Coverage-guided Fuzzing for Plan-based Robotics

Tim Meywerk! E], Vladimir Herdt'? E]and Rolf Drechsler?

LGroup of Computer Architecture, University of Bremen, Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
{tmeywerk, vherdt, drechsler}@uni-bremen.de

Keywords: Plan-based robotics, Safety, Fuzzing

Abstract:

Autonomous robots are used increasingly in dynamic and safety-critical environments. In these environments

the correctness of the robotic plan is of utmost importance. In many other domains, coverage-guided fuzzing
has proven to be an effective way to ensure the correctness of software programs. In coverage-guided fuzzing,
inputs to a program are generated semi-randomly and the correctness of the output is checked automatically.
This way, a large number of test cases can be run without manual interaction. In this work we present our
approach to coverage-guided fuzzing for plan-based robotics and our prototypical implementation for the
planning language CPL. We also introduce a novel coverage metric for the domain of plan-based robotics.

1 INTRODUCTION

Autonomous robots are used increasingly in dynamic
and safety-critical environments. One promising ap-
proach to deal with the complexity of such environ-
ments are plan-based robotics. Here, a high-level plan
is responsible for the orchestration of several lower-
level modules that handle specialized tasks like naviga-
tion or manipulation. When autonomous robots act in
safety-critical environments e. g. when they are inter-
acting with humans, the correctness of the high-level
plan is of utmost importance.

The most common method to ensure the plan’s
correctness are manual test runs in a simulation envi-
ronment. However, these tests are often not performed
in a systematic fashion. Even a systematic and thor-
ough manual test will usually miss some important
edge cases. An alternative to simulation-based testing
is formal verification (Luckcuck et al., 2019; Meywerkl
et al., 2019). Formal verification is able to cover the
complete plan including all edge cases. However, this
completeness comes with the downside of a high run-
time and no guaranteed termination. Depending on the
complexity of the plan, formal verification methods
may not terminate at all or only after an unreasonably
long time.

In many other domains, coverage-guided fuzzing
has proven to be an effective compromise between

https://orcid.org/0000-0002-5960-5456
@ nhttps://orcid.org/0000-0002-4481-057X
¢ https://orcid.org/0000-0002-9872-1740

hand-written tests and formal verification. In coverage-
guided fuzzing, inputs to a program are generated semi-
randomly and the correctness of the output is checked
automatically. This way, a large number of test cases
can be run without manual interaction. During execu-
tion, the coverage on the code is measured and used to
guide the generation of subsequent inputs. The goal is
to maximize the coverage of the generated test cases.

This way coverage-guided fuzzing is able to test
relevant edge cases that a human test engineer may
have missed. At the same time, coverage-guided
fuzzing can be terminated at any time and has no sig-
nificant runtime overhead over manual tests.

In this work we present our approach to coverage-
guided fuzzing for plan-based robotics. Our contri-
butions are threefold: First, we introduce coverage-
guided fuzzing to the domain of plan-based robotics.
Secondly, we present a prototypical implementation
for the robotic planning language CPL. Finally, we
introduce a novel coverage metric for the domain of
plan-based robotics that may be used in combination
with coverage-guided fuzzing or independently of it.

Our approach builds upon the robotic planning
language CPL and the CPL interpreter SEECER to
execute the robotic plan in a simulation. The fuzzer is
used to provide SEECER with different initial states of
the simulation as input to the plan. During execution
the resulting code coverage is measured and fed back
to the fuzzer.

Our novel coverage metric measures the percent-
age of possible actions that have been executed by the

1 (perform (an action

2 (type picking—up)

3 (arm :left)

4 (grasp left—side)

5 (object ?object)))))

Figure 1: Performing an action designator in CPL

plan and thus follows the effect of the plan on its envi-
ronment more closely than general structural coverage
metrics.

The remainder of this paper is structured as follows.
In Section [2] we present relevant background neces-
sary for the understanding of this paper. Afterwards,
Section [3] discusses related work in the domains of
coverage-guided fuzzing and plan-based robotics. Sec-
tion [presents our first two contributions, namely our
approach to coverage-guided fuzzing for plan-based
robotics in general and for CPL in particular. The third
contribution, our domain-specific coverage metric is
introduced in Section 3l Section [f] discusses the ex-
perimental evaluation of our approach and Section
concludes the paper.

