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Abstract—The area of reversible circuit synthesis has become
very important in recent years with the growing emphasis on
low-power design and quantum computation. Many synthesis ap-
proaches have been reported over the last two decades. For small
functions exact solutions can be computed. Otherwise, heuristics
have to be applied that are either based on transformations or
a direct mapping from a given data structure. Recently, it was
shown that significant reduction in the cost of the synthesized
circuits can be obtained, if the ordering of the output lines is
changed. The drawback of the approach was that it can only be
applied to smaller sized circuits.

In this paper, an evolutionary approach for obtaining a good
ordering of the output variables is proposed, which can be used
for larger sized circuits as well. The method does not require
explicit synthesis of the reversible circuit netlist. Experimental
results are shown with respect to a transformation based synthesis
tool. Reductions of up to 98% can be observed with an average
reduction of 64.4% for larger circuits.

Index Terms—Reversible logic, evolutionary algorithm, output
permutation

I. INTRODUCTION

With the prospect of having quantum computers in a not-
so-distant future, and the growing need of applications that
demand ultra-low power consumption, research in the area of
synthesis and testing of reversible logic circuits has drawn the
attention of various researchers. A reversible circuit consists
of reversible gates. A reversible circuit must also have equal
number of inputs and outputs, and it should not have any
fan-outs. Traditional gates such as AND, OR, EXOR are
not reversible, but the NOT gate is reversible. There exist
various reversible gates in the literature, such as Controlled
NOT (CNOT) [4] and Toffoli [19], which are used by various
synthesis methods. Many approaches to the synthesis of re-
versible logic circuits have been reported. While some of them
are based on solving a state-space search problem, others are
based on heuristics or randomized search. Approaches based
on exact or constructive approaches have been proposed, while
some are based on innovative ways of representing the set of
functions as Binary Decision Diagrams (BDD) or Exclusive
Sum-Of-Products (ESOP). While the exact approaches give

optimal results only for smaller sized circuits, others give
semi-optimal solutions but possibly run faster and can handle
significantly large sized circuits.

It has been shown in [21] that the cost of the synthesized
netlist can be significantly reduced if the order of the output
lines is changed, which is often acceptable in practice. In
other words, a permutation is imposed on the output lines. An
optimization scheme based on a formulation as a Satisfiability
(SAT) problem was proposed in [21] that can search through
all feasible output permutations, and arrive at the one that leads
to the least cost gate netlist. A formulation for incompletely
specified functions was also presented, where some of the
permutations that correspond to garbage outputs were skipped
in the search process. Heuristics were presented to speed up
the search process. Results have only been shown for smaller
number of inputs, since the complexity of the algorithm
increases rapidly with the size of the instance. As such, no
methods have been reported so far that can handle circuits with
larger number of inputs, while using output permutation for
optimization. An excellent set of resources relating to tools for
synthesis and analysis of reversible logic circuits are available
in [16]. The tools, though capable of handling larger circuits,
are not equipped with optimization mechanism using output
permutation.

In this paper, a fast Evolutionary Algorithm (EA) is pre-
sented to address this specific problem. Given a reversible
specification, based on a properly selected cost function, the
algorithm searches for an output permutation that leads to the
smallest cost. To avoid long runtimes the EA does not syn-
thesize the circuit after each evolutionary operation. Both the
original and the least cost permutations are synthesized using
a standard synthesis tool, and the improvement in cost are
compared. Experimental results demonstrate the effectiveness
of the scheme.

II. RELATED WORKS

The various approaches to synthesis of reversible logic
circuits can be broadly classified into exact, heuristic, and



based on higher-level function representation.

Exact synthesis approaches generate a minimal reversible
logic realization of a given specification [7] [9] [15]. The
problem with these methods is that since they tend to search
the entire solution space for the optimum solution, they
have high time complexity and can only be used for small
sized circuit specifications. These methods are often used as
benchmarks to evaluate the quality of solutions obtained by
other synthesis approaches.

The heuristic based approaches tend to use domain specific
knowledge and simple rules, so as to restrict the search space.
There are several methods that fall in this category, such as
[1] [8] [10] [11] [22]. These methods take less computational
time as compared to the exact methods, and can be used for
larger circuits; however, there is no guarantee of an optimal
solution.

