Visualization of SystemC Designs

Rolf Drechsler
University of Bremen
28359 Bremen, Germany

Christian Genz
University of Bremen
28359 Bremen, Germany

genz @informatik.uni-bremen.de drechsle @informatik.uni-bremen.de

Abstract— The open source library SystemC aids the composi-
tion of system level designs. The library offers a wide variety
of datatypes and a simulation kernel. Both components help
to describe VLSI designs very close to the RT level or at the
more abstract system level. Since SystemC is based on C++,
it allows the integration of several techniques into the model
which do not contribute to the model itself, e.g. for verification,
system exploration or debugging. But especially for debugging it
is helpful to hide all these additional elements.

This work addresses the problem of SystemC visualization for
debugging backends. Besides displaying a system’s behavior and
its structure, our approach also excludes non-relevant data which
is part of the system description, but does not define its behavior
or its structure.

I. INTRODUCTION

Since Moore’s law is still valid, modern circuits and their
specifications tend to grow in size and complexity. One reason
for this is the increasing number of integrated transistors,
caused by a growing functionality. Another reason is the
growing integration of software implementations in hardware
architectures. It is not surprising that especially embedded
systems as in PDA’s or cell phones benefit from (re)using
large software parts. To handle this complexity, industry and
academia often use a homogeneous model for the development
process. The system level language SystemC supports such
homogeneous system models by offering hardware description
capabilities and an interface to arbitrary software algorithms.

But being embedded into C++, SystemC hardly restricts the
way a system is implemented. SystemC datatypes and their
derivates have a precise meaning for such implementations.
E.g. there is no mechanism to separate an integrated testbench
from the behavior of the model by declaration. As a result the
complexity of a design increases again. Especially in groups
where many developers interact, these designs have to be
understandable to be shared.

In this work! we present a visualization approach for
SystemC, based on the analysis tool from [1]. The implemen-
tation is made up of two tools that interact with each other.
The first one is ViSyC, a statical analysis tool for SystemC. It
computes an Intermediate Representation (IR) of the behavior
and the structure that is free of non-relevant code. This means
that we only pay attention to operations that contribute to
the computation of a value that is propagated to a port. The
second tool named RTLVision is an interactive Graphical User
Interface (GUI) by Concept Eng.. By obtaining an IR from
ViSyC, RTLVision is able to display the respective SystemC
model.

The paper is structured in the following way: Section II
discusses strategies of other approaches as well as their
advantages and drawbacks. Section III gives a short overview

I'This research work was supported in part by the German Federal Ministry
of Education and Research (BMBF) in the Project HERKULES under the
contract number 01M3082.

Gerhard Angst Lothar Linhard
Concept Engineering GmbH Concept Engineering GmbH
79111 Freiburg, Germany 79111 Freiburg, Germany
gerhard @concept.de lothar@concept.de

of SystemC, including its usage and its benefits. Section IV
contains the main contribution of this work. Therefore the
section is subdivided into four parts. The first part of the
section summarizes the architecture of our approach. The
second part introduces the GUI. The following two parts go
into the details of analysis and visualization of ViSyC. Finally,
Section V concludes the paper and gives a perspective on
future work.

II. RELATED WORK

There are not many other approaches that deal with
SystemC visualization. They all use different mechanism for
the analysis, as well as for the visualization. In the following
both components of each approach are used for an evaluation
and a comparison to our work.

One of the first approaches working on SystemC visual-
ization is [2]. Here a modified SystemC kernel is used to
collect hierarchy information from the executed model. Since
each instance that is derived from sc_object is listed in the
SystemC kernel, all modules and their connections are known
after the evaluation phase. In a second step the extracted
hierarchy is transfered to a GUI. The disadvantage of the
work is the incompleteness of the hierarchy and the lack of
behavioral information.

An approach from the University of Luebeck [3] adopted
the basic idea behind [2]. While Grofe et al. modified the
SystemC library directly, the implementation of [3], named
gSysC, is a library on top of SystemC. This library holds
wrapper functions to expand SystemC by a small set of
debugging functions. Via an external GUI, these functions
allow to controll the simulation run. The visualized hierarchy
is a flat one. All modules including their interconnections, are
shown in a single layer. Equivalent to [2] there is no behavior
extracted by this approach.

Complementary to gSysC, SystemCXML [4] is an approach
that does not rely on an introspection technique at runtime. The
extraction of a hierarchy is done via Doxygen. Doxygen parses
the SystemC sources and produces XML tags for all module
declarations. These tags are used to form an IR of the model.
From this IR again a graph description is generated that can
be viewed with free tools, e.g. Graphviz. The approach is only
able to partially extract the structure. It is not aware of any
behavior defined by the processes of the model, and it does
not support its visualization.

