
Minimally Invasive HW/SW Co-debug Live Visualization on
Architecture Level

Pascal Pieper
Cyber-Physical Systems, DFKI GmbH

Bremen, Germany
pascal.pieper@dfki.de

Ralf Wimmer
Concept Engineering GmbH

Freiburg im Breisgau, Germany
Albert-Ludwigs-Universität Freiburg

Freiburg im Breisgau, Germany
ralf@concept.de

Gerhard Angst
Concept Engineering GmbH

Freiburg im Breisgau, Germany
gerhard@concept.de

Rolf Drechsler
Cyber-Physical Systems, DFKI GmbH

Bremen, Germany
Institute of Computer Science, University of Bremen

Bremen, Germany
drechsler@uni-bremen.de

ABSTRACT
We present a tool that allows developers to debug hard- and soft-
ware and their interaction in an early design stage. We combine a
SystemC virtual prototype (VP) with an easily configurable and
interactive graphical user interface and a standard software de-
bugger. The graphical user interface visualizes the internal state
of the hardware. At the same time, the software debugger moni-
tors and allows to manipulate the state of the software. This co-
visualization supports design understanding and live debugging
of the HW/SW interaction. We demonstrate its usefulness with a
case-study where we debug an OLED display driver running on a
RISC-V VP.

CCS CONCEPTS
• Hardware→ Simulation and emulation.

KEYWORDS
RISC V; debugging; virtual prototype; visualization
ACM Reference Format:
Pascal Pieper, Ralf Wimmer, Gerhard Angst, and Rolf Drechsler. 2021. Mini-
mally Invasive HW/SWCo-debug Live Visualization on Architecture Level.
In Proceedings of the Great Lakes Symposium on VLSI 2021 (GLSVLSI ’21),
June 22–25, 2021, Virtual Event, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3453688.3461524

1 INTRODUCTION
Virtual prototypes (VPs) [5, 6] are an important tool for hardware/-
software co-design. A VP is typically a transaction-level model

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
GLSVLSI ’21, June 22–25, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8393-6/21/06…$15.00
https://doi.org/10.1145/3453688.3461524

(TLM), written in a high-level language like SystemC [7], which
abstracts from implementation details of the hardware. It models
the hardware to a level of detail such that it can execute software
that is supposed to run later on the developed hardware. This way,
VPs allow to write software for a target system before the actual
hardware is finalized and produced, resulting in a shorter time-to-
market. Additionally, it also enables effective debugging early in
the design process, in particular of the often complex interplay be-
tween hard- and software.

In this paper, we present an easily configurable graphical de-
bugging tool called RISCview. Its architecture is sketched in Fig. 1.
RISCview features a graphical user interface (GUI) that shows ab-
stract views of the (virtual) hardware. They are rendered automat-
ically using the industrial-strength drawing engine Nlview™ [1].
The schematics are annotated with live simulation data, i. e., the
current values of signals, busses, and registers while executing soft-
ware instructions. These annotations can include internal values
that are not accessible from the hardware’s interface via software
instructions, but still important for debugging.

The HW debugging GUI is connected via TCP to the executable
consisting of the virtual prototype and user-defined views of the
hardware structure. For establishing the connection to the debug-
gingGUI, RISCviewprovides a visualization interface that is linked

Module 1

SystemC VP

Module n

View 1

RISCview

Command
Translation Layer

Executable

View nNlview Engine

Firmware

Driver

App

System under debug

Parts provided by RISCview

User-defined parts for
adopting RISCview

HW Debug GUI

SW Debugger

GDB GDB
Interface

CPU

...

...

Visualization Interface

Figure 1: Architecture of RISCview (in red) together with a
system under debug (in blue). Highlighted in green are the
user-defined parts that are necessary for the adoption.

https://doi.org/10.1145/3453688.3461524
https://doi.org/10.1145/3453688.3461524

into the VP executable. This model/view scheme separates the VP
and the displayed information, minimizing the impact of adding
our framework to a virtual prototype. It also reduces the interfer-
ence with other automated testing systems. Additionally, we can
flexibly highlight areas of interest by dynamic reconfiguration of
the views without modifying the VP.