2 PRELIMINARIES

This section introduces relevant background to the
work presented in this paper. This includes the CRAM
Planning Language in Section 2.T]and an overview of
coverage-guided fuzzing in Section[2.2]

2.1 CRAM Planning Language

The CRAM Planning Language (CPL) is part of the
robotic framework Cognitive Robot Abstract Machine
(CRAM). CRAM is a framework that handles all as-
pects of high-level robotic planning including modules
for perception, navigation, manipulation and reasoning.
The orchestration of the modules is achieved through
generalized plans in the high-level planning language
CPL.

CPL is built on top of the Common Lisp program-
ming language. It interacts with the robots environ-
ment through the use of action designators. Instead of
describing every aspect of an action in concrete values,
a designator is an abstract representation of an action,
for which concrete values are found only at runtime.
Designators are executed using the perform keyword.

Example 1. Consider the plan excerpt in Figure
The an keyword builds a designator, which is then
executed by the perform function. Each designator
is defined through a list of key-value pairs. Here, the
type key is always present and describes the type of
the action. The other keys depend on the type of the

byte
array Input
Fuzzer Transformation
coverage Ya“dt
inpu
SUT

Figure 2: General coverage-guided fuzzing flow

action. The action in Figure I]is a picking-up action
that uses the left arm of the robot, a grasp from the left
side and is applied to the object stored in the variable
?object. Other parameters of the action such as the
concrete trajectory of the joints are inferred at runtime.

Another important module within CRAM is the
fast projection simulator (Mosenlechner and Beetz)
2013)) based on the Bullet physics engine. The simula-
tor uses simplifications in the physics calculations and
action execution, allowing for a very fast simulation
speed. Despite these simplifications, it has been shown
to accurately predict the effect of actions when they are
executed on the real robot. The high execution speed
allows CRAM to perform several simulation runs in
a short time span, even during plan execution on the
real robot.

In (Meywerk et al., 2019) the interpreter and sym-
bolic execution engine SEECER for CPL has been
introduced. SEECER first compiles the CPL code
into CLisp bytecode (Haible et al., 2010) and then
executes that bytecode line by line on a virtual stack
machine. In this work we extend SEECER to work
with coverage-guided fuzzing.

2.2 Coverage-guided Fuzzing

Fuzzing (Miller et al., 1990) is a technique for software
testing, which originated in the security domain and
has since been applied to several different applications
such as memory safety (Fioraldi et al., 2020)), network
protocols (Gorbunov and Rosenbloom, 2012)) or hard-
ware/software co-verification (Bruns et al., 2022)).

Fuzzing can be described as an interplay between
the system under test (SUT), which is usually a pro-
gram or function with an input, and a fuzzer. The
fuzzer generates random or semi-random inputs to the
SUT. The generation may be either fully random or
guided by some policy or metric. When the code cov-
erage is used to guide the fuzzing process, it is referred
to as coverage-guided fuzzing.

The usual flow is shown in Figure 2] The fuzzer
starts by generating a random byte array. This byte

array is then transformed into valid inputs to the SUT.
Depending on the complexity of the input, this trans-
formation can range from a straight-forward reinter-
pretation to an elaborate construction of nested objects
or files.

Once a valid input to the SUT has been formed, the
SUT is executed. During execution, the code coverage
is measured and fed back to the fuzzer. In subsequent
iterations, the fuzzer will modify its input byte array
either by adding or removing bytes or by mutating ex-
isting ones. The coverage can be used to decide which
modifications of the byte array have been particularly
successful and thus use those more often. Usually, the
byte array produced by the fuzzer will start small and
grow over time, producing more complex inputs the
longer the fuzzing process runs.

In many implementations, the coverage will be
managed using a finite amount of coverage points.
Each coverage point is a point in the SUT which is
of particular importance to the coverage metric. The
fuzzer will then store a counter for each coverage point,
indicating how often that point has been reached.

There is a large number of coverage metrics, each
with their own advantages and disadvantages. They
can be roughly divided into two categories. Structural
coverage metrics depend purely on the structure of the
SUT. They will analyze which parts of the source code
have been executed, but will ignore the underlying se-
mantics of the program. Functional coverage metrics
on the other hand do not necessarily analyze the exe-
cuted source code, but rather which of the underlying
features and objectives of the SUT have been executed.
They are therefore highly domain-specific.

