELS ’18). Association for
Computing Machinery, New York, NY, USA, 12–16. https://doi.org/10.1145/
3270112.3270130

[4] N. Ellendt and L. Mädler. 2018. High-Throughput Exploration of Evolutionary
Structural Materials. HTM Journal of Heat Treatment and Materials 73, 1 (2018),
3–12. https://doi.org/doi:10.3139/105.110345

[5] Moritz Eysholdt and Heiko Behrens. 2010. Xtext: Implement Your Language
Faster than the Quick and Dirty Way. In Proceedings of the ACM International
Conference Companion on Object Oriented Programming Systems Languages and
Applications Companion (Reno/Tahoe, Nevada, USA) (OOPSLA ’10). Association
for Computing Machinery, New York, NY, USA, 307–309. https://doi.org/10.
1145/1869542.1869625

[6] Martin Fleck, Javier Troya, and Manuel Wimmer. 2016. Search-Based Model
Transformations with MOMoT. Springer International Publishing, 79–87. https:
//doi.org/10.1007/978-3-319-42064-6_6

[7] N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tušar, and D. Brockhoff. 2021.
COCO: A Platform for Comparing Continuous Optimizers in a Black-Box Setting.
Optimization Methods and Software 36 (2021), 114–144. Issue 1. https://doi.org/
10.1080/10556788.2020.1808977

[8] Daniel Christopher Hoinkiss, Jörn Huber, Christina Plump, Christoph Lüth,
Rolf Drechsler, and Matthias Günther. 2023. AI-driven and automated MRI
sequence optimization in scanner-independent MRI sequences formulated by
a domain-specific language. Frontiers in Neuroimaging 2 (May 2023). https:
//doi.org/10.3389/fnimg.2023.1090054

[9] Jakarta Contexts and Dependency Injection Spec Project. 2019. Specification:
Jakarta Contexts and Dependency Injection 2.0. Technical Report. Eclipse Founda-
tion.

[10] Haifeng Li. 2024. Smile. https://haifengl.github.io.
[11] Christina Plump, Bernhard J. Berger, and Rolf Drechsler. 2021. Domain-driven

Correlation-aware Recombination and Mutation Operators for Complex Real-
world Applications. In 2021 IEEE Congress on Evolutionary Computation (CEC).
IEEE. https://doi.org/10.1109/cec45853.2021.9504931

[12] Christina Plump, Bernhard J. Berger, and Rolf Drechsler. 2021. Improving Evolu-
tionary Algorithms by Enhancing an Approximative Fitness Function through
Prediction Intervals. In 2021 IEEE Congress on Evolutionary Computation (CEC).
IEEE. https://doi.org/10.1109/cec45853.2021.9504722

[13] Christina Plump, Bernhard J. Berger, and Rolf Drechsler. 2022. Adapting mutation
and recombination operators to range-aware relations in real-world application
data. InGECCO ’22: Genetic and Evolutionary Computation Conference, Companion
Volume, Boston, Massachusetts, USA, July 9 - 13, 2022, Jonathan E. Fieldsend and
Markus Wagner (Eds.). ACM, 755–758. https://doi.org/10.1145/3520304.3529066

[14] Christina Plump, Bernhard J. Berger, and Rolf Drechsler. 2022. Choosing the Right
Technique for the Right Restriction – A Domain-Specific Approach for Enforcing
Search-Space Restrictions in Evolutionary Algorithms. Springer International
Publishing, 349–359. https://doi.org/10.1007/978-3-031-05359-7_28

[15] Christina Plump, Bernhard J. Berger, and Rolf Drechsler. 2022. Using density
of training data to improve evolutionary algorithms with approximative fitness
functions. In IEEE Congress on Evolutionary Computation, CEC 2022, Padua, Italy,
July 18-23, 2022. IEEE, 1–10. https://doi.org/10.1109/CEC55065.2022.9870352

[16] Christina Plump, Bernhard J. Berger, Rolf Drechsler, Daniel C. Hoinkiss, Christoph
Lueth, Matthias Günther, and Jörn Huber. 2024. Finding the perfect MRI sequence
for your patient — Towards an optimisation workflow for MRI-sequences. In
2024 IEEE Congress on Evolutionary Computation (CEC). IEEE. Accepted for
publication.

[17] S. Wagner, G. Kronberger, A. Beham, M. Kommenda, A. Scheibenpflug, E. Pitzer,
S. Vonolfen, M. Kofler, S. Winkler, V. Dorfer, and M. Affenzeller. 2014. Architecture
and Design of the HeuristicLab Optimization Environment. Springer International
Publishing, 197–261. https://doi.org/10.1007/978-3-319-01436-4_10

[18] Thomas Weise. 2023. Software - motipy: the Metaheuristic Optimization in
Python Library. SIGEVOlution 16, 4, Article 3 (dec 2023), 2 pages. https://doi.
org/10.1145/3638461.3638464

[19] Franz Wilhelmstötter. 2024. Jenetics — Genetic Algorithm, Genetic Programming,
Evolutionary Algorithm, and Multi-Objective Optimization. https://jenetics.io/.
(accessed on 26 March 2024).

[20] Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Ap-
pleton, et al. 2016. The FAIR Guiding Principles for scientific data management
and stewardship. Scientific Data 3, 1 (March 2016). https://doi.org/10.1038/sdata.
2016.18

[21] Jan Zielasko and Rolf Drechsler. 2023. Virtual Prototype Driven Application
Specific Hardware Optimization. (2023), 1–8. https://doi.org/10.1109/FDL59689.
2023.10272131

https://doi.org/10.1109/CEC53210.2023.10253985
https://doi.org/10.1109/CEC53210.2023.10253985
https://doi.org/10.1145/3270112.3270130
https://doi.org/10.1145/3270112.3270130
https://doi.org/doi:10.3139/105.110345
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1007/978-3-319-42064-6_6
https://doi.org/10.1007/978-3-319-42064-6_6
https://doi.org/10.1080/10556788.2020.1808977
https://doi.org/10.1080/10556788.2020.1808977
https://doi.org/10.3389/fnimg.2023.1090054
https://doi.org/10.3389/fnimg.2023.1090054
https://haifengl.github.io
https://doi.org/10.1109/cec45853.2021.9504931
https://doi.org/10.1109/cec45853.2021.9504722
https://doi.org/10.1145/3520304.3529066
https://doi.org/10.1007/978-3-031-05359-7_28
https://doi.org/10.1109/CEC55065.2022.9870352
https://doi.org/10.1007/978-3-319-01436-4_10
https://doi.org/10.1145/3638461.3638464
https://doi.org/10.1145/3638461.3638464
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1109/FDL59689.2023.10272131
https://doi.org/10.1109/FDL59689.2023.10272131

	Abstract
	1 Introduction
	2 EvoAl
	2.1 Use Cases
	2.2 Design Goals
	2.3 Design Decisions

	3 Applying EvoAl
	3.1 Running Example
	3.2 Data Description
	3.3 Surrogate Learning
	3.4 Optimisation

	4 Features of EvoAl
	4.1 Current Features
	4.2 Planned Features
	4.3 Adding custom features

	5 Discussion
	5.1 Advantages
	5.2 Disadvantages
	5.3 Related Tools

	6 Conclusions
	References