The VP exhibits a debugging interface such that a standard soft-
ware debugger like GDB [10] can be used to inspect and manipu-
late the internal state of the software that is currently executed on
the VP. It allows to monitor variables, to set breakpoints etc.

The combination of the HW debugging GUI with a GDB in-
stance for the executed software gives the user deep insights into
the interplay between HW and SW. RISCview can be used, e. g.,
to aid the integration process of new peripherals and matching
software drivers into VPs, to visualize the existing architecture at
run-time, and to analyze interrupt and timer correlations.

We evaluate our tool by debugging a hardware abstraction layer
(HAL) for a newly designed OLED-Screen shield for the RISC-V
processor board HiFive11. Our experience shows clearly that
RISCview allows to find bugs in the HW/SW interaction more ef-
ficiently than the available alternatives.

Related Work. While debugging tools for later design phases ex-
ist both on the software side and on the hardware side, a lucid
and easy-to-use hardware visualization tool for early virtual pro-
totypes is not available yet. For instance, [8, 13] offer debugging
tools for systems on a chip (SoCs) at gate level later in the design
process. [13] emulates CPU and IPs by implementing a GDB inter-
face to an FPGA simulator, while [8] proposes a debug controller
that can be integrated in SoCs on the final silicon.

Both Rogin et al. [9] and Große et al. [3] propose SystemC IDEs
for low-level interactions with a focus on the signal layer. These
IDEs are incompatible with transaction-level models and do not
offer a live view of the system at run-time.

Since a virtual prototype is a software implementation – in our
case using the C++ class library SystemC –, it is also possible to
attach a software debugger like GDB [10] directly to the virtual
prototype and to step this way through the software model of the
hardware logic. Compared to our tool, this approach has the severe
drawback that it shows the variables of the SystemC implementa-
tion, but not a direct view of themodeled hardware; not tomention
of the software that is running on the VP.
In summary, the existing solutions are either too late in the design
process, provide no live view, or are not appropriate for debugging
the hardware/software interaction.
Main contributions of this paper are:

(1) an implementation-agnostic HW/SW visualization,
(2) early visual debug parallel to existing software tools,
(3) a live view of the system’s state during the debugging ses-

sion,
(4) a case-study showing that our approach is well suited for

finding bugs in the interaction of hard- and software.

Organization of the paper. In the following section we introduce
the building blocks of our tool and the relevant concepts for our
case-study.Thenwe go into details of RISCview’s architecture and
1https://www.sifive.com/boards/hifive1

implementation in Sect. 3. Section 4 presents our case-study. Fi-
nally, we summarize our contributions with an outlook to future
work in Sect. 5.

2 PRELIMINARIES
Here we explain the core concepts used in our tool and the case-
study.

SystemC. SystemC [7] is a virtual prototyping framework for
C++. It offers a class library to model hardware systems with mod-
ules and ports in an event-driven simulation kernel.Themain bene-
fit of SystemC is the flexible trade-off between timing accuracy and
simulation time, operating from abstract transaction-level model-
ing (TLM) down to the register transfer level (RTL). This support
for multiple abstraction levels enables developers to refine the de-
sign and even re-use the VP to verify the final hardware [2, 12].

TLM. SystemC TLM is a mechanism to speed up the simulation
time for the penalty of reduced timing accuracy (although retain-
ing cycle-accuracy is possible [11]).

RISC-V Instruction Set Architecture. For our case-study we ex-
tended the open-source RISC-V VP [4] in its HiFive mode. This
mode emulates the tinkering board HiFive1 of the company SiFive.
The processor board comes with peripherals such as buffered SPI,
DMA, and UART, which are all modeled in the virtual prototype.
The VP offers two ways to debug the system: A GDB connection
to the simulated CPU (software side) and a GDB session over the
SystemC executable itself (hardware side).While it is possible to ac-
cess the hardware IPs through a GDB session, the effort to gain in-
formation of interest is disproportionate because one has to access
variables through the SystemC kernel with its user-space schedul-
ing. The software GDB module inside the VP, however, is usable
as if the RISC-V binary was executed locally.