Two examples for structural coverage metrics used
in this work are the instruction coverage and the
branch coverage. Instruction coverage measures what
percentage of singular instructions have been executed.
Therefore each instruction corresponds to a coverage
point. Branch coverage on the other hand looks at the
conditional branching instructions and their outcome.
To reach 100% branch coverage, each branching con-
dition must have been evaluated to both true and false
at least once. In general, this makes branch coverage a
stricter metric than instruction coverage. 100% branch
coverage implies that 100% instruction coverage has
also been reached, while the reverse is not necessarily
true.

3 RELATED WORK

Fuzzing has been mostly applied in the security do-
main, where it is used to generate unexpected inputs
that a program is not able to handle properly. The
fuzzing process can be unguided or guided by different

policies or metrics. In coverage-guided fuzzing, the
code coverage is used to find the next input. There are
several mature tools for coverage-guided fuzzing such
as AFL (Zalewski, 2017) or libfuzzer (llvm, 2022).
Since many applications require inputs to be in a cer-
tain format, a major research direction is the selective
generation of valid inputs such as specific file formats
(Rawat et al., 2017; Bohme et al., 2017). For a compre-
hensive overview of fuzzing refer to (L1 et al., 2018)

The application of fuzzing to functional safety in
the robotics domain is still a new research direction.
Nonetheless, there are already some promising appli-
cations.

In (Delgado et al., 2021) fuzzing is used to generate
inputs to an autonomous robot or its subroutines. The
fuzzer is restricted to a certain grammar to provide
valid inputs, but is otherwise not guided.

In (Woodlief et al., 2021) the fuzzer is used to
generate an environment for a robotic agent. The gen-
erated environment is however only static, unlike the
environments generated in this paper, which also in-
clude dynamic, manipulable objects. In addition, the
guidance for the fuzzer is based on machine learning
instead of the code coverage.

The tool PGFuzz (Kim et al., 2021} is able to gen-
erate inputs to the robots software. In contrast to this
work, the fuzzing is guided by a logic-based policy
and the SUT is a lower-level control system instead of
a high-level plan.

In summary, fuzzing in the robotic domain is still in
its infancy. The existing approaches are not plan-based
nor coverage-guided. In addition, most approaches
only generate inputs to the control programs methods
instead of generating a full environment.

4 COVERAGE-GUIDED FUZZING
FOR CPL PLANS

In this section, we introduce our approach to coverage-
guided fuzzing of CPL plans. We start with an
overview of our methodology in Section .1} After-
wards, we explain two aspects of our approach in more
detail. These are the translation of the fuzzer output
to an initial environment state in Sectiond.2] and the
coverage measurement in Section 4.3

4.1 Overview

In most applications the fuzzer will provide inputs to
a program or function. In the context of plan-based
robotics however, the plan will receive inputs from its
environment. We therefore propose to use the fuzzer
output to generate an environment for the robot. We

1
[}
: CLisp j<----1.CPLplan
[}
i :
______ BEOSVIOTORS:
,2. bytecode
\4
3. coverage
8. report points
errors < SEECER 9. update LibFuzzer
coverage _
7.executef T4 initialize 5. byte
plan yenvironment Larray
6. dynamic
Simulator gbjects Input translation

Figure 3: Overview of our approach

divide a robots environment into a static and a dynamic
part. The static part of the environment is the same
for all executions and may e. g. contain walls or larger
pieces of furniture. The dynamic part should be dif-
ferent between executions and contains smaller items
that are supposed to be manipulated by the robot.

We use an adapted version of SEECER in combi-
nation with CLisp and the fast projection simulator for
the plan execution and libfuzzer for the input genera-
tion. The flow of our program is shown in Figure
It is divided into an initialization phase indicated by
dashed arrows and a main loop indicated by continu-
ous arrows. The steps are numbered according to their
order.

During initialization, the CPL plan (1) is first
parsed and compiled into CLisp bytecode (2). This
bytecode is then analyzed to find all coverage points.
A memory segment is reserved for the respective coun-
ters and given to the fuzzer (3). Finally, the simulation
is initialized and the static part of the environment is
loaded (4).

