Towards Dialog Systems for Assisted Natural Language
Processing in the Design of Embedded Systems

(Invited Paper)

Rolf Drechsler*$

Mathias Soeken*$

Robert Wille*

*Institute of Computer Science, University of Bremen

28359 Bremen, Germany

§Cyber—Physical Systems, DFKI GmbH
28359 Bremen, Germany

drechsler @uni-bremen.de

Abstract—Combining both, state-of-the art natural language
processing algorithms and semantic information offered by a
variety of ontologies and databases, efficient methods have been
proposed that assist system designers in automatically translating
text-based specifications into formal models. But due to ambigu-
ities in natural language, these approaches usually require user
interaction. However, efficient and intuitive methods aiding this
interaction in system design have hardly been considered. In this
paper, ideas for integrating dialog systems into the design flow
for embedded systems are proposed. This allows for the creation
of a seamless design flow from natural language specifications to
formal models.

I. INTRODUCTION

In the field of electronic design automation many achieve-
ments can be recorded when it comes to transforming one
formal description into another one, e.g. a model on the system
level into an RTL description [1] which in turn is translated
into a gate level netlist [2]. However, a large amount of
time is spent on earlier stages in the design flow, e.g. in
requirements engineering or in the process of translating
the specification into an initial executable description. As a
consequence, electronic design automation is experiencing an
increasing effort in the development of algorithms based on
natural language processing [3], [4], [5], [6].

From an abstract perspective, these algorithms can be cat-
egorized into two fundamental groups namely fully automatic
and interactive algorithms. Algorithms from the first group
aim for an automatic approach which acts like a black box and
does not require any user interaction. Since natural language is
highly ambiguous, fully automatic algorithms usually need to
put additional restrictions on the input language. As examples,
this can be done by predefining sentence skeletons also known
as boilerplates [7] or by restricting the whole vocabulary and
grammatical expressions using e.g. controlled English [8].
As a consequence, being able to perform a fully automatic
translation from a natural language specification into a formal

model is traded off against the necessity to “learn a new
language.”

In contrast, interactive algorithms do not aim for a fully
automatic translation but instead pursue the idea of not re-
stricting the input language at all. This allows the designer
or requirements engineer to write specifications without re-
assuring her- or himself whether the text adheres to some
rules. Interactive algorithms analyze sentences using natural
language processing techniques and operate by means of
a confidence level. The confidence level is usually high if
the sentence is clearly written and leaves barely space for
different interpretations. In this case, an automatic translation
is performed. However, if the confidence level is low the
algorithm tries to narrow down the problem to the actual
point of conflict and forms a question which is posed to the
designer. The answer to this question is then used to clear out
ambiguities and is stored for later occurrences.

II. DIALOG SYSTEMS

In this paper, we present first implementations of dialog
systems that can be integrated in interactive tools based on
natural language processing techniques. Two possible direc-
tions are considered: (1) An active approach in which the user
itself initiates a dialog with the computer and (2) a passive
approach in which the computer provides feedback without
explicitly interrupting the user in her or his current work. Both
directions are illustrated by means of posible applications.

A. Active Approach

The active approach replicates a “real” dialog with the com-
puter, i.e. the user initiates the dialog by means of a sentence
and the tool returns a result. The result either summarizes what
has been understood by the algorithm or is a question to gather
more information in order to clarify uncertainties.

In order to illustrate a possible application, consider a test
case containing a CPU and a thread which is described in
natural language by the following two sentences:



A CPU spawns a thread.
The thread sends a message.

This is used as input given e.g. to an interactive tool as
proposed in [4] and initiates a dialog with the computer.
The algorithm takes these sentences and derives a UML class
diagram and a UML sequence diagram by means of natural
language processing techniques. The obtained diagrams repre-
sent the structure of the implementation and an executable test
case, respectively. Initiating the dialog with the first sentence
leads to responses such as

Detected class CPU without attributes.
Detected class thread without attributes.
Detected operation spawn for class CPU.