SPI. In the case-study, we use the Serial Peripheral Interface.
This protocol operates on three or four wires for data transmis-
sion between a master device and one or multiple slave devices.
The bus master starts a transmission by activating the Chip Select
(CS) line of the target device, starting a clocking signal on the CLK
line in sync with itsMaster Out/Slave In (MOSI) line. Eight bits can
be transferred for each burst. Depending on the use-case, theMas-
ter In/Slave Out (MISO) line may be used to transmit data from the
slave fully duplex. The master device has to actively poll slaves if
no additional bit lines are used.

Nlview. Nlview™ [1] is a commercial state-of-the-art library by
Concept Engineering GmbH for creating schematic diagrams for
electronic systems at different abstraction levels, ranging from tran-
sistor level via gate and RTL-level to system level. It is compatible
with different GUI frameworks like Tcl/Tk, Qt, WxWidgets, and
HTML5 canvas. Nlview provides APIs in C, Tcl, Java, Perl, and
Python.The automatically generated schematic layout can be mod-
ified and controlled both by the APIs and by human intervention.
Interactive circuit exploration is supported by Nlview’s incremen-
tal schematic generation technology.

RISCview uses the Nlview Tcl/Tk widget to render views of the
hardware modeled in the VP together with simulation data (see

https://www.sifive.com/boards/hifive1

Fig. 5 for an example view). Nlview’s incremental navigation fea-
tures thereby allow to interactively explore the hardware views
and hide irrelevant parts.

3 IMPLEMENTATION
To extend an existing SystemC VP, the system designer needs to
add views for every IP module that shall be a part of the visualiza-
tion. Views are abstract representations of modules containing the
relevant information with high control over the module’s layout.
These representations act independently of the actual SystemC be-
havior, separating the view from the model as much as possible.
The views are automatically collected by the visualization inter-
face. The visualization interface translates the instantiated views
and their data into a live stream of commands for the debugging
GUI via TCP. During the simulation of the SystemC VP, the inter-
face extracts updated information via the registered views asyn-
chronously.

In the GUI, the command translation layer receives the com-
mands from the visualization interface and generates appropriate
API calls of the visualization engine to render the model in a graph-
ical representation. This additional translation layer offers the flex-
ibility of using different visual styles or levels of detail. Adding
other visualization engines requires only implementing a different
translation layer. In our case study, we chose the industry-proven
Nlview engine [1] that allows creating structure components and
connections via Tcl/Tk commands. The combination allows an in-
teractive exploration of the underlying model, offering an auto
routing of individual nodes and a partial exploration to limit the
view to the relevant parts at run-time.

As already said, there are twoGDB interfaces that can be used si-
multaneously: A GDB session of the simulated CPU (software side)
and the SystemC executable itself (hardware side). The RISC-V bi-
nary can be loaded with GDB as a remote target to the SystemCVP.
The virtual CPU inside the VP then can be halted with breakpoints
and the virtual memory can be explored. Additionally, the actual
VP including its numerous IP models are written in C/C++ and thus
can also be debuggedwith the native GDB. Due to the visualization
interface running in an asynchronous thread, the hardware can be
inspected in real-time with both methods.

3.1 Symbols and Connections
A view has to implement at least two functions: getSymbol() and
update() (e. g., see Fig. 2). In getSymbol(), the view’s layout such
as size, shape, location of attribute fields and input/output pins
is defined. This function is only called once during instantiation
of the views. The actual values for the attributes are generated in
the update() function, which is periodically called by the visual-
ization interface (see Sect. 3.2). It may update the attributes of its
instance and the values of all connected pins. To display useful in-
formation, the view needs a reference to the module it describes.
For convenience, we supplied an auto-generation compiler macro
for trivial views (non-templated models and no extra functions)
to speed up the design process. How the view accesses its model
is up to the designer and available interfaces; directly over class
pointers, indirect over function calls, or any other way that C/C++
allows. Lastly, a Connection is a meta-element to connect two or

more pins and can display relevant data, which can be set by any
symbol that has connected pins to it.