After the initialization steps are complete, the pro-
cedure enters a main loop that repeats the following
steps. At first the fuzzer provides a byte array as input
to the plan (5). This byte array is then translated into a
set of objects, which are added to the simulation (6).
Afterwards the robotic plan is executed in the simula-
tion environment (7). During execution, the counters
of the chosen coverage metric are updated after every
instruction. After the execution has finished, the final
state of the simulation is checked for erroneous behav-
ior such as objects in the wrong location. Any errors
found are reported to the user (8). Additionally, the
coverage is updated in the fuzzer (9) and also reported
to the user. Finally, the simulation environment is reset
to prepare for the next iteration.

The main loop can run as long as desired by the
user. Possible stopping criteria include the number of

found errors, a time limit or a coverage limit.

4.2 Initial Environment Setup

Unlike most applications, plan-based robotics require
the fuzzer to provide an initial environment setup in-
stead of an input to a function. In this section we will
cover the translation from generated bytes to this envi-
ronment setup in more detail. At first, the environment
needs to be separated into a static and a dynamic part.
Only the dynamic part will change between iterations.
The static part remains constant throughout the whole
procedure and is therefore independent of the fuzzer
output.

For the dynamic part, objects need to be generated
with several properties such as their type, position
and orientation. Since not all positions within the
environment may be eligible to create an object at, we
further propose to define regions and reserve part of
the generated bytes to first decide the region and then
the coordinates within that region.

Depending on the number of regions and types
as well as the desired granularity on positions and
orientations more than one byte may be necessary to
represent an object. With 7 possible types, r possible
regions, p possible positions per region and o possible
orientations, the number of bytes b should be chosen
such that 256°~1 < trpo < 256°, i.e. the smallest
number that will be able to represent all combinations
of type, region, position and orientation.

If the fuzzer produces a total number of bytes that
is not divisible by b, the remaining incomplete object
is discarded.

Example 2. Consider a simple environment with three
tables, which are 90cm by 90cm. In the initial state, a
number of bottles and cups are placed on any of the
tables. The test designer chooses a grid with a width
of 20cm, which results in 4 -4 = 16 possible positions
per table. The objects will always stand upright, but
may by turned by multiples of 90 degrees, resulting
in 4 possible orientations. With 2 types, 3 regions, 16
positions and 4 orientations, there are a total of 384
possible configurations per object and two bytes will
be necessary to represent an object. When the fuzzer
produces 5 bytes, only two objects will be instantiated
and the last byte is discarded.

Of course, other properties like dimensions, color,
fill level of containers, etc. may be represented in the
same way, when applicable.

4.3 Coverage Measurement

Our approach needs to measure the code coverage to
guide the fuzzer and report it back to the user. In

(CONST 0)
(CONST 1)
(CONST 2)

2
"ODD"
"EVEN"

(CONST 0))
(PUSH)

(CALLS2 210) : MOD
(PUSH)

(CALLS2 172) : ZEROP
(JMPIF L10)

(CONST 1) : "ODD"
(PUSH)

(JMP L13)

10 LI10

11 (CONST 2) : "EVEN"
12 (PUSH)

13 LI13

14 (SKIP&RET 1)

O 00NN AW —

Figure 4: CLisp bytecode example

this section we will describe the instrumentalization
of SEECER and the coverage measurement in detail.

Since SEECER operates on CLisp bytecode, we
will also define our coverage metrics on that bytecode
instead of the higher-level CPL plan. We will mainly
describe the instruction and branch coverage, but other
structural coverage metrics can be added in a similar
manner.

Since libfuzzer requires a counter for each cover-
age point, we will also use this representation inter-
nally. During the initialization phase of our approach,
the bytecode will be analyzed to find the total num-
ber of coverage points. For the instruction coverage
this simply corresponds to the number of executable
instructions. For the branch coverage, the control flow
instructions, i.e. conditional jumps are counted and
multiplied by two, since there are exactly two out-
comes for each conditional jump. An array of these
counters is created and initialized with zeros.

During execution the counter array is updated using
an observer pattern. Coverage metrics will register at
the interpreter and in turn the interpreter will notify
them after each instruction execution. The instruction
coverage metric reacts to all instruction executions
and increments the respective counter. The branch
coverage metric only reacts to branching instructions
and increments one of the two respective counters
depending on whether the branching condition is true
or false.

To measure the total coverage, the number of non-
zero entries in the array is divided by the total number
of entries.

