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Abstract—In order to overcome the ever increasing complexity of
digital circuits, system design at the Electronic System Level (ESL) has
become an area of active research.

SystemC provides designers with a readily-available ESL framework,
allowing them to design mixed hardware/software systems using a
standardized C++ library. The analysis of the resulting designs is crucial
to e.g. apply additional validation steps or assist designers during the
development process. Existing approaches focus on the extraction of static
information, providing designers with models that describe the structure
of their system but not its behavior. In this paper, we introduce the
Automated Intra-cycle Behavioral Analysis tool, AIBA. AIBA utilizes the
GNU debugger to execute a two-step analysis that retrieves behavioral
and architectural information of ESL designs.

The proposed method is completely non-intrusive, allowing both
SystemC designs and the standard tool flow to be used without any
modification. Case studies confirm the benefits of the approach.

I. INTRODUCTION

One approach to handle the increasing complexity of circuits
and systems is the utilization of more abstract description means.
The Electronic System Level (ESL) [10] has been introduced as
an intermediate layer between formal and informal specification
languages and the synthesizeable Register-Transfer Level (RTL) [18]
descriptions. SystemC [2] has emerged as a de-facto standard [13] to
specify designs at the ESL.

Understanding the respective components of the design as well as
their relation to each other is a crucial and – due to the SystemC’s
C++ foundation – non-trivial task. Moreover, knowing the dependen-
cies within hardware systems has always been a key issue in pre
and post design process in terms of debugging, system exploration,
visualization, static verification and synthesis tools.

According to [11], SystemC design extraction methods should
satisfy the following criteria:

• assume as few a priori restrictions as possible,
• retrieve precise information on all parts of the model,
• maximize code reuse to avoid creating new C++ dialects and to

ensure that the approach is also applicable to future SystemC
compilers.

Especially the second point leaves room for interpretation – the kind
and amount of information to be retrieved is usually depending on
the task at hand and thus varies with the use case being pursued.
While current approaches are retrieving detailed static models, they
do not extract any behavioral information.

Existing approaches utilize the infrastructures such as custom(ized)
front-ends [4], [12], [3], compilers/parsers [7], [8], [11] or end-user
modifications to the source code or manual intervention (e.g. using
a software debugger [14]). All these approaches restrict the develop-
ment options.

AIBA provides an applicable, non-intrusive approach in order to
retrieve both, a static model and behavioral information of a given
SystemC design. It uses a two-step approach that relies on the GNU
debugger (GDB) [14]:

1) The static information of a SystemC model is retrieved from the
compiled, executable file by analyzing its debug symbols.

2) The dynamic (i.e. behavioral) information is retrieved from
the executable design at run time. By creating a GDB source
command file based on the static information that instructs the
debugger to retrieve any relevant values and executing the design

under control of the debugger using these instructions, a detailed
model of the given design is created and stored.

The retrieved data includes the design hierarchy and detailed run-time
traces and is presented as a Value Change Dump (VCD) file. It thus
can be browsed using established tools.

II. RELATED WORK

Several methods for SystemC data extraction have been proposed.
Static methods extract the information of a design from the source

code, i.e. they do not rely on the execution of the given design’s
elaboration phase. Approaches can be divided into parsers [6], [8] or
existing C++ front-ends [4], [12], [3]. The results are restricted to the
static information of the model that in the best case can be presented
in an Abstract Syntax Tree (AST), thus disregarding the behavioral
properties of the design.

In addition to the static data extraction, hybrid methods analyze
the dynamic behavior of a given SystemC program.

Pinapa [11] uses two phases to extract the information. First
by parsing the SystemC model using GCC to retrieve the AST.
Secondly, it executes the elaboration phase of the model to extract the
architectural information. Then, the extracted information is merged
to generate the final result. It has limitations such as the inability
to generate useful output when the SystemC model includes some
constructs such as pointers to SystemC objects or complex array index
expressions. Moreover, Pinapa cannot extract the order of function
calls and process activation during the execution of the model.

In [7] a hybrid technique is introduced which uses a PCCTS based
parser to retrieve the static information and a code generator to
extract run-time information. The method is split into four steps
which converting the SystemC model into an AST, creating the
instrumented version of the original model, executing elaboration
phase of the model and finally recording the state of all variables
of the model. Using the PCCTS based parser limits the available
SystemC constructs though.

PinaVM [9] uses the LLVM compiler to translate the SystemC
source code into LLVM bit-code. To extract the dynamic information,
PinaVM first specifies the parts of the source code which contain the
parameter of interest (e.g. dynamic information of a module’s ports)
and then constructs new functions to retrieve it which replace the
according original behavior during the compilation of the program.
This method is limited to models in which the structure can be
determined statically. Additionally, using the LLVM project as a
foundation limits PinaVM to setups that are built using LLVM.

SHaBE [5] uses GDB to retrieve the static information and a GCC
plugin to retrieve the dynamic information. It retrieves an AST and
links the dynamic information with the extracted module hierarchy.
Concerning to the dynamic information, the approach has some
limitations concerning the extraction of hierarchical information such
as SystemC primitive channels (e.g. clock signal, fifo and semaphore),
some SystemC module hierarchies and the information of a process
sensitive to an event from channel.

Another recently published hybrid method [16] uses debug symbols
to extract the static information and SystemC API calls to retrieve
dynamic data during the execution of a SystemC model. The method
does not capture behavioral data but only uses the SystemC API to
dynamically build a static hierarchy of a SystemC model.



III. MOTIVATION

Existing approaches have two major limitations in terms of dy-
namic data extraction and restricting the language. The first limitation
is that most of them only retrieve the module hierarchy and restricted
dynamic information (e.g. instance names of modules and a discrete
state of variables). This is not necessarily sufficient to properly
understand a given system. The second limitation is that most of
them can only be applied to a restricted range of SystemC designs.

We are aiming at overcoming the given drawbacks of traditional
SystemC data extraction and providing a method to retrieve detailed
behavioral information from a given design. More precisely, we
consider the question:

How can both, the structure and the behavior of a given
SystemC design be retrieved without restricting the language
means and/or modifying the existing infrastructures?

There are several approaches that potentially enable the extraction
of behavioral data. One of them, is Aspect-Oriented Programming
(AOP) which is a paradigm that allows the designer to write re-
factoring rules that are applied before compiling a program (a
process called weaving). AOP was already applied in several SystemC
analysis projects [15], [17]. This approach comes with several pitfalls.
First, debugging AOP setups is a complex task. Furthermore, AOP
does not support the description of arbitrary points that define the
code that should be altered, which is a deal breaker for the goal of
arbitrary behavior tracing.

Another alternative, is Clang/LLVM. It is possible to extract static
information from the abstract syntax tree generated by the Clang
compiler and applying plugins to the compilation workflow in order
to make the program extract its own dynamic information by injecting
new functions into the program at compile time. Using the LLVM
infrastructure limits the approach to setups that rely on LLVM,
which not only excludes the proprietary Microsoft front-ends, but
also projects that rely on GCC, which is a serious drawback to this
approach.

By utilizing GDB as an underlying infrastructure, several short-
comings of other approaches can be solved. First, GDB provides a
toolset to monitor the behavior of a design during the execution of
a model down to single instructions. It is thus possible to access
information per instruction during execution, addressing the issue of
arbitrary behavior extraction. Secondly, GDB is compatible to both,
GCC and Clang/LLVM and has no limitation by means of SystemC
languages, which increases compatibility compared to other SystemC
analysis approaches and the LLVM-plugin approach (which would be
incompatible to non-LLVM compilers).

The approach presented in this paper on the other hand provides
a novel kind of information to be extracted from SystemC designs.
In addition to the static structures, it allows designers to extract the
precise behavior of a given SystemC model. It provides designers
with a new aspect of dynamic information extraction called intra-
cycle behavior: by shifting the extraction methods to an underlying
debugger, the behavior of a system within single points in simulation
time can be retrieved from any given data type.

IV. PROPOSED METHOD

Fig. 1, represents the architectural view of AIBA. As stated in this
figure, AIBA is based on two main phases,

1) The extraction of
• static information and
• the data required to generate a set of GDB instructions
from a compiled SystemC design that includes the required
debug symbols and

2) the retrieval of the dynamic information of the model by
executing it via GDB, using the previously generated GDB
instructions.

Finally, the retrieved information is stored as a VCD file.
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Fig. 1. The architecture of AIBA.
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Fig. 2. The architecture of A) Static Data Extractor and B) Dynamic Data
Extractor.

A. Extracting Static Information
The static information refers to structural data that is described

in the design’s source code. This data consists of class and function
names, variable information (e.g. module ports, local variables of
functions), class hierarchy information, data types, etc.

The Static Data Extractor module retrieves the static information
from the GDB debug symbols as shown in Fig. 1 in phase 1. In
addition to being helpful information by itself, the gathered static data
is used as the foundation to retrieve the dynamic run-time information
in the next step. Based on the static data, the Static Data Extractor
module automatically generates a GDB Command File (GCF) which
is required to extract the dynamic information in the second phase.

Based on the information provided by accessing the debug sym-
bols, the Static-Analyzer module extracts the static information of
the model. Fig. 2.A illustrates the architecture of the Static Data
Extractor module, reading the debug symbols, translating them into
a more manageable data format and finally translating them into
a source file to utilize the information about the design’s static
structures to retrieve the dynamic information as well.

