Using QBF to Increase Accuracy of SAT-based
Debugging
André Siilflow, Gérschwin Fey, and Rolf Drechsler

Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
Email: {suelflow,fey,drechsle } @informatik.uni-bremen.de

Abstract—Debugging significantly slows down the design pro-
cess of complex systems. Only limited tool support is available
and often fixing one problem leads to finding the next one.

Here, we propose an approach that integrates formal ver-
ification with diagnosis. The approach is based on Quantified
Boolean Formulas (QBF) and ensures, that counterexamples of
high quality are returned. Moreover, the diagnosis algorithm only
returns fault candidates that can fix all counterexamples. By this,
the total number of fault candidates decreases and less iterations
between verification and debugging are required.

I. INTRODUCTION

In the design process of complex systems debugging is
perceived as a heavy burden. Verification methods show the
existence of faults by providing traces that produce an error
in terms of faulty values at the outputs. Automation for
verification is available. But the following typically more time
consuming task of debugging, i.e. locating and fixing the fault,
remains manual work with limited tool support.

Methods to partially automate debugging have been pro-
posed in the literature. Historically, explanation of observed
errors [1], [2], [3] has been one idea while automatically
locating potential fault sites, so called fault candidates, in the
design has been another [4], [5].

Location of fault candidates is done by diagnosis algorithms.
In [5] diagnosis based on Boolean Satisfiability (SAT) was
proposed. SAT-based diagnosis returns fault candidates that
fix all counterexamples considered using non-deterministic
replacements. A specific fault model is not required. The
approaches in [6], [7] use Quantified Boolean Formulas (QBF)
to reduce the size of the problem instance for a given set
of counterexamples. Applying automatic correction [8], [9]
to close the loop from verification, to diagnosis, to cor-
rection back to verification can increase the accuracy but
also increases the computational costs. Moreover, automatic
corrections are not guaranteed to fix a bug in the desired way.
The number of iterations until all bugs are fixed depends on
the quality of counterexamples selected to perform the loop.

One major drawback of SAT-based diagnosis is the depen-
dency of the accuracy on the quality of counterexamples. That
is, SAT-based diagnosis determines a set of fault candidates
with respect to the counterexamples only. Using all counterex-
amples for diagnosis is not feasible in practice. Typically, the
counterexamples are chosen randomly and prior to diagno-
sis. Therefore, the quality of counterexamples is unknown,
while the choice significantly influences diagnostic resolution.
Whether all fault candidates can fix all faulty behaviors of an
implementation with respect to the specification is unknown.
The quality of diagnosis is affected and an over-approximation
of fault candidates may be returned.

In [10] a distance metric guides the search for differ-
ent counterexamples. This heuristic does not guarantee to
find counterexamples that strengthen the diagnosis. In [11]
a heuristic approach was proposed to find counterexamples.
That approach is limited by the power of three-valued logic
simulation, i.e. the approach is not exact and unfixable faulty
behavior may remain undetected.

This work was supported in part by the European Union (project DIA-
MOND, FP7-2009-IST-4-248613) and in part by the German Ministry of
Education and Research and Concept Engineering GmbH, Freiburg, Germany
(project Herkules, 01 M 3082)

| 1{i
|m{f

= /

A mBs{ 1 [|3<k

(a) Correction

correct
value
correct
value

(b) Problem instance
Fig. 1. Combinational debugging

Here, we propose a framework to determine fault candidates
that can fix all faulty behavior with respect to a functional
specification provided that non-deterministic corrections are
allowed. We call such fault candidates complete with respect
to a certain length of counterexamples and to a functional
specification which may be exhaustive, like in combinational
equivalence checking, or partial, like in property checking. The
problem is formulated in QBF to decide whether there exists
a new counterexample where all potential repairs at one of
the fault candidates found so far fail to heal the malfunction.
The reduction of fault candidates reduces the number of time
consuming iterations between fixing one bug and finding the
next one. Additionally, counterexamples covering different
faulty behavior are provided to a designer only.

The proposed exact approach is compared to the heuristic
approach of [11] in the experimental section. Both approaches
return high quality results. The new QBF formulation is more
efficient for fault candidates of small cardinality, e.g. for single
faults. However, the heuristic is more effective for hierarchical
debugging and for fault candidates of large cardinality. But the
exact formulation based on QBF still provides qualitatively
different counterexamples.