1 const Symbol GPIOView :: getSymbol () {
2 Rect size = default_box; //100 x100 units
3 riscview ::Pin bus{"BUS", Direction ::INOUT ,
4 PinLocation{Orientation ::left , Point {0,1* size.y/5}}
5 };
6 riscview ::Pin o12{"12", Direction ::OUT ,
7 PinLocation{Orientation ::right ,

Point{size.x,1* size.y/5}}
8 };
9 [...]
10 std::map <std::string , Attribute > attrs {
11 //name , init value , lower left alignment , margin , size
12 {"regs", {"", Locator ::ll, {default_attrtextsize ,

size.y-default_attrtextsize},
default_textsize /3}},

13 };
14 return Symbol("GPIO", {bus , o12 , [...]} , size , attrs);
15 };
16 void GPIOView :: update () {
17 std:: string text = "VAL: " + toBin(model.value , 3);
18 instance.getPin("16")->getConnection ()->setText(model.port

& (1 << 10) ? "1" : "0");
19 instance.setAttribute("regs", text);
20 }

Figure 2: Example view building pins and attributes of a gen-
eral purpose I/O (GPIO) hardware module (cf. the resulting
symbol in Fig. 5)

1 #define GEN_DEFAULT_VIEW(CLASS)
2 struct CLASS##View : public Viewable {
3 static const Symbol symbol;
4 Instance instance;
5
6 static const Symbol getSymbol ();
7
8 CLASS &model;
9 CLASS##View(CLASS &model , string name = #CLASS);
10
11 void update () override;
12 };

Figure 3: Trivial class structure of a default view. Trailing
slashes are omitted for readability.

3.2 Visualization Interface
The visualization interface provides a library of usable layout ob-
jects (e. g., Symbol, Direction, Orientation, …), a registration
function for all views, and an own update thread. At program start-
up, the interface tries to connect to the command server of the de-
bugging GUI over a TCP connection. If no connection is possible,
all further view-related function calls are ignored and the SystemC
program continues as normal. Otherwise, the registered layout ob-
jects are serialized into individual commands and sent to the com-
mand server.

Every module and connection needs to be defined in an elabo-
ration phase. This definition allows setting the size of the module,
location and names of input or output pins, and the layout of at-
tributes along with a unique identification (see Fig. 4). These prop-
erties cannot be changed after the instantiation to allow the visual-
ization engine to place modules in a space-efficient manner. When

the SystemC simulation starts, the update thread starts polling all
registered instances periodically and checks for changed attributes.
All changed attributes can be updated via their respective identi-
fication strings and are then serialized and sent to the command
server (see Sect. 3.3).

Note that the update thread is independent of the SystemC simu-
lation, and thus does neither affect nor is affected by the simulation
time. Since our implementation of SystemC2 is single-threaded, the
impact of our proposed debugger on the simulation speed can be
neglected when run on a multicore system.

1 GPIO gpio0("GPIO0", INT_GPIO_BASE); // SysC HW -Model
2 RV_DEF_AND_ADD(GPIOView , gpio0); // View
3 SPI spi1("SPI1");
4 RV_DEF_AND_ADD(SPIView , spi1);
5 SS1106 oled ([...]);
6 RV_DEF_AND_ADD(SS1106View , oled);
7
8 riscview :: Connection gpio_oled_dc("GPIO -OLED -DC");
9 gpio_oled_dc.connect(gpio0_v.instance.getPin("16"));
10 gpio_oled_dc.connect(oled_v.instance.getPin("DC"));
11 riscview.add(gpio_oled_dc);
12 [...]
13
14 if(! riscview.connect ()) exit(-1); // connect with GUI
15 std:: thread updater ([& riscview]{ // start RISCview thread
16 while(true) {
17 ViewableRegistrar :: updateAll(riscview);
18 }
19 });
20 sc_core :: sc_start (); // start SysC thread

Figure 4: Excerpt of an initialization list ofHW-modules and
their views. RV_DEF_AND_ADD() is a compiler macro that in-
stantiates and registers a view, naming it with the suffix _v.