Example 3. Consider the bytecode in Figure |4 The
bytecode is divided into a data section (the unnum-
bered lines at the top) and a code section (the num-

bered lines). The code accesses the data through the
CONST instructions in lines [T} [7] and [T}

The program requires one integer to be present
on the stack. It will then load the first constant, the
numeric value 2 and apply the built-in function 210,
which is the modulo operation (Line [3). The result
is compared to zero (Line [5) and depending on the
outcome the execution will jump to Line(10|or proceed
with Line |/} Ultimately, the program will return either
"EVEN" or "ODD", depending on the value of the input.

For this program, SEECER will initialize a counter
array with 14 entries for the instruction coverage, since
there are 14 instructions. The counter array for the
branch coverage will have only 2 entries, one for each
possible result of the JMPIF instruction in Line [6] The
JMP instruction in Line[9]does not require any coverage
points, since it is unconditional.

Assume that the program is called with an even in-
put. This will execute Lines|[I]to [6]and Lines[T0|to[T4]
This results in a total of 11 executed instructions and
a instruction coverage of % ~ 79%. Of the coverage
points for the branch coverage, only the one corre-
sponding to the value true is incremented, resulting in
a branch coverage of 50%.

S A COVERAGE METRIC FOR
PLAN-BASED ROBOTICS

While general structural coverage metrics like instruc-
tion or branch coverage have proven their usefulness,
domain-specific functional metrics are often able to
follow the intended behavior of the program more
closely. Therefore, in this chapter, we introduce action
coverage as a natural functional coverage metric for
plan-based robotics. The metric is independent of the
concrete planning language, but will be presented and
evaluated in the context of CPL in this paper.

The general idea is to measure which percentage
of the possible actions have been executed by the plan.
Here, not only the type of the action, but all parameters
are considered. This makes the metric neither strictly
stronger or strictly weaker than the presented struc-
tural coverage metrics. For instance, the same line of
code may execute an action with different parameters
depending on the value of some variable. The second
execution of that line would then increase the action
coverage, but not the instruction or branch coverage.

If all parameters of the executable actions are dis-
crete and have sufficiently few values, each possible
action parametrization can correspond to a coverage
point. The coverage calculation and implementation
are straight-forward in this case.

Example 4. Consider again the simple environment

from Example 2| with three tables and two object types.
Also consider a two-handed robot acting in this envi-
ronment. The robot may pick an object from any of
the tables or place an object on a table. The action
abstracts from the exact position on the table. It is
parameterized by its type (pick or place), the table, the
object type and the arm that is used. This allows for a
total of 2-3-2-2 = 24 distinct actions to be performed,
resulting in 24 coverage points.

However, in many cases there will be continuous
parameters or ones with a lot of possible values. In
these cases a straight-forward approach will still work
to some extend, but due to the extremely high or even
infinite amount of possible actions, the overall cov-
erage will be either very close to zero or undefined.
To avoid this problem, we suggest to form buckets
of similar actions and create one coverage point per
bucket.

A bucket is a set of actions that are sufficiently sim-
ilar in their parameters. The space of all possible ac-
tions should be divided into a finite set of buckets such
that each action belongs to exactly one bucket. After an
action is executed, the respective bucket is marked as
executed. In our implementation of coverage-guided
fuzzing, each bucket would have its own counter that
is incremented whenever an action from that bucket is
executed.

The choice of buckets is highly domain-specific
and may depend on the plan and environment under
observation. This obviously makes it harder to com-
pare the quality of different plans acting in different
environments. Still, the comparability of different test
sets for the same plan is preserved and the metric is
well suited to guide a fuzzer.

Example 5. Consider again the environment and ac-
tions from the previous example. Now, assume an addi-
tional navigation action that will navigate the robot to
a continuous coordinate within the room. This results
in an infinite number of distinct actions. To reduce the
number of coverage points to a manageable amount,
the navigation action is divided into 4 buckets depend-
ing on its target position. There is one buckets for each
table and its surrounding area and one bucket for all
positions not adjacent to a table. This increases the
total number of coverage points to 28.

Action coverage can be used in combination with
coverage-guided fuzzing as presented in the previous
section, but also independently. Like other coverage
metrics it may be used to judge the quality of hand-
written or (semi-)automatically generated test cases.