We use equivalence checking at the gate level to illustrate
the technique. The approach can be generalized along the
lines of previous work to the sequential case [5], property
checking [12], C-programs [13] and RTL debugging [6].

II. PRELIMINARIES
A. Boolean Satisfiability

Given a Boolean expression f in Conjunctive Normal Form
(CNF) the Boolean Satisfiability (SAT) problem is to decide
whether there exists an assignment to the variables such that f
evaluates to one. Implicitly all variables are existentially quan-
tified. A Quantified Boolean Formula (QBF) extends Boolean
SAT by universally quantified variables. The corresponding
decision problem is PSPACE-complete. Effective tools exist
to solve QBF instances corresponding to real world problems.

B. SAT-based Debugging

An approach to debugging using SAT has been presented
in [5]. Given an implementation of a circuit and a set of
m counterexamples, 1.e. input stimuli ({Iy,..., I, }) causing
faulty behaviors compared to a given specification, and the
expected correct output responses {oi,...,0mn}, a SAT in-
stance for debugging is used as shown in Figure 1. For each
counterexample one copy of the circuit is created, the inputs
are constrained to the counterexamples and the outputs to the
respective correct output responses. This is a contradiction,

since the circuit produces erroneous output in all cases.
Therefore correction logic is added for all components, e.g. g
and h. A component C; is replaced as Figure 1(a) shows. The
multiplexor allows to replace the output value F; of C; by
a new value R; when the abnormal predicate A; is asserted.
The abnormal predicate for component C; is the same with
respect to all counterexamples. Figure 1(b) shows the overall
structure. The number of asserted abnormal predicates ABs
is limited to k, i.e. k¥ components may be changed to retrieve
the correct output response.

The debugging algorithm starts with £ = 1 and iteratively
increases k until a satisfying solution is found. This yields
a fault candidate F'C' which is a tuple of k£ components.
Typically, not only the real fault site is returned, but several
additional fault candidates. Finding the real fault among these
remains to the designer.

The model-free diagnosis algorithm does not require a fault
model. As a drawback fault masking may not be recognized.
This is a known problem but not addressed in this work. Here
we concentrate on finding high quality counterexamples.

C. Heuristic Approach

The approach of [11] uses three-valued logic to validate
fault candidates. For X-values are injected at the correction
logic, i.e. R, = X. The X-values serve as ‘“tokens” and
mark paths that are already fixable. If an X-value is observed
at an output, the approach assumes that modifying the fault
candidate can create any value at the primary output. This
over-estimation may classify faulty behavior as being fixed
while a more powerful reasoning engine may detect that the
fix does not propagate to the outputs.

A benefit of the heuristic is that an explicit enumeration
of fault candidates is not required during the completeness
check. The fault candidates are implicitly enumerated by the
SAT solver. Learned information is kept and may speed-up
the verification for complex circuit structures significantly.
Especially for multiple faults an explicit enumeration can
be quite expensive, because the number of fault candidates
increases exponentially with the cardinality.

Without knowing the best result, the quality of the results
produced by the heuristic approach cannot be evaluated. In the
following we present an exact approach based on QBF.

III. EXACT APPROACH

In this section an exact algorithm is proposed to resolve
the completeness limitation of SAT-based debugging. The
algorithm ensures to compute only fault candidates that can
fix all faulty behaviors of an implementation with respect
to the specification. We call such fault candidates complete.
Note, that a fault candidate is complete with respect to a
given specification, to a certain length of counterexamples, and
to a non-deterministic replacement. The approach combines
diagnosis and formal verification in one debugging flow which
places it between diagnosis (location of fault candidates) and
correction (returning functionally realizable repairs).

SAT-based debugging is applied to compute an initial set of
fault candidates from an initial set of counterexamples. Now,
each fault candidate is separately checked for completeness
using a QBF formulation. If one of the fault candidates is
determined to be incomplete an additional counterexample
is generated. The additional counterexample covers behavior
that is not fixable by the fault candidate. Afterwards the
new counterexample strengthens the diagnostic resolution by
considering it during debugging. The new fault candidates are
determined with SAT-based debugging and the completeness
is checked again. The process stops if all fault candidates are
verified to be complete.