3.3 Debugging GUI
The debugging GUI is responsible for collecting visualization com-
mands and drawing appropriate structures. For interchangeability
of the graphical representation, the visualization commands are
based on Tcl/Tk. The GUI opens a server at start-up and listens for
incoming commands from the visualization interface. These com-
mands are then translated by the command translation layer into
API-calls to the graphics engine. The Nlview visualization engine
includes a placement algorithm to minimize the needed screen size
and concisely routes the connections between the components.

4 CASE STUDY
As a case study, we implemented an OLED display as a HW mod-
ule into an existing open source RISC-V Virtual Prototype (VP) [4]
and wrote a software driver to interface the display. The VP is able
to model the SiFive HiFive1 processor board including some of
the most used peripherals (i. e., UART, SPI, Timers). The SS1106
OLED display driver is a multi-protocol driver (SPI 3-wire, SPI 4-
wire, I2C and others) supporting monochrome displays with up to
64× 132 pixels resolution. We chose the SPI 4-wire connection be-
cause it has the fastest net transmission capabilities. To show the
real-world comparability, we also designed a PCB (printed circuit
board) with an OLED display and seven buttons. The PCB was de-
signed such that it can be stacked on top of the HiFive1 board.
2https://www.accellera.org/downloads/standards/systemc

UART
TX: 00
RX: 00

7FFF
BUS

IRQ

CLINT

mtime
00000D0400000D04
mtimecmp
0000000000000000

7FFF
BUS

0
CORE1

Memory

00 00 00 00 10 39 40 20
30 39 40 20 F0 38 40 20
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

7FFF
BUS

Plic

Enabled Interrupts
0000000000000000
0000000000000000

Pending Interrupts
0000000000000000
0000000000000000

0
CORE1

7FFF
BUS
IRQ1
IRQ2
IRQ3
IRQ4

CPU

PC
20400A8A
x0
00000000
x1
20400D18
x2
80003FB0
x3
80000860
x4
00000000
x5
00000000
x6
C3500000
x7
00000000

x8
00000072

x9
00000000

x10
00000000

x11
00000001

x12
00000D04

x13
000B0A28

x14
10024000

x15
80000000

7FFF
BUS

0
CLT

0
IRQ

GPIO

VAL: 111010110000111000101000

7FFF
BUS

1
12

0
13

1
16

SPI

TX: 10 B0 00 00 00 00 00 00
 00 00 00 00 00 00 00 00

RX:
CS: 02
IE: tx_ IP: _rx

7FFF
BUS SPI

SS1106

CONTRAST_MODE_SET

COL: 02
PAG: 00

SPI

1
CS

1
DC

CAN

TX: 00
RX: 00

Status: 00

SPI

0
CS

Figure 5: Screenshot of the architecture view in RISCview.

Figure 6: Screenshot of the VP simulation with an active
OLED Display running an example program.

4.1 Display HWModel
We implemented a model for the display-driver according to its
data-sheet3 and connected it to the HiFive’s SPI peripheral (see
Sect. 2). The SPI 4-Wire mode requires a differentiation of com-
mand and data bytes via a dedicated pin connected from the GPIO
module to the display. Commandsmay consist of one to three bytes
and expect up to two trailing value bytes. For instance, to set the
3https://www.velleman.eu/downloads/29/infosheets/sh1106_datasheet.pdf

https://www.accellera.org/downloads/standards/systemc
https://www.velleman.eu/downloads/29/infosheets/sh1106_datasheet.pdf

display’s contrast, the command line has to be set low, and the byte
0x81 for set contrast along with the value (encoded in one byte) has
to be sent over SPI. Issuing multiple data bytes after a PAGE_ADDR
command are interpreted as consecutive pixel values, increment-
ing the internal pixel pointer state. To aid with the design process,
we also created a view of display driver showing sent data, the last
command, and an excerpt of internal state. The implementation of
the view took only 23 lines of code (see Fig. 7).