We believe that action coverage measures the di-
versity of plan executions more closely than structural
coverage metrics, since the focus is on the actual be-
havior of the robot in its environment, and not just on

the control flow of the underlying program.

6 EXPERIMENTAL EVALUATION

This section describes our experimental evaluation.
We evaluate both our approach to coverage-guided
fuzzing for plan-based robotics in general and the
combination with action coverage in particular. In
Section |6.1| we present the plan and environment that
was used for the evaluation. Afterwards, we discuss
our results in Section

6.1 Robotic Plan and Environment

We evaluate our approach on a CPL plan that is set
in a warehouse-inspired environment. The static part
consist of a table and a shelf with three boards in a rect-
angular room. The dynamic part contains a variable
number of objects with three types (milk, cereal and
bowl). Initially, the objects may be on any of the shelf
boards or on the table. The plan is supposed to sort the
objects onto the shelf boards. Each object type has a
corresponding board on the shelf. It does so by first
moving all objects to the table, clearing the shelf in
the process, and then moving them to their respective
shelf boards. To save trips between the shelf and table,
the robot will always transport two objects at once if
possible. Due to the width of the shelf, the robot is not
able to reach all positions on it from the same point.
A series of case distinctions is responsible for picking
the right position for the robot to pick or place both of
its objects.

In total, the plan involves 1785 bytecode instruc-
tions, 52 branching instructions and 6 different action
types. These are the move-torso, park-arms, detect-
objects, navigate, pickup and place action.

For the action coverage, we decided on a total
of 87 buckets. One bucket belongs to each of the
move-torso, park-arms and detect-objects actions. The
navigate action has 6 buckets, which are distinguished
by their target position. The pickup action also has
6 buckets, depending on the arm and the type of the
object. Finally, the place action is divided into the
remaining 72 buckets, which are distinguished by the
arm, the type of the object and the target position.

The initial state of the environment is built using
two bytes per object. The first byte decides the type
of the object and one of four regions: the top of the
table and the top of each of the shelf boards. The
second byte is split in half, with the first four bits
corresponding to the relative x position and the last
four bits to the relative y position of the object within
the region. The z position and the orientation are fixed
for each region.

6.2 Experimental Results

In this section we present the results of our experi-
mental evaluation. During execution, we measured the
instruction, branch and action coverage. The fuzzer is
however only able to consider one coverage metric at
once. Therefore we executed three versions, with each
metric being the guiding metric to the fuzzer in one
version. To achieve a higher consistency of the results,
we executed ten runs per version, for a total of 30 runs.
Each run had a time limit of 5 hours.
We evaluated the following research questions:

* Is coverage-guided fuzzing able to find relevant
errors in robotic plans in a reasonable time?

* How well do the investigated coverage metrics
reflect a thorough testing of the robotic plan?

* Which effect does the guiding coverage metric
have on the fuzzing process?

e How consistent are the results between runs?

The runs unveiled a total of 7 errors in the plan,
which we categorized by their effect on the final envi-
ronment state.

The shelf edge error occurred when an object in
the initial state was very close to the back edge of the
shelf. This caused it to be occluded by the shelf board.
The robot could therefore not detect the object and
would not move it. This of course caused an invalid
final state, if the object was not initially on its correct
shelf board. Additional positions for the detection of
objects would be necessary to mitigate this error.

In some cases, objects were left on the table, be-
cause they were occluded by other objects and thus
not detected in the second part of the plan. We call
these errors primary table error if the object was on
the table in the initial environment state and secondary
table error if it was moved there. To avoid this error,
the detection and moving objects from the table should
be repeated until the table is empty.

The final four error categories describe objects that
were sorted onto the wrong shelf board. These errors
stem from either an internal logic error in the plan or
from an inaccurate placing action. Depending on the
difference between the expected and actual shelf board,
we call these errors one too high error, two too high
error, one too low error or two too low error.