Thus, the proposed debugging flow requires a formal model
to verify the implementation and a specification. In this

(Specification (S) N

AN J/

4 Implementation (F) N

'

I |
J1Y Ri,...sRx : SH=F(I,R)
Fig. 2. QBF model

work we assume the specification given as a golden netlist
for equivalence checking or a property for Bounded Model
Checking (BMC) [14]. Equivalence checking is focus of this
work, but the extension to BMC is straightforward.

In the following the details of the completeness check are
presented. Section III-A introduces the formal model, followed
by an introduction of the full algorithm in Section III-B.

A. Completeness Check

Given a faulty implementation, a set of initial counterex-
amples, e.g. from simulation or formal verification, SAT-
based debugging provides a set of p fault candidates of
cardinality k, i.e. each fault FC' candidate contains k com-
ponents {C1,---,Ci}. The completeness check verifies that
non-deterministic behavior of a fault candidate F'C fulfills the
specification.

The model for completeness checking of fault candidate
FC is shown in Figure 2. Given a specification §& and
an implementation JF, let I denote the primary inputs, and
R = (Ry,...,Ry) the vector of correction values injected into
the implementation at the components of the current fault can-
didate F'C' (cf. Figure 1(a)). The implementation is augmented
with correction logic for the k£ components, the correction
logic is activated. Then, the output of the specification depends
on I, while the output of the implementation F with correction
logic inserted depends on I and R. A miter circuit is created
from the augmented implementation and specification. Then
the QBF instance to find a new counterexample is given by

AIVR : S(I) # F(I,R)

The universal quantification determines whether none of the
injected values R, - - -,) may correct at least one counterex-
ample [. In this case F'C is removed from consideration and
a counterexample with uncovered faulty behavior is provided.

If the instance is unsatisfiable, i.e. FC is complete and
repairs all faulty behavior, the next fault candidate is checked.
Otherwise, i.e. the instance is satisfiable, a counterexample
is extracted, the verification of fault candidates stops and the
additional counterexample is included in the set of counterex-
amples. Afterwards, all counterexamples are given to SAT-
based debugging to provide an updated set of fault candidates.
The process iterates.

The process stops, if the completeness of all fault candidates
is proved. An exact set of fault candidates is provided and a
designer can repair the implementation manually or automat-
ically with e.g. [9].

Note that no costly universal quantification of primary
inputs is required, but only a few internal signals of the circuit
are universally quantified. Due to the iterative approach the
technique still considers all faulty behavior.

Example 1: An example is shown in Figure 3, where the
AND-gate G3 in the implementation should be an OR-gate.
Debugging an initial counterexample returns the fault candi-
dates G2 and G3 of cardinality k = 1. First, the completeness

Specification (S) Specification (S)

) g) 0, 1
J D)
&
Implementation (F) J
0
B
Ep

Unsatisfiable! 3T \/ Rg;: SI)=F(R)

(a) Checking G3
Fig. 3.

Satisfiable! 3 1V Rg,: S(D==F(LR)

(b) Checking G2
Example 1

of G3 (Figure 3(a)) is checked. Because (G3 drives the single
primary output, all faulty behaviors are fixable. Therefore, the
instance is unsatisfiable and G3 is found to be complete.

Now, the completeness of G2 is checked (Figure 3(b)). G1
drives one input of gate G3 in the circuit. Thus, an output
value of G1 = 0 implies an output value of G3 = 0. A
counterexample is determined that is not fixable for all injected
values at G2. G2 can be removed from consideration, because
it cannot fix all faulty behaviors.

Possible outcomes are a reduction of fault candidates, high
quality counterexamples, and the minimal cardinality k& to fix
all faulty behavior. For example, the cardinality of £ = 1
may be proved too small in case of multiple faults. That is,
if no complete fault candidate of cardinality & = 1 exists,
the algorithm provides new counterexamples until all faulty
behaviors are covered. The completeness check still ensures
the determination of fault candidates of minimal cardinality.