1 GEN_DEFAULT_VIEW(SS106);
2 const Symbol SS1106View :: getSymbol () {
3 Rect size = default_box;
4 std::vector <nlv::Pin > pins = {
5 nlv::Pin {"SPI", Direction ::INOUT ,
6 PinLocation{Orientation ::left , Point{0, size.y/5}}} ,
7 nlv::Pin { "CS", Direction ::IN,
8 PinLocation{Orientation ::left , Point{0, size.y/2}}} ,
9 nlv::Pin { "DC", Direction ::IN,
10 PinLocation{Orientation ::left , Point {0,4* size.y/5}}},
11 };
12 std::map <std::string , Attribute > attrs {
13 {"command", {"", Locator ::lr,

{size.x-default_attrtextsize ,
1.5* default_textsize}, default_attrtextsize }},

14 {"regs", {"", Locator ::lr,
{size.x-default_attrtextsize ,
size.y-default_attrtextsize},
default_attrtextsize }},

15 };
16 return Symbol("SS1106", pins , size , attrs);
17 };
18 void update () {
19 std:: string text = "COL: " + toHex(model.state ->column)

+
20 "\nPAG: " + toHex(model.state ->page);
21 instance.setAttribute("command", ~model.last_cmd.op);
22 instance.setAttribute("regs", text);
23 };

Figure 7: Code to generate a view for the SS1106 Controller
(cf. Fig. 5).

4.2 Display SW Driver
The SW driver offers a set of high-order functions like set pixel at
position 𝑥 and draw line from point 𝑥 to 𝑦 and translates them to
series of low-level commands for the display. It also manages the
values for GPIO-Pins and handles the SPI peripheral interface, both
over memory mapped I/O.

4.3 Debugging
During development of the software driver, we noticed undefined
behavior of the display during operationswith a high pixel-throughput.
Sometimes, the display glitched in a way that the image was dis-
torted or showed random artifacts (see Fig. 8).

Our first approach to finding this bug was starting the simula-
tion with a breakpoint on the software side in the display driver
routine that handles the SPI transfers. However, this did not yield
any results, because the simulation did not show any false behav-
ior as long as the breakpoint was active. Also, printing out the SPI
bytes over the serial monitor suppressed the undefined behavior.
Our second approach was to set a breakpoint in the display mod-
ule (hardware side) at the command interpretation state machine.
We noticed that the display driver got invalid command bytes that
were not implemented in the software driver. Also, the display got

Figure 8: Glitched display showing only a partial image and
distorted lines.This simulation behaves exactly like the real
HiFive1 board with our custom PCB.

1 void mode_data(void) {
2 setPin(OLED_DC , 1);
3 }
4 void mode_cmd(void) {
5 setPin(OLED_DC , 0);
6 }
7 void setContrast(uint8_t contrast) {
8 mode_cmd ();
9 spi(0x81); // Command: next byte is contrast value
10 spi(contrast);
11 }
12 void oled_init () {
13 spi_init ();
14 // Initial setup
15 // Enable RESET and D/C Pin
16 GPIO_REG(GPIO_OUTPUT_EN) |= (1 <<

mapPinToReg(OLED_RES) | 1 <<
mapPinToReg(OLED_DC));

17 setPin(OLED_DC , 0);
18
19 // RESET
20 setPin(OLED_RES , 0);
21 sleep_u (10); // at least 10us
22 setPin(OLED_RES , 1);
23 sleep (100); // at least 100ms
24 // Initialize display to desired operating mode.
25 [...]
26 setChargePumpVoltage (0b10);
27 setContrast (0xff);
28 // Clear screen (overwrite entire memory with zeroes)
29 oled_clear ();
30 setDisplayOn (1);
31 }

Figure 9: Part of the original display software driver.

too many consecutive data bytes, thus writing out of bounds of its
page buffer. We paused the execution of the SystemC executable
with a breakpoint, halting when the display detected an invalid
command. By inspecting the RISCview window (Fig. 8), we could
see that the TX-Queue of the SPI module still contained command
bytes, but the D/C-line was already set high (data mode). In this
state, the display’s state machine still expected a second command
byte for the contrast value (CONTRAST_MODE_SET).This observation
led us to the idea that the switch between data and commandmode
did notwait until thewhole SPI transmit queuewas emptied. It also
explained why a debug print in the software driver suppressed the
problem; the time it takes to send text through the comparatively
slower UART was enough for the SPI TX queue to run empty.