All seven errors were found in all 30 runs, but the
time it took to find each error differed. The minimum,
maximum and average times it took to find each er-
ror are shown in Table[Il The first column contains
the error name, followed by the minimum, maximum
and average time in seconds that it took to find the
respective error. The earliest found errors were the
shelf edge error and the secondary table error, which

Table 1: Minimum, maximum and average time (in s) to find
each error

Error min max avg
Primary table 11 89 45

One too high 10 122 57

Two too high 13 315 102
Secondary table 8 528 109
Shelf edge 8 511 169
One too low 125 3348 714
Two too low 411 9517 2336

were each found after 8 seconds in two different runs.
The error that took the most time to be found was the
two too low error after 9517 seconds (just over 2h and
38min). This strong difference between error types
is also visible in the average times. The two too low
error took over 50 times as much time to be found on
average than the primary table error. But also the time
for each error type differed greatly. This is best seen
with the secondary table error, where the maximum is
66 times as high as the minimum time. The guiding
coverage metric had no clear effect on the time it took
to find errors.

The coverage metrics increased in different ways
during runs, but converged to the same values after 5
hours for all 30 runs. These values were 97.1% branch
coverage, 95.0% instruction coverage and 59.3% ac-
tion coverage. Upon further inspection of the CPL plan
these values were found to be the theoretical maximum
due to a small section of unreachable code and several
action buckets that could not be executed by the plan.
This also showcases, that finding suitable buckets is
not a trivial problem, since many parameters of the
actions are only decided at runtime. And while it was
no particular priority for this evaluation, it shows that
finding a diverse set of buckets that still allows 100%
action coverage is not an easy task.

The amount of time it took to reach those maxi-
mum values differed greatly between runs. The branch
coverage and instruction coverage always reached their
maximum at the same time, even though the increases
during the runs were not necessarily synchronous. The
fastest time for those two metrics to reach the maxi-
mum was 20 seconds and the slowest time 283 seconds.
The average time was 98 seconds. The highest action
coverage was reached much slower, with a minimum
of 2353 seconds, a maximum of 13079 seconds and
an average of 6802 seconds. Again, there was no clear
effect of the guiding coverage metric.

The vastly slower convergence of the action cover-
age suggests that it is harder to fulfill than the other two
metrics. This also suggests that judging a set of test
cases by their action coverage holds them to a higher

0.8 4

0.6

coverage

0.4 _/—‘
— action

0.2 4
branch

0.0 4 — instruction
L

T T T T
0 200 400 600 800 1000
execution runs

Figure 5: Exemplary coverage development over time

standard than the branch or instruction coverage. To
undermine this statement, we also looked at the num-
ber of errors that were found only after the branch,
instruction or action coverage had reached their maxi-
mum. The reasoning here is that a maximum value of
some coverage metric should usually indicate that the
test cases cover a high amount of all possible outcomes
and additional errors after that are unlikely. So if a lot
of errors were found after a coverage’s maximum was
reached, the coverage is likely not thorough enough.

Of the 30 total runs, several errors occurred only
after the branch and instruction coverage had reached
their maximum. These were 5 occurrences of the pri-
mary table error, 6 occurrences each of the secondary
table error and the two too high error, 10 occurrences
of the one too high error, 12 occurrences of the shelf
edge error, 25 occurrences of the one too low error and
all 30 occurrences of the two too low error. Only 2
occurrences of the two too low error occurred after the
maximum of the action coverage was reached. This
clearly shows that the branch and instruction coverage
are insufficient for a thorough testing of the robotic
plan, while the action coverage had much better out-
comes.

Example 6. To visualize the difference between the
metrics, consider Figure 5 that shows the results of the
first run (guided by the instruction coverage). The y-
axis shows the coverage for each metric and the x-axis
shows the time in seconds. To achieve a better visi-
bility of the results, only the first 1000 seconds of the
run are shown. The blue, orange and green line show
the development of the action, branch and instruction
coverage, respectively. The red vertical lines show
points at which an error of each category was found
for the first time. The figure shows that the first four
errors were found quickly and before the branch and

instruction coverage had reached their maximum. The
later three errors however were only found afterwards.
All seven errors were found before the action coverage
reached its maximum, which happened outside of the
scope of the graphic.

With respect to our research questions we can say
that coverage-guided fuzzing was able to find relevant
errors in the tested robotic plan. In each run 7 errors
were found. This is consistent in terms of the final
result, but not necessarily in terms of the time needed.
The time necessary to find certain errors varied greatly
between runs, as can be expected from a semi-random
algorithm. We found that the action coverage is a good
indicator of the completeness of a test suite, since in
most cases, all errors were found when it reached its
maximum. The instruction and branch coverage on
the other hand did not work well as an indicator, as
almost half of all errors were found after both metrics
reached their maximum. This quality of the action
coverage metric did however not carry over to its use
as a guiding coverage metric. There were no clear
differences in the behavior when a different metric
was chosen. Since the action coverage performed well
otherwise, this might suggest that the chosen fuzzer
is simply not very sensitive to the guiding coverage
metric. Overall, both the fuzzing approach and the
action coverage have been successful in our evaluation.