B. Algorithm

Figure 4 shows the algorithm to determine an exact set of
fault candidates. The parameters are a faulty circuit (F) and
the specification to be fulfilled (S) (Line 1).

In a first step, variables are initialized: the counter for the
number of counterexamples (Id), the cardinality (k) and the
CNF to represent the debugging instance (cnf) (Line 2-4).

Now, an initial counterexample is created (Line 6). Any
method can be used to obtain the counterexample, e.g. methods
based on simulation or formal verification. In our implemen-
tation we are using equivalence checking using SAT.

While unfixable faulty behavior remains, the iteration of
debugging and completeness check continues (Line 7-21).

Debugging starts with adding a debug instance for coun-
terexample /d and all abnormal predicates (A Bs) are returned
(Line 8). That is, for each new counterexample the CNF
for debugging is extended by a new debugging instance (see
Section II-B). Thus, the old counterexamples are kept for
further diagnosis to avoid pruning of fault candidates.

In a next step, the cardinality constraint is applied and
forces exactly k£ abnormal predicates to be one (Line 11). The
instance is given to a SAT solver. If the instance is satisfiable
the completeness of fault candidates is verified (Line 12-15).
If one of the fault candidates is incomplete, a counterexample
is returned and strengthens the diagnosis in the next iteration
(Line 13-14). If the limitation to k is not sufficient to explain
the faulty behavior, i.e. the SAT instance is unsatisfiable, the
current cardinality constraint is removed, k is incremented by
one and debugging iterates while the maximum cardinality has
not been reached. Finally, Id is incremented to consider the
next counterexample (Line 20).

The completeness check using QBF is presented in Figure 5.
The inputs are the CNF for debugging (cnf), a list of all
abnormal predicates (A Bs), the faulty implementation (F) and
the specification (S). First, the counterexample is initialized
empty (Line 2). Afterwards, it is iterated over all fault can-
didates and the completeness check is applied (Line 3-12).
The current fault candidate (F'C') of cardinality k is extracted
in Line 4. Afterwards the correction logic is injected for

function debugging (F.S)

Id = 0

kE=1;

enf = 0;

cex = createlnitialCounterexample (F,S);

while (cex != NULL) {
ABs = c¢nf.addDebuglnstance (F ,cex,Id);

do {
enf.insertLimitation (|[ABs| =k);
if (cnf.solve () == SAT) {

cex = checkFCs(enf,ABs,F,S);

DO = b bt b e
SO AN NEWN— OO ~JRN A W —

break ;
enf.removeLimitation (|ABs| =k);
kE=k+ 1;
} while (k < |ABs));
Id = Id + 1;
21
22 | end function;
Fig. 4. Main algorithm
1 | function checkFCs (cnf,ABs,F.,S)
2 | cex = NULL;
3 |do {
4 FC = {R; | cnf.assignment(A;) ==
A; € ABs}
5 //QBF check
6 qbf = createQBFInstance (

AIVRy, -, Ry : S(I) # F(I,R));

if (gbf.solve () == SAT) {
cex = qbf.extractCounterexample () ;
break ;

7

8

9

10 }

11 cnf . addBlockingClause (FC) ;
12 |} while (cnf.solve () == SAT);
13 | enf.removeBlockingClauses () ;

14 | return cezx;

15 | end function;

Fig. 5.

Checking completeness of fault candidates

FC, a miter circuit is created from the augmented implemen-
tation and specification and the primary inputs Ry, ---, Ry
are universally quantified (Line 6). If the QBF instance is
satisfiable, i.e. F'C' is incomplete, a counterexample is provided
and completeness check stops (Line 7-10). Otherwise, F'C is
blocked and the next counterexample is extracted (Line 11—
12). After verifying the fault candidates all blocking clauses
are removed from the debugging instance (Line 13). The
algorithm returns a new counterexample or a NULL reference
to show that no additional counterexample has been found
(Line 14).

IV. EXPERIMENTAL RESULTS

The proposed debugging flow was evaluated on combina-
tional and sequential circuits of the LGsynth93 and ITC-99
benchmark suites. The faults are injected randomly by replac-
ing gates, e.g. an AND gate by a NAND. Gates are considered
as components. For bounded sequential equivalence checking,
the circuits were unrolled for five time frames.