The fix itself required only a few lines to change: Before switch-
ing between data- and command mode, wait for the lower SPI
transmit watermark (SPI_IP_TXWM) to indicate an empty transmit
queue (see Fig. 11).

GPIO

VAL: 111010110000111000101000

7FFF BUS 112
013

116

00 00 00 00 00 00 00 00

SPI

TX: 10 B0 00 00 00 00 00 00

RX:
CS: 02
IE: tx_ IP: _rx

7FFF BUS SPI

SS1106
CONTRAST_MODE_SET

COL: 02
PAG: 00

SPI

1 CS

1 DC

CAN

TX: 00
RX: 00

Status: 00

SPI

0 CS

Figure 10: Snapshot of a still command-populated TX queue,
although Data/Command line just toggled to data mode.
Note the populated TX buffer in the SPI peripheral, where the top
left byte is the first to be transmitted. The first two are still com-
mands: 0x10 for the contrast value and 0xB0 for the charge pump
voltage. Following bytes are all zeroes to clear the screen. Addi-
tional status flags indicate that the RX queue is empty, chip select
(CS) is set to device 2 (ss1106), and the TX interrupt is enabled but
not pending.

1 void spi_complete () {
2 // Wait for interrupt condition.
3 while (!(SPI1_REG(SPI_REG_IP) & SPI_IP_TXWM))
4 asm volatile("nop");
5 // TX -Watermark is set while byte is still in transit
6 // One byte at 8KBit/s is one microsecond
7 sleep_u (1);
8 }
9 void mode_data(void) {
10 // not already in data mode
11 if(! getPin(OLED_DC)) {
12 // wait for SPI to complete before toggling
13 spi_complete ();
14 setPin(OLED_DC , 1);
15 }
16 }
17 void mode_cmd(void) {
18 // not already in command mode
19 if(getPin(OLED_DC)) {
20 // wait for SPI to complete before toggling
21 spi_complete ();
22 setPin(OLED_DC , 0);
23 }
24 }

Figure 11: Fixed part of the software driver.

4.4 Evaluation
If we had used just the normal GDB debugger, the underlying prob-
lem would not have been clear. When the program is halted at the
memory interface of the display module, the access to the state
of the SPI module is hidden behind the stack-frames of the differ-
ent user-space threads of SystemC. The encountered bug was also
noticeable in the real hardware, which shows the accuracy of our
case-study.

5 CONCLUSION AND FUTUREWORK
This paper has presented a novel system for hardware/software co-
debugging that is applicable in an early stage of the development

with a minimal impact on design-time. Using a transaction-level
virtual prototype of the hardware, written in SystemC, it provides
a live view on the internals of the hardware design, while stepping
through the executed software using a state-of-the-art software de-
bugger like GDB.The integration into a project requires little adap-
tation to the code-base with a flexible view on the hardware. A case
study with a modeled OLED-Display operated by a RISC-V proces-
sor demonstrated the usefulness of our visualization for finding
bugs related to hardware-software interactions.

Our system opens up possible future work, including:
• Combining the system with a dynamic flow analysis frame-
work to visualize security policy violations and data flow in
real-time;

• Adding a static code analysis based on re-occurring Sys-
temC class patterns, which would enable automated visu-
alization of modules at the expense of displaying possibly
irrelevant information;

• Implementing a hardware-version of the visualization inter-
face to permit hardware debugging with the real hardware
in the same style as its VP.

ACKNOWLEDGMENTS
Thisworkwas supported in part by theGerman FederalMinistry of
Education and Research (BMBF) within the project SATiSFy under
contracts no. 16KIS0821K and 16KIS0825, and within the project
VerSys under contract no. 01IW19001.