7 CONCLUSION

When autonomous robots act in safety-critical envi-
ronments, the correctness of their high-level plans is
of utmost importance. In this paper, we introduced
coverage guided fuzzing to the domain of plan-based
robotics. We presented our implementation for the
planning language CPL.

Our approach starts with an initialization phase,
which handles the initialization of the fuzzer and the
simulation as well as the compilation and analysis
of the CPL plan. In the subsequent main loop, the
byte array provided by the fuzzer is translated into an
initial environment setup and the plan is executed in
that environment. During execution, the coverage is
measured and fed back to the fuzzer.

In addition to the fuzzing approach, we presented
a novel coverage metric for the domain of coverage-
guided fuzzing, which measures the percentage of pos-
sible actions that have been performed by the plan.

Our experimental evaluation shows that coverage-
guided fuzzing is able to find relevant bugs in high-
level robotic plans. The novel coverage metric proved
useful in judging the quality of a test suite.

REFERENCES

Bohme, M., Pham, V.-T., Nguyen, M.-D., and Roychoud-
hury, A. (2017). Directed greybox fuzzing. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security.

Bruns, N., Herdt, V., and Drechsler, R. (2022). Unified
hw/sw coverage: A novel metric to boost coverage-
guided fuzzing for virtual prototype based hw/sw co-
verification. In Forum on Specification & Design Lan-
guages (FDL).

Delgado, R., Campusano, M., and Bergel, A. (2021). Fuzz
testing in behavior-based robotics. In 2021 IEEE In-
ternational Conference on Robotics and Automation
(ICRA).

Fioraldi, A., D’Elia, D. C., and Querzoni, L. (2020). Fuzzing
binaries for memory safety errors with qasan. In 2020
1IEEE Secure Development (SecDev).

Gorbunov, S. and Rosenbloom, A. (2012). Autofuzz: Auto-
mated network protocol fuzzing framework. In IJCSNS
International Journal of Computer Science and Net-
work Security.

Haible, B., Stoll, M., and Steingold, S. (2010). Implementa-
tion notes for gnu clisp.

Kim, H., Ozmen, M. O., Bianchi, A., Celik, Z. B., and Xu,
D. (2021). Pgfuzz: Policy-guided fuzzing for robotic
vehicles. In Network and Distributed System Security
Symposium (NDSS).

Li, J., Zhao, B., and Zhang, C. (2018). Fuzzing: a survey.
Cybersecurity.

Ilvm (2022). libfuzzer — a library for coverage-guided
fuzz testing. https://llvm.org/docs/LibFuzzer.html, Ac-
cessed on: 6th Oct 2022.

Luckcuck, M., Farrell, M., Dennis, L. A., Dixon, C., and
Fisher, M. (2019). Formal specification and verification
of autonomous robotic systems: A survey.

Meywerk, T., Walter, M., Herdt, V., GroBe, D., and Drech-
sler, R. (2019). Towards Formal Verification of Plans
for Cognition-enabled Autonomous Robotic Agents.
In Euromicro Conference on Digital System Design
(DSD).

Miller, B. P, Fredriksen, L., and So, B. (1990). An empirical
study of the reliability of unix utilities. Commun. ACM.

Mbsenlechner, L. and Beetz, M. (2013). Fast temporal pro-
jection using accurate physics-based geometric rea-
soning. In 2013 IEEE International Conference on
Robotics and Automation.

Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C.,
and Bos, H. (2017). Vuzzer: Application-aware evolu-
tionary fuzzing. In NDSS Symposium 2017.

Woodlief, T., Elbaum, S., and Sullivan, K. (2021). Fuzzing
mobile robot environments for fast automated crash
detection. In 2021 IEEE International Conference on
Robotics and Automation (ICRA).

Zalewski, M. (2017). Technical "whitepaper" for afl-
fuzz. https://Icamtuf.coredump.cx/afl/technical_details
txt, Accessed on: 6th Oct 2022.

https://llvm.org/docs/LibFuzzer.html
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt

