
FORMAL VERIFICATION OF LTL FORMULAS FOR SYSTEMC DESIGNS

Daniel Große Rolf Drechsler

Institute of Computer Science
University of Bremen

28359 Bremen, Germany�
grosse, drechsle � @informatik.uni-bremen.de

ABSTRACT
To handle today’s complexity, modern circuits and systems
have to be specified at a high level of abstraction. Recently,
SystemC has been proposed as a language that allows a fast
simulation on a high level of abstraction and an efficient
realization on RTL. To guarantee the correct behavior of a
design, a concise verification methodology has to be devel-
oped.

We present the first formal verification approach for Sys-
temC that allows to prove the correctness of properties spec-
ified in linear temporal logic (LTL). In contrast to simulation-
based techniques, completeness can be ensured. Our proof
engine is based on symbolic manipulation, and a case study
of a scalable bus arbiter shows the efficiency of the ap-
proach.

1. INTRODUCTION

While classical approaches to circuit design make use of
hardware description languages (HDLs), like VHDL or Ver-
ilog, there is a strong interest in C-like description languages
[5]. These languages allow for fast simulation in an early
stage of the design process. Furthermore, hardware/software
co-design can be performed in the same system environ-
ment. One of the most popular languages of this type is
SystemC [7].

To cope with today’s complexity, a concise verification
methodology has to be developed, since more than 70% of
the overall design costs are due to verification. Formal veri-
fication has shown to be a very promising approach [4], and
in equivalence checking these tools have become the state-
of-the-art. First approaches to checking the behavior of a
circuit based on (bounded) model checking [3, 8] have been
reported. But so far, all verification approaches for SystemC
are based on simulation only (see e.g. [6, 2]).

In this paper we present a new approach to reason about
the behavior of SystemC designs based on formally verify-
ing properties specified in linear temporal logic (LTL). The
approach considers synchronous sequential circuits mod-
eled in SystemC at gate level. First, the output functions
and transition functions of the underlying finite state ma-
chine (FSM) are computed. Then a symbolic reachability
analysis of the FSM is carried out. Finally, proving of an
LTL formula is translated to a satisfiability problem using

the transition and output functions and the set of reachable
states. Unbounded LTL formulas can be proved, since the
complete set of reachable states is known. A case study of
a scalable bus arbiter shows the efficiency of the approach.

2. PRELIMINARIES

2.1. Modeling Circuits in SystemC

SystemC is a C++ class library which allows to describe
both software and hardware. Here we focus on a descrip-
tion of hardware based on logic gates and for this define
basic gates, like AND, OR, NOT, and flipflop. By this any
sequential circuit can be modeled. As an example the AND
gate is shown in Figure 1. It can be seen that there is clear
distinction between the interface (first three lines), the func-
tionality (doAnd), and the sensitivity list. There is also room
for user defined methods like end of elaboration(),
which is explained below.

2.2. Reachability Analysis for a SystemC Circuit

For performing the fix-point iteration of image computation
to obtain the set of all reachable states, the output and tran-
sition functions of the underlying circuit are needed. With
the virtual method end of elaboration(), which can
be seen as an extension of the basic gate (see e.g. Figure
1), we are able to identify a gate and its interconnection
to other gates in a SystemC design. As a result of such a
method call, done by the SystemC simulation kernel just
before simulation starts, every instance of a gate is reported
to a data structure in the class Symb. This is realized by
reportAND in the end of elaboration() method.
By starting the simulation the control is passed to Symb
where the BDDs for the output and the transition functions
are built, the transition relation is constructed and finally the
fix-point iteration is carried out. For details of reachability
analysis in SystemC see [1].

3. PROPERTY CHECKING

This section describes how the proof engine for LTL formu-
las described for a SystemC circuit works. For syntax and
semantics of LTL we refer to [6]. The main constructs are

SC MODULE(AndGate) �
sc in<bool> in1;
sc in<bool> in2;
sc out<bool> out;
void doAnd();

SC CTOR(AndGate) �
SC METHOD(doAnd);
sensitive << in1 << in2;�

void end of elaboration() �
symb->reportAND(name(),out,in1,in2);��

;

void AndGate::doAnd() �
out.write(in1.read() && in2.read());�

Figure 1: AND gate

given in Figure 2, i.e. beside the atomic propositions, sev-
eral operators exist to describe events in the next step (X), in
the future (F), or properties that have to hold generally (G).
Some examples of formulas are described in detail in the
case study below. In contrast to standard LTL we also sup-
port time bounds for the temporal operators, i.e. ��� ��� �
	 and� � ��� �
	 . By this, we can also restrict the argumentation to
a limited number of time frames, since this often simplifies
the proof process (see [8]).

In the following we describe the overall flow of our veri-
fication approach. First, assume that an LTL formula � con-
tains only bounded operators, i.e. the upper bound of the
operators F or G are finite. Then � is checked as follows
(see Figure 3):

1. While parsing � the examination window � � ������� � �����
�
of � is determined and a list ����� �"!$#%#�&('() is created,
which contains the corresponding BDD operations to
be performed later in step 3.

2. The circuit is unrolled � ���*� times.

3. Based on ���+�,� !$#%#�&-'�) and the unrolled circuit the
Boolean function �/. is constructed. Checking the sat-
isfiability of � . proves or disproves � .

In step 2 the unrolling of a circuit makes it possible to ob-
serve signal values of the circuit at different points in time.
Unrolling means identifying the current state variables with
the previous next state variables of the circuit. The unrolling
process is illustrated in Figure 4, where 0�1 is the set of pri-
mary inputs, 231 the set of outputs, and 465 the set of states
each at time 7 . All functions are represented by BDDs.

The construction of �/. in step 3 can be achieved by car-
rying out the BDD operations of �8�+� � !$#%#�&('() where atoms
of � are replaced by the corresponding BDD nodes com-
puted in step 2. Now the true support of �9. can only contain
variables of 0*5 � 0�58:9; �,< <,<*� 0�58=/>@? � 4�5 .

// atomic proposition:
LTL& prop(const sc signal<bool>&);

// neXt-operator
LTL& X(ulong m, LTL& f);
LTL& X(LTL& f);

// Generally-operator
LTL& G(ulong m, ulong n, LTL& f);
LTL& G(ulong n, LTL& f);
LTL& G(LTL& f);

// Future-operator
LTL& F(ulong m, ulong n, LTL& f);
LTL& F(ulong n, LTL& f);
LTL& F(LTL& f);

// logical operators
// conjunction:
LTL& operator&(LTL&, LTL&);
// disjunction:
LTL& operator|(LTL&, LTL&);
// implication:
LTL& operator>(LTL&, LTL&);
// negation:
LTL& operator A (LTL&);

Figure 2: Representation of LTL-formulas

class Symb �
...

public:
// call in sc main()
void startSymb() �
...
// reachable states have been computed
// B,CED and F�G*HJILKMG�N are available
// property checking:OQPSRUTWVXOQP$Y�Z3V\[

;
clearList(]U^`_ O+acb9bSdfehg);
parseLTL(i , OQPSRUT , O�P9Y�Z ,]�^j_ O acb9bSdfefg);
//]�^j_ O+acb9bSdfehg and the interval k O PSRUT C O P$YlZ,m
// have been computed
unrollCircuit(B , D , O�P$YlZ);
prove(i);��

;

Figure 3: Pseudo-code of the proof engine in class Symb

In our model we assume that each circuit has an initial
state � n . Therefore, a bounded LTL formula � is considered
to be arguing starting from this initial state. Now the LTL
formula � holds, iff

o`p 0 5 � 0 58:9; � <,< <,� 0 5 =/>"?�qr� .,s6t � n�uwv <
� . is negated because we are interested in assignments of � .

tS

It+1

O

C

t+1

t+1

tS’ S’t+1

t

Ot

C

It I

O

C

t

tmax

tmax

max

S’
maxt −1

Figure 4: Unrolling of a sequential circuit

under which �/. does not hold. If the left side of the equa-
tion is zero (that is the empty state set) the formula holds.
Otherwise the initial state is a counterexample for � .