Since no uncertainties occurred, the algorithm just summarizes
the result. However, in case of uncertainties, the algorithm can
actively asks for further information. For example, in the sec-
ond sentence, the algorithm is not able to determine whether
or not a class should be created for the noun “message.” The
dialog system reports that to the user by responding with

“message” cannot be determined as actor or class?

Then, the designer can add a so-called background sentence
in order to clarify the issue. Depending on the dictionary or
ontology that is used as the back-end, the algorithm can also
explain why the sentence has been misunderstood, e.g.

I know “message” as communication. Do you mean
message as in a communication (usually brief) that is
written or spoken or signaled; “he sent a three-word
message”’?

Getting continuous feedback from the tool improves the de-
signer’s understanding of the specification. Figuring out the
weak points in terms of ambiguities will sometimes lead to a
revision of the specification such that a more clear document
results. This is also beneficial for other team members, since
sentences that are hard to understand by a tool are likely to
be misunderstood by other humans as well.

B. Passive Approach

Alternatively, we propose a passive dialog system as it is
known from software development and compilers. The input
by the designer is a natural language text that can possibly
contain several sentences. The tool then acts as a compiler and
returns its feedback in terms of warnings and error messages
back to the designer. When incorporating this idea into an
integrated development environment such as Eclipse, the text
can be processed while editing it and messages get annotated
e.g. by underlining words. The idea is illustrated in Fig. 1.

CPU. feature 23

Feature: CPU

Scenario: Thread communication
When a CPU spawns a thread

y Then the thread sends a message

Fig. 1. Passive dialog system

Following this approach, the user does not get interrupted
but still is continuously supported with useful information in
order to improve the specification. In case all warnings and
errors have been resolved, the tool can generate the desired
model which can then be used for further processing steps.

III. CONCLUSIONS

We propose to challenge the automatized translation of
natural language specifications into formal models by means
of interactive tools that do not restrict the input language. In
order to deal with possible ambiguities, dialog systems are
applied that gather additional information of the designer in
order to clarify uncertainties. For this purpose, we illustrate
two approaches for implementing such dialog systems. One
approach is active and resembles a “real” dialog whereas the
second approach is passive and gives accompanying feed-
back while editing the specification. The active approach
can be either implemented by means of a text-based chat-
like application or can even be modeled as a real dialog
using speech recognition and speech synthesis techniques. The
passive approach integrates well with modern concepts known
from integrated development environments.

REFERENCES

[1] G. Economakos, P. Oikonomakos, I. Panagopoulos, I. Poulakis, and
G. K. Papakonstantinou, “Behavioral synthesis with SystemC,” in Design,
Automation and Test in Europe, Mar. 2001, pp. 21-25.

[2] R. Murgai, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, Logic
Synthesis for Field-Programmable Gate Arrays. Springer, Jul. 1995.

[3] T. Samad and S. W. Director, “Towards a natural language interface for
CAD,” in Design Automation Conference, 1985, pp. 2-8.

[4] M. Soeken, R. Wille, and R. Drechsler, “Assisted Behavior Driven
Development Using Natural Language Processing,” in Int’l. Conf. on
Objects, Models, Components, Patterns, May 2012, pp. 269-287.

[5] 1. G. Harris, “Extracting design information from natural language speci-

fications,” in Design Automation Conference, Jun. 2012, pp. 1256-1257.

R. Drechsler, M. Soeken, and R. Wille, “Formal Specification Level:

Towards verification-driven design based on natural language processing,”

in Forum on Specification & Design Languages, Sep. 2012, pp. 53-58.

[71 M.E. C. Hull, K. Jackson, and J. Dick, Requirements Engineering, Second
Edition. Springer, 2005.

[8] N. E. Fuchs and R. Schwitter, “Attempto Controlled English (ACE),” in
Int’l Workshop on Controlled Language Applications, Mar. 1996.

[6

—_