Another interesting approach is LusSy [5]. LusSy is a
project that integrates a backend for visualization and a
frontend for analysis of SystemC, i.e. PINAPA [6]. Similar
to SystemCXML the visualization is realized as a graph. But
differing from other presented work, the analysis frontend
PINAPA uses a combination of static analysis and runtime
evaluation. The IR, extracted with PINAPA, is used to generate
automatons that hold the behavior of the parsed model. But

as this automatons consist of states and labeled transitions
to represent the semantic of all processes inside a model,
the structure is neglected. Hence, LusSy is not appropriate
to visualize SystemC models.

Except for LusSy, all approaches listed are unable to obtain
a complete hierarchy from a given SystemC model. They do
not even collect behavioral information. Another disadvan-
tage is the lack of positional information that would allow
to localize structural and behavioral components of the IR.
Without this ability features like crossreferencing cannot be
implemented.

The visualization engines of the listed approaches are rather
simple and have very limited functionality. Even with an anal-
ysis that produces an IR with detailed positional information,
there would be no bidirectional relation between the source
code and the displayed components.

IIT. SYSTEMC

The system description language SystemC? provides hard-
ware constructs, implemented in a C++ class library. The
hardware models specified using SystemC can be compiled
on a large number of supported architectures using a standard
C++ compiler. The compiled executables can be cycle accurate
simulations as well as untimed algorithmic descriptions of the
given design. The executable specifications can be used for
evaluation, debugging and refinement purposes without the
usage of a commercial simulator. Depending on the abstrac-
tion level the simulation speed can be tremendously higher
compared to a functional equivalent HDL model. Because of
its unrestricted C++ conformance each SystemC model can
be combined with other software libraries. This allows system
engineers to take advantage of HW/SW Co-Design and to re-
fine their SoC designs with a high level of flexibility. Another
benefit of SystemC, coming with its C++ conformance, is a
wide range of abstraction levels that can be used to simplify
huge system designs. Complex communication protocols and
control logic can easily be separated from functional parts of
the specification. For this reason SystemC offers techniques
that can raise or lower the level of abstraction. The TLM
library implements such a technique to support SystemC’s
efficient refinement methodology.

SystemC combines features that are typical for an HDL,
like concurrency as it appears in hardware, with software
paradigms, like object orientation. Those features distinguish
SystemC from VHDL, Verilog and SystemVerilog and enable
system description capabilities. SystemC also allows arbitrary
memory access using pointers and dynamic memory allo-
cation. Even real polymorphism and the concept of virtual
functions that binds overloaded class members to function
pointers, is applicable in system descriptions.

IV. TooLS AND IMPLEMENTATION
A. Basic Principles

Because static analysis and the rendering of a SystemC
model to an interactive GUI with multiple layers are tasks with
a challenging complexity, the functionality of the current work
is split into two tools. After ViSyC extracted the IR, the GUI
can display the model. The communication among these tools
is realized with two protocols. One of these protocols holds
the IR and is unidirectional. The other one is a bidirectional

2www.systemc.org

TCP/IP connection. It is suitable for optional control by user
interactions.

,,,,,,,,,,,,,,,,,,,,,,,,,,

IR
IR S RTLVision
>
Command
Fig. 1. Architecture of the approach

As Figure 1 shows, the communication between ViSyC and
RTLVision can be used to catch user commands from a debug-
ger backend that is running a simulation. With this commands
ViSyC can instruct the GUI to switch to specific parts of the
design and to update signal values during execution.

B. RTLVision

RTLVision is a tool from Concept Engineering GmbH? for
the purpose of graphical system exploration. It enables the
designer to navigate through a database interactively.

Helg

Fig. 2. RTLVision

As can be seen in Figure 2 RTLVision owns a set of views
which contain different details of the model to complement
each other. Besides the different views, RTLVision has many
features, among them are:

e crossprobing

o critical path fragment navigation

« module exploration

o RTL operator symbols

A main difference to the visualization in [1] is the usage
of RTL operators, offered by RTLVision. They are used to
directly map expressions given by the behavior of the model,

3www.concept.de

instead of mapping black boxes or complex modules that
implement the corresponding operators.

C. Analysis

The SystemC analysis tackles the problem of extracting the
hierarchy given by a model. C++ does not offer sufficient
reflexion capabilities to support programmers by obtaining
this hierarchy of all objects during execution. But SystemC
implements a technique, called data introspection, to provide
this support. As explained in Section II there are many
restrictions and problems caused by this technique. That is
the reason why an analysis frontend for IR extraction has been
implemented in this work.

As mentioned RTLVision integrates features like crossprob-
ing and RTL operators. In order to support all these features
during visualization a number of requirements has to be
fullfilled by the IR:

1) The complete hierarchy of the model at runtime, ne-
glecting the SystemC library, must be extracted.