To handle the synthesis of very large circuits, some methods
have been proposed which rely on special compact functional
realization of the reversible specification. There are methods
based on Binary Decision Diagrams (BDD), which represent
the multi-output function specification as a shared reduced
BDD [20]. Using some simple linear time transformation
methods, the nodes of the BDD are directly transformed into
segments of the reversible logic netlist. There are methods
based on Exclusive Sum-Of-Products (ESOP) [2] [3], which
represent the functions as a linear sum of product terms (sim-
ilar to the Reed-Muller representation). Again using simple
translation rules, the gate netlist can be directly generated from
the ESOP expressions. Although these methods can handle
larger functions, the main drawback is that the quality of the
solutions obtained is often quite significantly suboptimal. Fur-
thermore, additional lines might be required. Some methods
use an alternate data structure called Quantum Multiple-valued
Decision Diagrams (QMDDs) [17], that can synthesize larger
input circuits with the minimal number of circuit lines.

Some works have been reported which try to improve upon
the quality of a given solution. One approach is based on
template matching [12], which gives significant reduction in
the number of gates. Yet another approach tries to find some
good ordering (permutation) of the output lines, such that
the size of the synthesized netlist is minimized [21]. In [21],
the problem of finding the optimum output permutation was
integrated with the original synthesis problem, and a SAT
solver was used to obtain the solution. Since the SAT solver
was not able to handle very large instances, the method was
applicable to smaller circuits only. This method was called
Exact SWOP. A heuristic was proposed which searched for
the best position of the output lines (taken one at a time),
which reduces the problem complexity from O(k!) to O(k?),
where k is the number of inputs.

The present work also uses the concept of permuting the
output lines such that the cost of synthesis is minimized. The

main emphasis of the work is to obtain a good permutation,
and not to propose a synthesis algorithm. In fact, any existing
synthesis algorithm can be used along with the proposed
approach to reduce the cost of the synthesized circuits. The
next section first explains the motivation for searching for a
good output permutation, and then presents an evolutionary
approach for obtaining good orderings based on some cost
function. The effectiveness of the tool is validated by running
the same on various reversible benchmark circuits, using tools
available in [16].

III. PROPOSED SYNTHESIS APPROACH

In this section we first explain with the help of an example
how the concept of output permutation can help in reducing
the cost of the synthesized netlist. Then the formulation of
the exact problem that is being addressed is presented, along
with a brief discussion of its complexity. Finally, the details of
the evolutionary algorithm to solve the problem are presented.
The following subsections discuss these issues in more detail.

A. Basic idea

In many of the synthesis approaches, the reversible function
f: B¥ — B to be synthesized is expressed as a truth table,
in which the position of each output line is fixed. Consider
the reversible function specification as shown in Table 1. A
minimum gate realization for this function specification is
shown in Fig. 1. If we reorder the output lines to (z, z, y)
and (z, z, y), the corresponding minimum gate realizations
are shown in Fig. 2.

TABLE I
EXAMPLE FUNCTION SPECIFICATION

a b cl|lzxz vy =z
o 0 0|0 O O
o o 1|1 1 1
o 1 0|1 0 O
o 1 1]0 1 1
1 0 0|0 1 O
1 0 1|1 0 1
1 1 0|0 0 1
1 1 111 1 0
c P @ z

Fig. 1. Minimum realization for output order (x,y,z)

The above example clearly illustrates the fact that the cost
of the synthesized netlist depends quite significantly on the
output ordering. This observation forms the main motivation
behind the proposed work.



b —éfz b x
972

Minimum realization for output orders (x,z,y) and (z,z,y)

Fig. 2.

B. Motivation and contribution

With the above motivation, this paper attempts to find a
good output permutation, that results in a reversible logic
netlist of small number of gates.

For a reversible logic specification with k£ qubits, since the
number of possible output permutations is k!, it is computa-
tionally infeasible to explore all the possibilities and arrive at
the best solution for larger values of k. In [21], the authors
attempted to find the optimum solution by formulating the
problem as a SAT instance, and use a solver to obtain the
solution. As expected, the approach works for smaller values
of k only. To reduce the search space from k! to k2, the
authors also presented a heuristic where instead of trying
out all possible output permutations, only a small subset was
evaluated (based on the best positions of individual output
lines).

In this paper, we propose a cost based output ordering
technique based on an Evolutionary Algorithm (EA), which
will give a good output ordering, even for reversible functions
with larger values of k. The overall schematic diagram of the
approach is depicted in Fig. 3, where a backend synthesis
engine is used along with the proposed tool (shown shaded)
developed as part of the present work.

C. Evolutionary algorithm based solution approach

As mentioned earlier, we have used an EA to optimize a
given output ordering with respect to synthesizability based on
a chosen cost metric. The various aspects of the implementa-
tion are discussed in the following subsections.