B. Extracting Dynamic Information
Behavior analysis is usually done using VCD files that are gen-

erated using the standard SystemC API. This approach works well
for SystemC signals (which represent hardware signals) but lacks
precision for base type variables that may change several times
during a single SystemC-δ-cycle (the smallest amount of time that
may pass concerning the simulation kernel) and fails for user-defined
datatypes that are not supported at all unless the designers alter their
code. In order to overcome this drawback, the program is executed
via GDB, which is usually done to manually debug a design by
setting breakpoints and stepping through the program. In order to
automate this approach, the previously generated GDB command
source file contains instructions for the debugger to automatically halt
the execution of a program, store any changed values and resume the
execution afterwards.

As this approach does not rely on calls from the SystemC kernel,
but instead uses GDB as an execution environment, the smallest



timestep to differentiate assignments are C++ statements instead of
SystemC δ cycles. This results in a (potentially) higher precision,
tracking value changes in the order they occur in, while still setting
them in context of the current simulation time. This behavior of values
within a single δ cycle shall be called the intra-cycle behavior, and
its extraction is the focus of this chapter.

1) Generating the GDB Log File: The SystemC model is executed
via GDB, utilizing the generated GCF. Based on the commands
within the GCF, GDB sets breakpoints for each function of the given
modules and the program continues to hit the first breakpoint. The
commands of the breakpoint which have been hit is executed and
calls the corresponding GDB function for this breakpoint.

As is illustrated in Fig. 2.A the extracted information is stored in
an internal data structure (the Static Information). Each module is
described in a hierarchical format based on its member functions
and attributes. In order to retrieve behavioral information of the
model, a combination of the static information contained in the Static
Information, with the scheme and basic commands of GDB, are
utilized by the Generate GDB Command File module to create a
GCF. This module defines a breakpoint for each function of a module
based on its name and scope and a command for each breakpoint in
the GCF. These breakpoints are scripted to automatically execute
a GDB function call which is defined separately for each module
function in the GCF. These functions contain instructions for the
debugger to retrieve the dynamic information of the SystemC model
during its execution.

More precisely, for each breakpoint, the GCF contains instructions
for GDB to retrieve:

• the simulation time,
• the value of all variables of the current module and all values

of local variables of the current function,
• the name of each port,
• the instance name of current module,
• clock information (if available) and
• binding information of each port.

Algorithm 1: ICTU update process
foreach time unit in Dynamic Information do

vc[time unit] = sum (number of value changes of all variables);
end
max = maximum (vc);
µt = (1/max) ∗ simulation time scale;
foreach time unit t in Dynamic Information do

foreach variable do
if the number of variable’s assignments > 1 then

foreach value assignment do
tnew = t + µt ;
store (tnew, value assignment);
t = tnew ;

end
end

end
end
update (Dynamic Information);

2) Generating VCD: As illustrated in Fig. 2.B, the dynamic
information of the model is extracted by the Dynamic-analyzer
module. The simulation time stamp is captured as well as the value
of variables when an instruction is executed. All retrieved dynamic
information is stored in an internal data structure called the Dynamic
Information as seen in Fig. 2.B. In each time unit in the Dynamic
Information, a list of variables that was extracted at this time is stored.
The Dynamic-analyzer module binds all ports of a module with the
corresponding signals that have a same interface.

In the next step, the information of the Dynamic Information is
processed by the Intra-Cycle Time Unit (ICTU) module to differen-
tiate values of variables within a single point in simulation time. To
present all events on a single timeline, the assignments of each single
point in simulation time are sorted by their execution order o and the
value o ·µt is added to their original timestamps. The value µt is thus
used to differentiate the particular assignments. It should be much
smaller than the smallest step in simulation time in order to have
all assignments being displayed before the next “large” simulation
timestep. µt is therefore related to the maximum sum of the number
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Fig. 3. A part of generated VCD file for the pkt_switch example.

of value changes of variables in a time unit among all time units as
illustrated in Algorithm 1 and is calculated automatically.

Finally, the Generate VCD module gets the modified Dynamic
Information from the previous step and generate a VCD file. It thus
provides a time-ordered sequence of value changes based on the
extracted simulation time unit.

V. EVALUATION

Both the Static Data Extractor module and the Dynamic Data
Extractor module have been implemented in Python. The proposed
method has been used GCC 4.5 and GDB 7.1. All execution times
have been measured on a PC equipped with 8 GB RAM and the Intel
core i7-2760QM CPU running at 2.4 GHz.

A. Case Studies
In order to illustrate the advantages of AIBA in visualizing a

wide range of ESL designs, a variety of SystemC models have been
analyzed. The SystemC models that are presented in Table I are taken
from the standard examples which provided by OSCI and University
of Edinburgh.

The pkt_switch example realizes a system for distributing data
packages and is assumed to be instantiated with four sender and four
receiver instances, all of them connected to a central switch.

Fig. 3 illustrates a part of the generated VCD file of the
pkt_switch system. The static and dynamic information of the
mentioned design has been retrieved and is shown in four parts in
this figure.
(A) shows a basic hierarchy of the pkt_switch system in form of

the Signal Search Tree (SST). It includes the name of modules
and their instances as well as the global functions (e.g. scmain
function in this example).

(B) illustrates information of variables within the design. Each
variable is identified based on its hierarchical structure which
consists of the name of the root module, the name of function
(for local variables), the name of variable and the instance name
of the root module.

(C) shows the current value of each variable in the shape of a
waveform with respect to the simulation time.

(D) demonstrates the presentation of intra-cycle behavior for the
pkt_switch system. In this example, in time unit t = 600ns
the local variable pkt-count is assigned four different values
consecutively. It starts with its value being 0. By executing the
next instructions it gets raised from 0 to 4 in four steps. To
cover these temporary changes in a single time unit, the Dynamic
Information is analyzed by ICTU module based on Algorithm 1.
In this example, the maximum amount of assignments within
each of the simulation timesteps is max = 100 and the
simulation time scale is ts = 1ns. Based on this, the smallest
step within a single time unit is µt =

ts
max

= 10ps.
Table I summarizes the results obtained from the case studies. The

first two columns show the SystemC models as well as the number
of lines of code for each design respectively. The results of AIBA are
presented in comparison with the SystemC trace file in terms of the



TABLE I
CASE STUDIES

SystemC Model # Lines SystemC Trace AIBA TP-GDB
#Var #Time Units Exec(s) #Var #Time Units Exec(s) Exec(h)

1-bit Full Adder1 87 5 5 0.01 18 14 1.9 > 1
4-bit Shift Register1 135 3 29 0.02 12 54 2.2 > 1
FIR Filter2 233 6 24 0.02 23 504 4.1 > 3
Packet Switch2 1020 55 1723 0.05 332 5606 19.2 > 10
RISC CPU2 1960 89 137 0.03 254 551 12.1 > 10

1 Provided by University of Edinburgh [1]. 2 Provided by OSCI.

number of retrieved variables #Var, number of extracted time units
#Time Unit and execution time #Exec.

B. Integration and Discussion
As illustrated in table I, the amount of both, extracted variables

and time units for all case studies of AIBA are much higher than
those retrieved via the SystemC trace file method. The parameter
#Time Unit is generated based on value changes of variables which
have been retrieved during the execution of an executable model.
Therefore, both of these parameters can show the accuracy of our
approach to extract the detailed behavior of a SystemC design.

Although the SystemC comes with a trace API that enables
designers to monitor the behavior of a SystemC model via VCD
logs, it has some severe limitations. The information extraction of
some primitive channels and module ports (e.g. sc_in, sc_out,
sc_inout are not supported off-the-shelf). In addition, using the
SystemC trace function to analyze the behavior of a given SystemC
model is an intrusive solution: the original source code needs to be
modified by the designer to include all values that need to be traced,
which, for a complex design with lots of variables, may be a time-
consuming task.

Table I also compares the execution time of AIBA to the SystemC
trace method and the trace point functionality by GDB. GDB’s trace
point feature can be used to retrieve the detailed behavior of a model
but even for a simple SystemC model, the required execution time
lies in an order of hours. The method also needs to be set up manually
which makes the solution inapplicable even for a simple model.

The proposed approach thus represents a trade-off between the
precise information extraction and the execution time. As demon-
strated in Table I, AIBA provides the intra-cycle behavior of a given
SystemC model in an reasonable run-time.

The only precondition for the application of the suggested approach
is that the executable SystemC model contains debug information.
The original source code and SystemC library do not need to be
modified in any way which makes it a non-intrusive approach and
can be applied to future versions of SystemC. Overall, this makes
our approach applicable for a wide range of applications of SystemC
models in ESL design.

VI. CONCLUSION

In this paper, we have introduced an automated intra-cycle be-
havioral analysis, called AIBA to extract both static information
and the behavior of a given SystemC model. The experimental
results show that AIBA provides a more detailed and less intrusive
solution than the SystemC trace file API which is the only existing
method to generate a VCD form of a SystemC model. This can be
effectively utilized for debugging, system exploration, visualization,
static verification or synthesis tools. Furthermore, compared to the
trace point feature by GDB (as a solution to analyze the behavior of
a SystemC model), AIBA automatically retrieves the precise behavior
of a SystemC model in reasonable time.

In summery, AIBA can automatically give an access to the intra-
cycle behavior of a given SystemC model, while other existing
approaches do not support this feature. The presented method can be
applied without any modification to the source code of the model or
the library. This feature makes AIBA non-intrusive and applicable as
long as the model is built including GDB-compatible debug symbols.
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