2) The complete behavior defined by the processes of the
model must be extracted.

3) The positional information of the extracted content has
to be available and correct.

Especially the third requirement may sound trivial. But the
positional information needed by our visualization backend
does not only consist of lines and filenames. The information
additionally includes byte offsets which are not reproducible
after the expansion of include directives or macro substitutions.

Our analysis frontend consists of a parser that is im-
plemented using PCCTS [7] and an interpreter. The parser
generates a static hierarchy of the given SystemC model.
The hierarchy consists of a symbol table that is linked to an
Abstract Syntax Tree (AST) which is a direct acyclic graph.
While the symbol table represents the structure of user defined
types and functions, the AST describes the behavior of the
program. In a following step, the static hierarchy is used as
an input for the interpreter. An interpretation simulates the
SystemC evaluation phase that instantiates and interconnects
modules, starting at sc_main.

The result of the interpreter run is an IR that holds a
hierarchical description of the memory at runtime. The IR
delivers all object instances, independent of their relation to
SystemC. Thus, interconnected modules and local variables
are stored in the same structure.

D. Visualization

The aim of the visualization phase is to produce an inter-
mediate data object that transfers relevant information of the
model to the GUIL. While SystemC is embedded into C++, the
sources often contain many lines of code that are meaningless
or even confusing to the user. Source code passages where
tracefiles are handled, code that produces debugging output,
stimuli generators or algorithms for time measurement should
not be included in the displayed image of the model. Hence,
any type of code that does not directly belong to the SystemC
model has to be excluded from the visualization output.

The intermediate data object is given by a binary database
that facilitates the GUI to interpret even huge sets of data
(e.g. gate level) very quickly. This database contains a behav-
ioral and the hierarchical description of a structure to represent
the model that is to be displayed. The components that enable
an arbitrary description of the hierarchy are listed below:

o modules: defining behavioral blocks
¢ nets: representing signals and buses
e ports: declaring module interfaces

« flipflops: for storage

There are a lot of other components that are accepted by
the GUI for the description of cuircuits. But in order to reduce
the complexity of a system description to an abstract level,
we only use a subset of the available components for block
oriented structures.

The behavior of a model is specified using modules. These
connect their input and output ports with subordinated modules
and other behavioral elements that are listed in the following:

¢ gates: and, or, Xxor, not, ...

« arithmetical operators: adder, multiplier, divisor, ...

« relational operators: equal to, greater or equal, ...

o RTL blocks: multiplexer, encoder, decoder, ...

The connection among modules can be established by nets.
One net is connected to a number of ports, greater or equal
to two. Not only ports, but also fan-ins and fan-outs of gates,
operators and RTL blocks are interconnected by nets.

Unlike the simulation of a SystemC model the visualization
process does not start with the function sc_main. To make
sure all non-relevant details of the model are neglected in the
output, the generation of the database starts from a virtual
top module. This top module is generated after the analysis
process has finished and builds the outermost layer of the
module hierarchy. More precisely, it includes all instances that
have not been created inside another module. Similar to a
C/C++ scope the top module holds a list of module instances,
arranged accordingly to the order in which they are allocated
during the interpretation phase.

In order to map the required structure to the database, all
these instances are traversed recursively. But the SystemC
instances cannot be directly mapped to behavioral blocks in
the database. Thus the following technique has to be applied
to each single module in the hierarchy:

1) Identify the ports:

All member variables inside the module are checked for
their datatype. In case the type is derived from sc_port
(e.g. sc_in, sc_out or sc_inout) a port is generated
that obtains its direction by the type. The template type
T from sc_in<T> is not needed here.

2) Identify interconnected instances:

Each port inside a valid SystemC program is connected
to a signal or another port. Consequently these con-
nections lead to all adjacent instances of the currently
observed one. If a connected instance is found that has
been identified already, the traversal is stopped.

3) Identify interconnections:

The recursive algorithm from above is started for each
identified port P; within an instance. Once it terminates,
all ports and signals that are assigned to P; are known.
While signals are directly mapped to nets, a port de-
mands an extra net to be created, connecting this port
and P;.

The way the behavior is examined is very similar to the
recursive way the structure is processed. Defining behavior
in SystemC is inherently attached to the choice of a process
type. As all processes are registered in SC_CTOR, the names
of all process functions can be obtained by finding all us-
ages of SC_.METHOD, SC_.THREAD and SC_CTHREAD. When
traversing the AST of such a function block for visualization

1 switch (expr)
2 A
1 if (expr) 3 case 0:
2 then_stmt; 4 else_stmt;
3 else 5 break;
4 else_stmt; 6 default:
7 then_stmt;
8 1}

Fig. 3. Transferring if to switch statement

purpose, we neglect all declarative statements. These have
been stored in a symbol table during analysis already. Thus
only three kinds of statements remain: expression statements,
loop statements and conditional statements.

