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ABSTRACT
Today, the underlying hardware of embedded systems is of-
ten verified successfully. In this context formal verification
techniques allow to prove the functional correctness. But
in embedded system design the integration of software com-
ponents becomes more and more important. In this paper
we present an integrated approach for formal verification of
hardware and software. The approach is demonstrated on
a RISC CPU. The verification is based on bounded model
checking. Besides correctness proofs of the underlying hard-
ware the hardware/software interface and programs using
this interface can be formally verified.

Categories and Subject Descriptors
J.6 [Computer-aided Engineering]: Computer-aided de-
sign (CAD)

General Terms
Verification

Keywords
Hardware/Software Co-Verification, Formal Verification,
Bounded Model Checking, Embedded Systems, PSL,
SystemC

1. INTRODUCTION
In the last few years embedded system design has become

a very important research area and the application domains
range from telecommunication devices to automotive units.
These systems not only consist of hardware components,
i.e. a large portion is realized by firmware and programs.
Since these systems are used more and more in safety critical
applications, the aspect of verification is very important to
ensure the correct functional behavior of the system.
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In the meantime hardware verification has been inten-
sively studied and is well understood, even though the tools
sometimes suffer from limit of resources. But assertion-
based verification and formal approaches have ensured high
quality also for large hardware systems. This standard so far
is not achieved, if software components are included. E.g. a
recent study by Collett International Research Inc. has
shown that errors caused by firmware and hardware/soft-
ware interfaces account for up to 13 percent of failures with
an increasing trend. To reduce this type of errors in em-
bedded systems integrated hardware/software verification is
needed.

A successful technique for verification of hardware is
Bounded Model Checking (BMC) [3]. BMC checks whether
a circuit satisfies a temporal property or not. Therefore,
BMC reduces the verification problem to a Boolean Satisfi-
ability (SAT) problem and searches for counter-examples in
executions whose length is bounded by k time steps.

In this paper we show that the concepts of BMC can also
be applied in the context of hardware/software integration.
For an embedded system, that in our context consists of
digital components without analog units, a complete ver-
ification can be performed. This includes the underlying
hardware, interface instructions and programs based on se-
quences of instructions. Arguing over the behavior of a pro-
gram becomes possible by constraining the corresponding
sequences of instructions as assumptions in a BMC prop-
erty and formulating the intended behavior as goal of the
proof. In total, the integrated hardware/software verifica-
tion approach allows the complete formal verification of an
embedded system.

The rest of the paper is structured as follows. Section 2
briefly reviews the notation and formalism of BMC. The in-
tegrated verification approach is presented in Section 3. We
introduce the notion of a Timed Embedded System (TES)
that defines the type of embedded system that can be ver-
ified by our approach. The verification of a TES is divided
into hardware, interface and program verification. These
steps are discussed and in each phase the application of BMC
is explained. A case study demonstrates the verification of
a RISC CPU in Section 4. Following the approach, first,
the correctness of the underlying hardware is shown. In the
second step the hardware/software interface of the RISC
CPU is formally verified. Based on this result, assembler
programs for the RISC CPU are considered and successfully
verified. Finally, the paper is summarized and directions for
future work are given.



property t e s t =
always

// assume par t
( x == 1 )
−>

// prove pa r t
next [ 2 ] ( y == 2 ) ;

Figure 1: Property test

2. BOUNDED MODEL CHECKING
In this paper we use BMC as described in [12]. Thus, a

property only argues over a finite time interval. Typically
such a property consists of two parts: an assume part which
should imply the prove part, i.e. if all assumptions hold, all
commitments in the proof part have to hold as well.

Example 1. A simple example formulated in PSL [1] is
shown in Figure 1. The property test says that whenever
signal x becomes 1, two clock cycles later signal y has to be
2.

The general structure of the resulting BMC instance for a
property p over the finite interval [0, c] is given by:

c−1
^

i=0

Tδ(si, si+1) ∧ ¬ p

where Tδ(si, si+1) denotes the transition relation between
cycles i and i+1. This problem can be formulated as a SAT
problem by unrolling the circuit for c time frames and gen-
erating logic for the property. Since there is no restriction to
reachable states during the proof of the corresponding SAT
instance a counter-example may start from an unreachable
state. Usually, if such a case occurs these states are excluded
by additional assumptions. But, for BMC as used here, it is
not necessary to determine the diameter of the underlying
sequential circuit, i.e. if the SAT instance is unsatisfiable the
property holds.

3. CO-VERIFICATION
In this section we present the integrated verification ap-

proach for hardware and software. Before the details are
given we specify the type of embedded systems that is con-
sidered. Then, the verification steps that allow the complete
formal verification of an embedded system are explained.

3.1 Timed Embedded System
In the following we restrict ourself to embedded systems

that guarantee a response in a fixed number of cycles. We
call such a system a Timed Embedded System (TES). These
systems include all kinds of digital microprocessors, e.g. spe-
cialized DSPs or RISC CPUs.

A simplified architecture of a TES is shown in the left part
of Figure 2. The hardware layer includes hardware blocks
like memories, ALUs, etc. The hardware/software interface
layer defines ports and instructions for the communication
between software and the underlying hardware. On top, in
the software layer programs are located.

Often in the area of test or hardware verification as un-
derlying model the unrolled circuit is used. We apply this

concept for the verification of a TES. But here not only
hardware is verified. In fact the correctness of software can
be shown as well. Software of a TES consists of instructions
that access the underlying hardware via an interface. This
allows to consider hardware, interface and software in one
integrated system view model.

In the following these observations are explained in more
detail.

3.2 Hardware
To verify the underlying hardware we directly apply BMC

for all hardware units. For each block several temporal prop-
erties are proven. The model for formal verification of a
hardware block is shown in the lower right part of Figure
2. As illustrated a block is unrolled up to the size of the
time interval which depends on the timing constructs used
in a property. In total the functional correctness of each
hardware block is verified. Moreover the results of this ver-
ification step are the basis for the interface verification.

3.3 Interface
The interface is viewed as a specification that exits be-

tween hardware and software. By calling instructions of an
interface programs can communicate with the underlying
hardware. At the interface the functionality of the hardware
is available but the concrete hardware realization is hidden.
In contrast to hardware verification the interface verification
with BMC formulates for each interface instruction the ex-
act response of all hardware blocks involved. Besides these
blocks it is also assured that no side effects occur. The un-
rolled model only consists of parts of the TES. In particular
in each property in the first cycle the considered interface
instruction is constrained as assumption (see right hand side
of Figure 2, middle). The objective of interface verification
is to guarantee the correctness of all interface instructions
which forms the basis for program verification.

3.4 Program
Based on instructions available at an interface a program

is a structural sequence of instructions. By a combination
of BMC and inductive proofs [4, 10] a concrete program
can be formally verified. Arguing over the behavior of a
program is possible by constraining the considered sequence
of instructions as assumptions in a BMC property. Thus,
the property checker “executes” the program and can check
the intended behavior of the prove part. As model for pro-
gram verification the TES is unrolled and instructions of the
program under verification are constrained for the TES as
assumptions in the first cycle. The upper right part of Fig-
ure 2 illustrates this procedure. Inductive reasoning is used
to verify properties which describe functionality where the
upper time bound varies, e.g. this can be the case if loops
are used.

In the following section in a case study the integrated
verification approach is applied to a RISC CPU.

4. CASE STUDY: RISC CPU
This section provides the basics of the RISC CPU and

the SystemC model of this CPU. Afterwards, the integrated
verification approach presented in Section 3 is applied to the
RISC CPU and some example programs.
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Figure 2: TES architecture and models for verification

4.1 Specification
In Figure 3 the main components of the RISC CPU are

shown. The CPU has been designed as a Harvard architec-
ture. The data width of the program memory and the data
memory is 16 bit. The size of the program memory is 4
KByte and the size of the data memory is 128 KByte. The
length of an instruction is 16 bit. Due to page limitation we
only briefly describe the five different classes of instructions
in the following:

• 6 load/store instructions (movement of data between
register bank and data memory or I/O device, loading
of a constant into high- or low-byte of register)

• 8 arithmetic instructions (addition/subtraction with
and without carry, left/right rotation and shift)

• 8 logic instructions (bit by bit negation, bit by bit
exor, conjunction/disjunction of two operands, mask-
ing, inverting, clearing and setting of single bits of an
operand)

• 5 jump instructions (unconditional jump, conditional
jump, jump on set/cleared carry or zero flag)

• 5 other instructions (stack instructions push and pop,
program halt, subroutine call, return from subroutine)

For more details on the CPU we refer the reader to [2].

4.2 SystemC Model
The RISC CPU has been modeled in the system descrip-

tion language SystemC [11, 8]. As a C++ class library Sys-
temC enables modeling of systems at different levels of ab-
straction starting at the functional level and ending at a
cycle-accurate model. The well-known concept of hierar-
chical descriptions of systems is transferred to SystemC by
describing a module as a C++ class. Furthermore, fast sim-
ulation is possible at an early stage of the design process
and hardware/software co-design can be carried out in the
same environment. Note that a SystemC description can
be compiled with a standard C++ compiler to produce an
executable specification.

Table 1: Run time of block-level verification
Block Number of Total run time

properties in CPU seconds
register bank 4 1.03
program counter 3 0.08
control unit 11 0.23
data memory 2 0.49
program memory 2 0.48
ALU 17 4.41

For details on the SystemC model of the RISC CPU we
refer the reader to [7]. For the RISC CPU a compiler has
been implemented which generates object code from an as-
sembler program. This object code runs on the SystemC
model, i.e. the model of the CPU executes an assembler
program.

4.3 Formal Co-Verification
For property checking of the SystemC model the tool pre-

sented in [6] is used that is part of the SyCE environment
[5]. It is based on SAT solving techniques [9] and for debug-
ging a waveform is generated in case of a counter-example.
In the following the complete verification of the hardware,
interface and programs for the RISC CPU is discussed. All
experiments have been carried out on a Athlon XP 2800
with 1 GByte of main memory.

4.3.1 Hardware
Properties for each block of the RISC CPU have been for-

mulated. E.g. for the control unit it has been verified which
control lines are set according to the opcode of the instruc-
tion input. Overall the correctness of each block could be
verified. Table 1 summarizes the results1.

The first column gives the name of the considered block.
Next, the number of properties specified for a block are de-
noted. The last column provides the overall run time needed

1For the verification in the synthesized model of the RISC
CPU the sizes of the memories have been reduced.
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Figure 3: Structure of the RISC CPU including data and instruction memory

to prove all properties of a block. As can be seen the func-
tional correctness of the hardware could be formally verified
very fast with 39 properties.

4.3.2 Interface
Based on the hardware verification of the RISC CPU, in

the next step the interface is verified. Thus, for each instruc-
tion of the RISC CPU a property has been specified which
expresses the effects on all hardware blocks involved. As an
example we discuss the verification of the ADD instruction.

Example 2. Figure 4 gives details on the ADD instruc-
tion. Besides the assembler notation also the instruction
format of the ADD instruction is shown. The specified prop-
erty for the ADD instruction is shown in Figure 52. First
of all the opcode and the three addresses of the registers are
assigned to meaningful variables (lines 1-6). The assume
part of the ADD property is defined from line 11 to 12 and
states that there is no reset (line 11), the current instruc-
tion is addition (line 11) and the registers R[0] and R[1] are
not addressed (since this register are special purpose regis-
ters that contain the constants zero and one, respectively).
Under these assumptions we prove that in the next cycle the
register R[i] (=reg . reg [prev(Ri A)]) contains the sum of
register R[j] and register R[k] (line 16), the carry ( stat .C)
in the status register is updated properly (line 16) and the
zero bit ( stat .Z) is set iff the result of the sum is zero (line
17). Furthermore we prove that the ADD instruction has
no side effects, i.e. the contents of all registers which are
different from R[i] remain unchanged.

Analogously to the ADD instruction the complete instruc-
tion set of the RISC CPU is verified. Table 2 summarizes
the results. The first column gives the category of the in-
struction. In the second column the number of properties
for each category is provided. The last column shows the

2In this paper we use a SystemC flavor of PSL.

Assembler notation: ADD R[i],R[j],R[k]

Task: addition of R[j] and R[k],
the result is stored in R[i]

Instruction format:

15 . . . 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 bin(i) - - bin(j) bin(k)

Figure 4: ADD instruction

Table 2: Run time of interface verification
Instruction Number of Total run time
category properties in CPU seconds
load/store instructions 6 15.16
arithmetic instructions 8 186.30
logic instructions 8 32.71
jump instructions 5 6.68
other instructions 5 7.14

total run time needed to prove all properties of a category.
As can be seen the complete instruction set of the RISC
CPU can be verified in less than 5 CPU minutes.

4.3.3 Program
Finally, we describe the approach to verify assembler pro-

grams for the RISC CPU. As explained, the considered pro-
grams of the RISC CPU can be verified by constraining the
instructions of the program as assumptions in the proof.
These assumptions are automatically generated by the com-
piler of the RISC CPU. The verification of programs is il-
lustrated by three case studies.



1 a s s i gn OPCODE = in s t r . range (15 ,11 ) ;
2 a s s i gn Ri A = i n s t r . range (10 ,8 ) ;
3 a s s i gn Rj A = i n s t r . range ( 5 , 3 ) ;
4 a s s i gn Rk A = i n s t r . range ( 2 , 0 ) ;
5 a s s i gn Rj = reg . reg [ Rj A ] ;
6 a s s i gn Rk = reg . reg [Rk A ] ;
7
8 property ADD =
9 always

10 // assume par t
11 ( r e s e t == 0 && OPCODE == ”00111” &&
12 Ri A > 1 && Rj A > 1 && Rk A > 1 )
13 −>

14 // prove pa r t
15 next (
16 ( reg . reg [ prev ( Ri A ) ] + (65536 ∗ s t a t .C) == prev (Rj ) + prev (Rk) )
17 && ( ( reg . reg [ prev (Ri A ) ] == 0) <−> ( s t a t .Z == 1) )
18
19 // no s i d e e f f e c t s
20 && ( ( prev ( Ri A ) != 2) −> reg . reg [ 2 ] == prev ( reg . reg [ 2 ] ) )
21 && ( ( prev ( Ri A ) != 3) −> reg . reg [ 3 ] == prev ( reg . reg [ 3 ] ) )
22 && ( ( prev ( Ri A ) != 4) −> reg . reg [ 4 ] == prev ( reg . reg [ 4 ] ) )
23 . . .
24 ) ;

Figure 5: Specified property for the ADD instruction of the RISC CPU

1 /∗ counts from 10 downto 0 ∗/
2 LDL R[ 7 ] , 10
3 LDH R[ 7 ] , 0
4 loop :
5 SUB R[ 7 ] , R[ 7 ] , R[ 1 ]
6 JNZ loop

Figure 6: Example assembler program

1 property count =
2 always

3 // assume par t
4 ( rom .mem[ 0 ] == 18186 &&
5 rom .mem[ 1 ] == 20224 &&
6 rom .mem[ 2 ] == 14137 &&
7 rom .mem[ 3 ] == 24578 &&
8 pc . pc == 0 &&
9 next a [ 0 . . 2 1 ] ( prog mem we == 0) &&

10 next a [ 0 . . 2 1 ] ( r e s e t == 0) )
11 −>

12 // prove pa r t
13 next [ 2 1 ] ( reg . reg [ 7 ] == 0 ) ;

Figure 7: Property count

Loop Unrolling Consider the assembler program shown
in Figure 6. The program loads the integer 10 into register
R[7] and decrements register R[7] in a loop until it con-
tains value 0. For this program the property count has been
formulated (see Figure 7). At first it is assumed that the
CPU memory contains the instructions of the given exam-
ple (lines 4-7)3. Furthermore the program counter points
to the corresponding memory position (line 8), no memory
write operation is allowed (line 9) and there is no reset for
the considered 22 cycles (line 10). Then, we prove that reg-

3This part of the assumptions has been generated automat-
ically by the compiler.

ister R[7] is zero after 21 cycles (line 13). The time-point 21
results from the fact that the first two cycles (zero and one)
are used by the load instructions and the following 20 cycles
are required to loop 10 times. The complete proof has been
carried out in less than 25 CPU seconds.

Fibonacci Numbers An assembler program has been
written that computes the Fibonacci numbers (defined as
f(n) = f(n − 1) + f(n − 2) with f(0) = 1 and f(1) =
1). Due to page limitation we only give the results. The
correctness of the program has been verified by induction.
In the property for the base case the result for f(0) and
f(1) has been proven. The induction step formulates that
in every loop the next Fibonacci number is computed by
adding the two previous Fibonacci numbers. In total the
correctness of the Fibonacci program has been proven in
less than 20 CPU seconds.

Multiplication Since the ALU of the RISC CPU has no
multiply operation this functionality has to be implemented
as a program. Figure 8 shows a program that performs an
8-bit multiplication. The program is based on shift instruc-
tions and addition instructions. In the beginning the two
multiplication factors are in registers R[2] and R[3]. The
partial product is kept in R[5] during multiplication. The
result is stored in R[6]. Register R[7] is used as a counter
and is initialized to 8 in lines 6 and 7. In the loop, the in-
struction in line 9 tests the next bit in the first factor. If the
bit is set, the current partial product is added to the result
(line 11). The shift instruction in line 13 computes the next
partial product. Then the counter is decremented (line 14)
and the loop continues until R[7] reaches the value 0. Note
that the number of cycles needed to complete the program
depends on the number of bits set to 1 in the first factor
because line 11 may not be executed in every loop.

Figure 9 shows a PSL-like property for the described as-
sembler program. At first the multiplication factors in reg-



1 mult :
2 OR R[ 4 ] , R[ 2 ] , R[ 0 ]
3 OR R[ 5 ] , R[ 3 ] , R[ 0 ]
4 LDL R[ 6 ] , 0
5 LDH R[ 6 ] , 0
6 LDL R[ 7 ] , 8
7 LDH R[ 7 ] , 0
8 loop :
9 SHR R[ 4 ] , R[ 4 ]

10 JNC l 1
11 ADD R[ 6 ] , R[ 6 ] , R[ 5 ]
12 l 1 :
13 SHL R[ 5 ] , R[ 5 ]
14 SUB R[ 7 ] , R[ 7 ] , R[ 1 ]
15 JNZ loop

Figure 8: Assembler program for 8-bit multiplica-

tion

1 a s s i g n FAC1 = reg . reg [ 2 ] ;
2 a s s i g n FAC2 = reg . reg [ 3 ] ;
3
4 property mul =
5 always

6 // assume par t
7 ( rom .mem[ 0 ] == 5136 &&
8 rom .mem[ 1 ] == 5400 &&
9 rom .mem[ 2 ] == 17920 &&

10 . . .
11 rom .mem[ 1 1 ] == 24582 &&
12 pc . pc == 0 &&
13 next a [ 0 . . 5 4 ] ( prog mem we == 0) &&
14 next a [ 0 . . 5 4 ] ( r e s e t == 0) )
15 −>

16 // prove pa r t
17 next e [ 4 6 . . 5 4 ] ( pc . pc == 12) &&
18 ( reg . reg [ 6 ] == FAC1 ∗ FAC2) ;

Figure 9: Property mul

isters R[2] and R[3] are assigned to the variables FAC1 and
FAC2. As assumption it is required that the multiplication
program is located in the memory (lines 7-11). Again, this
part has been generated automatically. Line 12 states that
the program counter points to the first instruction of the
multiplication program in the beginning. Lines 13 and 14
assure that no reset and no write access to the memory take
place during program execution. Under these assumptions
we prove that between the cycles 46 and 54 after starting
the algorithm4 the program counter points to the next in-
struction5 (line 17) and register R[6] contains the product at
the same time (line 18). In other words, we prove that the
assembler program does in fact perform a multiplication.

The SAT instance generated for this property consisted
of 2, 894, 173 clauses and 6, 735, 707 literals. The correct-
ness of the multiplication program has been verified fully
automatically in less than 4000 CPU seconds.

4As mentioned above, the number of cycles depends on the
input. Six cycles are needed for the first six instructions plus
eight times the loop of five or six instructions.
5First instruction after JNZ loop.

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented an approach to hardware/soft-

ware co-verification based on bounded model checking. For
timed embedded systems the unrolling process of bounded
model checking allowed an integrated system view on hard-
ware, interface and software.

As a first example the co-verification approach has been
demonstrated for a RISC CPU. We succeeded to completely
formally verify hardware, interface and programs. The cor-
rectness of simple and complex programs for the RISC CPU
has been shown.

In future work we intend to derive time bounds from
assembler programs to aid the specification of the prove
part. Moreover we plan to develop methods to reuse al-
ready proven properties as assumptions in order to partition
complex proofs.
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