Now consider an LTL formula of the form
� � , where �

is bounded. Then
� � can be proved like above, but instead

of the conjunction with the initial state, the conjunction is
built with the set of reachable states, i.e.

� � holds, iff

o`p 0�5 � 0�58:9; �,<,< <*� 0*58=/>"? qr� .,s/t �������	�
��� uwv <
The reachable state set is used, because � has to hold in
every reachable state.

Using the equivalence �W� u q � qr� we are also able to
show, whether a formula �W� evaluates to true or not. �W�
holds, iff

ojp 0 5 � 0 58:$; �,< <,< � 0 5 =/>@?�� . s6t �������	�
�����u v <
If this is the case, we have identified at least one reachable
state, for which � holds.

4. CASE STUDY: SCALABLE ARBITER

In this section experimental results are given. The algorithm
has been implemented in C++. All runtimes are given in
CPU seconds on an AMD Athlon 800MHz with 512 MByte
of main memory. As a benchmark for our experiments we
considered a scalable bus arbiter. This circuit is often used
for experiments in formal verification (see e.g. [3, 6]). The� -cell arbiter circuit is defined in SystemC based on basic
gates. In the upper part of Figure 5 a single arbiter cell is
shown, whereas the composition to an � -cell arbiter is given
in the lower part.

For the � -cell arbiter we consider the following three
formulas specified in LTL:

1. Mutual exclusion: Two output signals of the arbiter
can never become � at the same time:

� o ��
���� 1 q

o ����� � t ���	� 1 s"s

2. Liveness: Each request � ��� � is confirmed by an ac-
knowledge

���	� � within ��� � time frames:

W

T

token_out

token_in

req_in

override_in grant_out

override_out grant_in

ack_out

token_in

req_in

override_in grant_out

override_out grant_in

ack_out

0

Cell 0

Cell n−1

token_out

token_in

req_in

override_in grant_out

override_out grant_in

ack_outCell 1

token_out

req_in
ack_out

grant_in

override_in grant_out

override_out

token_out

token_in

Figure 5: The arbiter circuit

� o � ��� ��� �%� n � @� &6; 	 ���	� � s 1

3. Conservativeness: The acknowledge signal
���	� � is

only set, if there was a request � ��� � :
� o ���	� � � � ��� � s

The results are shown in Table 1, 2 and 3, respectively. In
each table, the first column denotes the number of cells of
the arbiter. Then, the number of states is given, followed by
information on time in CPU seconds and space in MByte.
For measuring the time, we distinguish between the con-
struction process and the proof part.

As can be seen, dependent on the number of cells and
the chosen property, runtime and space significantly dif-
fer. But for all cases the properties can be proven for up to
9 cells, while mutual exclusion and conservativeness even
work for up to 200 cells.

1To prove this formula, the environment must guarantee that the
request signals are persistent, i.e. in total we get the complete for-
mula !#"$!#% &(') T d+*-, "/.1032 R54 "$687�9;: R<4>= .1032 R@?@?<4 "A.10(2 R54
B % &(') T d+*-, 7�9;: R@?C? .

Table 1: Results for proving mutual exclusion

cells states time time space
FSM proof inc.