1) Individual representation: Each individual in the EA
formulation represents an ordering of the output variables, and
is represented by a linear array. The initial population consists
of a set of such individuals, containing randomly generated
output permutations. For & = 6 outputs, a sample chromosome
is shown in Fig. 4.

Fig. 4. An example chromosome

2) Fitness function: In any EA formulation, the fitness
function plays a central role. The function, when applied to an
individual, will return a numeric value providing a measure of

its goodness. In the context of the present problem, the fitness
function F' when applied to a given output permutation P,
should give a measure of the difficulty of synthesizing the
given reversible function.

In this work, the fitness function is computed as the
Hamming distance between the permutations realized by the
reversible function under a given output ordering, and the
identity permutation. An identity permutation corresponds to
the case where the inputs are directly copied to the outputs
without any gates in between. The intuitive justification is that
closer a permutation is to the identity permutation, lesser will
be the effort to synthesize it.

Algorithm calculate_fitness (O, P, F)

Input:Permutation P corresponding to the given reversible
specification; output permutation O corresponding to a
given individual; number of lines k
Output: Fitness function F' of the individual O
begin
F=0;
for i =0 to 2¥ — 1 do
begin
x = decimal equivalent of the k-bit output vector
for input ¢ under output permutation O;
if (hamm_dist (i, x) < threshold)
F = F + hamm_dist (i, x),
else
F = F + hamm_dist (i, x) + penalty;
end
end

In the above algorithm, the parameter threshold specifies a
limit of Hamming distance between ¢ and z, beyond which
the problem of synthesis is regarded as difficult and a penalty
is added to the function F'.

3) Crossover and mutation: We start with an initial pop-
ulation consisting of individuals with randomly generated
output permutations. The following procedures are used to
generate the individuals of the next generation from the present
generation.

a) The best ¢ solutions of the present generation are copied
to the next generation, so that the best solutions are
retained. For the present problem, the value of ¢ has
been set to 4.

b) Using the roulette wheel method [5], pairs of solutions
are selected from the present generation, and a process
based on single-point crossover performed on them with
some probability, and the resulting pair copied to the
next generation. A random crossover point is selected,
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Fig. 3. Overall schematic diagram of the approach

and the new individuals are generated by taking the
portion of one individual upto the crossover point and
scanning the other from left to right filling up the
missing numbers. The process is illustrated in Fig. 5.
This is required to ensure that the individuals obtained
after crossover are valid permutations. This crossover
operator, though slightly different from the Partially
mapped crossover (PMX) concept [6] as used in [2],
is chosen because it was found to give better results.

c) With a certain probability, some individuals in the next
generation are mutated. Several alternatives are followed
to carry out mutation: select an output and insert it
in at a randomly selected target position, swap two
randomly selected outputs, and rotate all the outputs left
by one position. One of the three alternatives is chosen
randomly. The process is illustrated in Fig. 6 with the
help of an example.

Crossover point

[lefe o]0 [leefel=]"]
Clefefefe]¢] Clefefle]e]
old New
Individual Individual
Fig. 5. Tllustration of crossover operation

|5|2|4|0|1|3Insert
|5|4|o|1|z|3|:>|5|4|3|1|z|o|5wap
Original
Individual
|4|0|1|2|3|5|Rotate
Mutated
Individual
Fig. 6. Tllustration of mutation operation

The overall flow of the synthesis algorithm is given below,
which is self explanatory.

Algorithm Selecting Output Ordering using EA

Input:Permutation P corresponding to the given reversible
specification
Output: Ordering of the output lines to minimize cost
begin
currGen = initial_population();
for nGen = 1 to maxGen
begin
forall chromosome ¢ € currGen do
calculate_fitness (c, P, F);
/I Calculate fitness and save in an array F
copy_best (currGen, nextGen, t); /lt=4
for : = 1 to (pop_size - t) step 2
begin
X = select (currGen);
Y = select (currGen);
crossover (X, Y, Xnew, Ynew)s
mutation (Xnew);
mutation (Ynew);
Add X,,c, and Y., to nextGen;
end
currGen = nextGen,
end
end

In the above algorithm, the function initial_population gen-
erates a set of randomly generated initial output orderings,
which constitutes the individuals of the initial generation.
Function copy_best copies the best k individuals from the
current generation currGen to the next generation nextGen.
Function select picks up an individual from the current gen-
eration using the roulette wheel method. Function crossover
performs single-point crossover on two individuals X and
Y, and generates two new ones X, and Yj.,. Function
mutation mutates a given individual using one of the three
methods as discussed before.