REFERENCES
[1] Concept Engineering GmbH. 2021. Nlview 7.3.11. https://www.concept.de.
[2] Mehran Goli and Rolf Drechsler. 2019. Scalable Simulation-based Verification of

SystemC-based Virtual Prototypes. In Euromicro Conf. on Digital System Design
(DSD). IEEE, 522–529. https://doi.org/10.1109/DSD.2019.00081

[3] Daniel Große, Rolf Drechsler, Lothar Linhard, and Gerhard Angst. 2003. Efficient
Automatic Visualization of SystemC Designs. In FDL. ECSI, 646–658.

[4] Vladimir Herdt, Daniel Große, HoangM. Le, and Rolf Drechsler. 2018. Extensible
and Configurable RISC-V based Virtual Prototype. In FDL. 5–16. https://doi.org/
10.1109/FDL.2018.8524047

[5] Vladimir Herdt, Daniel Große, Pascal Pieper, and Rolf Drechsler. 2020. RISC-V
based virtual prototype: An extensible and configurable platform for the system-
level. Journal of Systems Architecture 109 (Oct. 2020), 101756. https://doi.org/10.
1016/j.sysarc.2020.101756

[6] M. Holzer, B. Knerr, P. Belanović, M. Rupp, and G. Sauzon. 2004. Faster Complex
SoC Design by Virtual Prototyping. In Int’l Conf. on Cybernetics and Information
Technologies, Systems and Applications (CITSA). 305–309.

[7] IEEE Computer Society. 2015. IEEE Standard for Standard SystemC Language
Reference Manual. Standard IEEE 1666-2015. https://doi.org/10.1109/IEEESTD.
2012.6134619

[8] K. Lee, A. Su, Long-Feng Chen, Jia-Wei Jhou, J. Kuo, and M. Liu. 2011. A soft-
ware/hardware co-debug platform for multi-core systems. In IEEE Int’l Conf. on
ASIC. 259–262. https://doi.org/10.1109/ASICON.2011.6157171

[9] Frank Rogin, Christian Genz, Rolf Drechsler, and Steffen Rülke. 2008. An In-
tegrated SystemC Debugging Environment. In Embedded Systems Specification
and Design Languages. Lecture Notes in Electrical Engineering, Vol. 10. Springer,
59–71.

[10] Richard M. Stallman, Roland Pesch, Stan Shebs, et al. 2020. Debugging with GDB:
The GNU Source-Level Debugger (10th ed.). GNU. https://sourceware.org/gdb/
current/onlinedocs/gdb.pdf

[11] Lukas Steiner, Matthias Jung, Felipe S. Prado, Kirill Bykov, and Norbert Wehn.
2020. DRAMSys4.0: A Fast and Cycle-Accurate SystemC/TLM-Based DRAM
Simulator. Springer, 110–126.

[12] S. Swan. 2006. SystemC transaction level models and RTL verification. In
43rd ACM/IEEE Design Automation Conference. 90–92. https://doi.org/10.1145/
1146909.1146937

[13] Rüdiger Willenberg and Paul Chow. 2013. Simulation-based HW/SW co-
debugging for field-programmable systems-on-chip. In Int’l Conf. on Field-
Programmable Logic and Applications (FPL). IEEE, 1–8.

https://doi.org/10.1109/DSD.2019.00081
https://doi.org/10.1109/FDL.2018.8524047
https://doi.org/10.1109/FDL.2018.8524047
https://doi.org/10.1016/j.sysarc.2020.101756
https://doi.org/10.1016/j.sysarc.2020.101756
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1109/ASICON.2011.6157171
https://sourceware.org/gdb/current/onlinedocs/gdb.pdf
https://sourceware.org/gdb/current/onlinedocs/gdb.pdf
https://doi.org/10.1145/1146909.1146937
https://doi.org/10.1145/1146909.1146937

	Abstract
	1 Introduction
	2 Preliminaries
	3 Implementation
	3.1 Symbols and Connections
	3.2 Visualization Interface
	3.3 Debugging GUI

	4 Case Study
	4.1 Display HW Model
	4.2 Display SW Driver
	4.3 Debugging
	4.4 Evaluation

	5 Conclusion and Future Work
	References