An expression statement that contains nothing but a con-
catenation of expressions, is the simplest statement to be
visualized. Each operator is mapped directly into the database
while traversing the AST in reverse order. This is done by
observing the operands first. An operator cannot be written to
the database until all its operands are processed. For this reason
the visualization of a module behavior starts at its output ports.
Since the usage of overloaded operators cannot be directly
mapped, they are handled as function calls. Function calls
again are treated like modules since they have the potential
to use controll-flow statements. Conversions are not displayed
since they can change the semantics of operators.

Statements that do affect the control flow of a process
are not as easy to handle as operators. The GUI deals with
data flow elements only which means that iterations and
conditional statements have to be transfered into expressions.
To simplify this process, all if statements are encoded as
switch statements as shown in Figure 3.

The visualization of a switch statement is done in four
phases:

1) All statements that are potentially executed have to be
pure expressions without the use of loops, recursions
or conditions. All these mechanisms are replaced by an
equivalent expression.

2) There has to be a statement for each possible evaluation
of the condition. If a default path is missing, it is
going to be attached. In case the condition is true all
variables that receive no new value are assigned to their
current values in the new default path.

3) Each case statement is visualized recursively.

4) Each variable assignment, in a case statement is con-
nected to a multiplexer. The multiplexer uses the value
of the condition to decide which path is chosen for the
assignment. If there are less assignments for a variable
than possibilities to evaluate for the condition, then all
unhandled cases are linked to the current value of the
variable.

As usually done in Verilog or VHDL, loops are unrolled.
The result of this technique is given by m copies of the
behavior described inside the loop. The value m has to be
static, as it must be known without executing the model. All
copies are tied together by giving their results of variable v
as the initial values of v in the next copy.

Especially the described techniques for visualizing control-
flow statements are analog to the synthesis of HDL specifica-
tions. But they provide the mapping of a system model to a
display before the model can be synthesized (shown in Figure

4). The mapping again helps system designers to evaluate their
models. Since the complete model is visualized and elementary
features like path tracing can be controlled from a backend,
our approach offers a bidirectional intuitive interface to other
development phases like debugging.

B B Fror o B 2
Serar | om | S [oca AT & |

§addert

ane[=—— 8jpdcer2
- &
20D
add_1[D- ElaDD
anb[>— el ot
T a0 ot

opcode D—:E

pen Edtor

_cpuersc.cpp

|

s e B
inattap ol g,

sonething to do

Fig. 4. Wordlevel view

V. CONCLUSION

In this paper we presented an approach for visualization of
complete SystemC designs at different levels of abstraction.
The approach uses the tools ViSyC and RTLVision. The
described tools for analysis and visualization support features
like crossprobing, path fragment navigation and data hiding of
non-relevant details. The approach does not rely on a modified
SystemC library and is not restricted by the data introspection
of SystemC.

Future work includes communication facilities for debug-
ging backends. Also the type conversions are left for future
work. This will support system level developers in testing and
correcting SystemC designs at runtime.

REFERENCES

[1] C. Genz and R. Drechsler, “System exploration of SystemC designs,” in
IEEE Annual Symposium on VLSI, 2006, pp. 335-340.

[2] D. GroBe, R. Drechsler, L. Linhard, and G. Angst, “Efficient automatic
visualization of SystemC designs,” in Forum on Specification and Design
Languages, 2003, pp. 646-657.

[3] C.Eibl, C. Albrecht, and R. Hagenau, “gSysC: A graphical front end for
SystemC,” in European Conference on Modelling and Simulation, 2005,
pp. 257-262.

[4] D. Berner, H. Patel, D. Mathaikutty, J.-P. Talpin, and S. Shukla, “Sys-
temCXML: An extensible SystemC front end using XML,” Virginia
Polytechnic Institute and State University, Tech. Rep. 06, 2005.

[S] M. Moy, E. Maraninchi, and L. Maillet-Contoz, “LusSy: A toolbox for the
analysis of systems-on-a-chip at the transactional level,” in International
Conference on Application of Concurrency to System Design, 2005, pp.
26-35.

[6] M. Moy, F. Maraninchi, and L. Maillet-Contoz, “PINAPA: An extraction
tool for SystemC descriptions of systems-on-a-chip,” in ACM interna-
tional conference on Embedded software, 2005, pp. 317-324.

[7]1 T. Parr, Language Translation using PCCTS and C++: A Reference
Guide. Automata Publishing Company, 1997.