IV. EXPERIMENTAL SETUP AND RESULTS

The proposed evolutionary approach explained in the pre-
vious section takes a reversible logic specification as input
and produces a set of good output permutations as the output,
ranked by their fitness. Since the SAT based tool used in [21]
was not available for experimentation, it was not possible to
directly compare our work with [21] with regards to the quality
of output permutations it generates for larger input circuits.
But comparison have been done for smaller input circuits.



Comparing our method with [21] for smaller input benchmark
circuits we observe that number of gates required is same in
both the cases, only the time required is less in our method.
Moreover, the approach of [21] can be used only for circuits
with a smaller number of inputs k£ (7 or 8 maximum). In
contrast the proposed approach can also be used for larger
values of k. We have shown results up to & = 18. The major
advantage of our method in contrast to other techniques based
on output permutation is that we need not have to carry out
synthesis during the generation of the required permutation
which is required by other techniques. All the experiments
were carried out on a dual-core Pentium processor with a clock
frequency of 2.8 GHz, and running Ubuntu 11.04 version of
Linux.

Table II shows the results for some benchmark circuits up
to 6 inputs. The table depicts the value of k, the minimum
gate count GC);, for the original benchmark, number of
gates GC' and time required for Exact SWOP [21] method and
our method. The time T'¢me shown is the total time required
for ordering and synthesis. We have used the Exact synthesis
method provided in RevKit [16] for synthesis after generating
the desired output permutation. The result clearly shows that
the number of gates required is same for both the techniques,
but the time required is less in our method. This is because of
the fact that Exact SWOP searches for the best permutation
among all the (k!) permutations, whereas our method provides
a good permutation using an EA based tool.

Since the Exact synthesis tool was unable to handle specifi-
cations with more than 5 or 6 inputs, for larger specifications
we used another synthesis tool available under RevKit [16]
as the backend synthesis engine (namely, the transformation
based approach [13]). This is a constructive approach that
scans the minterms of the given truth table sequentially, and
goes on adding gates to a partial netlist. This tool gives results
for reasonably larger values of k; however, the results are sub-
optimal. Since the objective of the present experimentation is
not to generate near optimal solutions, but rather to test the
effectiveness of the output ordering created by the EA based
tool, the choice is justified.

Table III shows the results of experimentation on various
reversible benchmark circuits. The table depicts the value of
k, the number of gates g required in the original function
specification as well as the quantum cost ¢ and equivalent
transistor cost t, and those required in the best out of top
three output orderings generated by the proposed tool. The
table also depicts the runtime of the EA based tool to generate
the output ordering. The quantum cost gives an estimate of the
circuit cost in terms of the number of elementary gates [14],
while the transistor cost gives an estimate of the circuit cost
in terms of the number of CMOS transistors [18]. For circuits
with inputs up to 9 from Table III we observe that reductions
of up to 78.86% is observed with an average reduction of
18.52%.

Table IV shows the results on larger randomly generated
reversible circuit specifications. These specifications were gen-
erated synthetically by randomly generating a gate netlist
consisting of 50 to 100 gates, and computing the equivalent
permutations. The results show that reductions of up to 98%
is observed with some of the larger input circuits with an
average reduction of 64.4%. As expected the runtime of the EA
based tool gets doubled with unit increase in number of inputs,
because of a similar increase in the size of the permutations.

TABLE I
SYNTHESIS RESULTS FOR BENCHMARK CIRCUITS

Bench GChinl| Exact SWOP Our Method
k GC | Time GC | Time
(sec) (sec)
4mod5 515 5 7.4 5 0.04
decode24 | 4 | 6 5 0.1 5 0.1
gtd 4| 4 3 <0.1 3 <0.1
at5 413 1 <0.1 1 <0.1
low-high | 4 | 5 4 0.4 4 0.2
3_17 316 5 <0.1 5 0.02
ham3 315 3 0.01 3 < 0.01
graycode6 | 6 | 5 5 13.5 5 0.1
modSmils | 5 | 5 5 1.7 5 0.1
rand0 418 7 26.4 7 15.64
randl 418 7 28.3 7 3.74
rand2 419 8 150.3 8 22.27
rand3 419 9 1895.6 9 231.5
rand4 419 9 569.9 9 26.99

V. CONCLUSION

An evolutionary approach for reversible logic synthesis with
output permutation has been investigated in this paper. The
results demonstrate the fact that, using output permutation
prior to any synthesis process, the number of gates can be
reduced significantly. The main advantage of this method is
that it does not require explicit synthesis of the circuits and
can scale up to larger number of inputs. This work can be
extended in the future to incorporate incompletely specified
functions and other methods of functional representations.
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