2 8 0.01 0.01 � 0.01
3 24 0.01 0.01 � 0.01
4 64 0.01 0.01 � 0.01
5 160 0.04 0.01 � 0.01
6 384 0.06 0.01 � 0.01
7 896 0.09 0.01 � 0.01
8 2048 0.15 0.01 � 0.01
9 4608 0.13 0.01 � 0.01

10 10240 0.24 0.01 � 0.01
11 22528 0.25 0.07 � 0.01
12 49152 0.26 0.01 � 0.01
20 � < � v�� � v � 1.26 0.25 0.05
50 � < ��� � � v ;�� 38.04 4.85 0.23

100 � < �	� � � v�
 618.49 415.21 0.60
150 � < ����� � v�
 � 3424.10 1199.93 10.71
200 �f< � � � � v � 13751.07 12832.90 5.34

Table 2: Results for proving liveness

cells states time time space
FSM proof inc.

2 8 0.01 0.01 0.01
3 24 0.01 0.01 0.08
4 64 0.02 0.61 0.18
5 160 0.06 7.07 1.12
6 384 0.08 98.46 4.78
7 896 0.09 1600.19 33.52
8 2048 0.14 8360.09 92.84
9 4608 0.19 57276.80 354.06

5. CONCLUSIONS

We presented a formal verification tool for proving formulas
given in linear temporal logic (LTL) reasoning over circuits
specified in SystemC. This is the first verification approach
for SystemC that allows to prove the correctness of proper-
ties, while all previous approaches are based on simulation.
A case study of a scalable arbiter circuit has shown the effi-
ciency of the approach.

It is focus of current work to improve the performance of
the proof engine by incorporating alternative solving tech-
niques, like SAT or ATPG.

6. ACKNOWLEDGMENT

This work was supported in part by DFG grant DR 287/8-1.

Table 3: Results for proving conservativeness

cells states time time space
FSM proof inc.

2 8 0.01 0.01 � 0.01
3 24 0.01 0.01 � 0.01
4 64 0.01 0.01 � 0.01
5 160 0.05 0.01 � 0.01
6 384 0.07 0.01 � 0.01
7 896 0.09 0.01 � 0.01
8 2048 0.13 0.01 � 0.01
9 4608 0.16 0.01 � 0.01

10 10240 0.18 0.01 � 0.01
11 22528 0.26 0.01 � 0.01
12 49152 0.28 0.01 � 0.01
20 � < � v�� � v � 1.30 0.01 � 0.01
50 � < �	� � � v ;�� 33.11 0.01 � 0.01

100 � < ��� � � v
 587.28 0.01 � 0.01
150 � < ����� � v�
 � 3492.05 0.01 � 0.01
200 � < �8� � � v � 13089.62 0.01 � 0.01

7. REFERENCES

[1] R. Drechsler and D. Große. Reachability analysis for
formal verification of SystemC. In Euromicro Sym-
posium on Digital System Design (DSD’2002), pages
337–340, 2002.

[2] F. Ferrandi, M. Rendine, and D. Scuito. Functional veri-
fication for SystemC descriptions using constraint solv-
ing. In Design, Automation and Test in Europe, pages
744–751, 2002.

[3] K.L. McMillan. Symbolic Model Checking. Kluwer
Academic Publisher, 1993.

[4] R. Drechsler (moderator). IEEE design and test
roundtable on formal verification: current use and fu-
ture perspectives. IEEE Design � Test of Comp., pages
105–113, 2002. Sept-Oct.

[5] R. Gupta (moderator). IEEE design and test roundtable
on C++-based design. IEEE Design � Test of Comp.,
pages 115–123, 2001. May-June.

[6] J. Ruf, D. W. Hoffmann, T. Kropf, and W. Rosenstiel.
Simulation-guided property checking based on multi-
valued ar-automata. In Design, Automation and Test in
Europe, pages 742–748, 2001.

[7] Synopsys Inc., CoWare Inc., and Frontier Design Inc.,
http://www.systemc.org. Functional Specification for
SystemC 2.0.

[8] P.F. Williams, A. Biere, E.M. Clarke, and A. Gupta.
Combining decision diagrams and SAT procedures for
efficient symbolic model checking. In Computer Aided
Verification, volume 1855 of LNCS, pages 124–138.
Springer Verlag, 2000.