All experiments are carried out on an AMD Athlon(tm)
64 X2 Dual Core processor (3 GHz, 4 GB main memory)
running Linux. Quantor [15] (version 3.0) with PicoSAT [16]
(version 632) as underlying engine was selected as QBF solver.
ZChaff [17] with incremental SAT extension [18] was used
for debugging, for the exact approach as well as for the
heuristic approach. Run time was measured in CPU seconds,
the memory consumption of the SAT solver in MB. T.0. and
M.O. denote a time out of 24 hours and a memory out of 4
GB, respectively. The best results are marked bold.

The efficiency of both approaches is compared in Table I.
Single faults are considered at first. The table shows the num-
ber of gates (#G), the computed total number of counterexam-
ples (#C) and the finally determined fault candidates (#FC).

TABLE I
SINGLE FAULTS

TABLE II
MULTIPLE FAULTS

Heuristic [T1] Proposed Exact Heuristic [1T1] Proposed Exact
Circuit #G|[#C|#FC| Time|Mem.|[#C|#FC| Time|Mem. Circuit #G‘ #C|k|#FC| Time|Mem. || #C |k |#FC| Time| Mem.
comb. comb.
apexd | 3,938][2[6] 297.33] 184 3] 6] 53.99 26 apex5 | 3,938 3[3] > 30] 3,385.10] 495]] 3[3] > 30[6,620.67] 270
c7552 | 4,674| 1 6| 315.60| 151| 4| 4| 52.06 35 7552 | 4,674| 213 - T.O.|2,122|| 14| 3| > 30(11,383.40| 381
cordic | 2,938|| 2| 14| 87.08| 118|| 3| 14| 27.08 20 cordic | 2,938|| 6|2| >30(39,241.70| 755|| 4[2| > 30| 716.36 50
dalu | 2,883|| 2| 16| 129.99| 118|| 3| 16| 18.43 17 dalu | 2,883|| 5|3| >30| 7,114.22| 368|| 6[3| > 30| 363.85| 171
des 3,942|| 3| 16| 188.77| 204|| 3| 8|138.54 69 des 3,942|| 2(3 9| 388.77| 237|| 4|3 9| 1,482.48 96
i10 3,294\ 7| 11| 767.38| 368|| 7| 11[139.80 52 i10 3,294\ 4(3| > 30| 3,447.76| 495|| 5|3| > 30| 1,724.94| 223
misex3| 6,249|| 2| 11[1,430.64| 430|| 2| 11[126.92 38 misex3| 6,249|| 3|3 - T.O.| 727|| 7|3| > 30(12,779.20| 499
pair | 2,848| 1 8 37.78 60|| 2| 6| 11.22 18 pair | 2,848| 4|3| >30| 551.89| 235|| 7|3| >30| 979.08 68
seq | 4776| 1| 4| 157.87| 151|| 2| 4| 3245 37 seq | 4,776|| 6|3 - T.O.| 533|| 6|3| >30| 1,599.35| 526
seq. seq.
b04 82T 1T 13 22.91 66[[3] 5[627.92] 650 b04 821 372 20 4535 152]] 1]2 - - M.O.
b05 1,198 1 2 7.84 95| 1 2| 1.34 19 b05 1,198 1|2 4 13.95 95| 1|2 4 4.69 35
b08 223 1 5 1.00 13]] 1 50 0.28 4 b08 223|| 2|2 5 1.81 25| 2(2 5 0.49 4
b10 260 2| 5 2.27 25| 3| 4] 1.28 22 b10 260 3|2 28 7.07 34|| 3(2 10 7.48| 108
bl12 1,297|| 1 5 12.22| 103} 1 50 3.27 23 bl12 1,297|| 1|4| > 30| 2,301.86| 467| 1|3 - -| M.O.
bl5 |10,513]| 1 5(2,871.78| 838]|| 1 5(134.92| 162 bl5 |10,513|| 5|2 9| 2,977.43| 841| 1|2 - -| M.O.

Required run time and memory consumption are presented in
column 7ime and Mem., respectively.

For combinational benchmarks, the QBF approach clearly
outperforms the heuristic approach in all cases. The accuracy,
i.e. the number of finally computed fault candidates, is similar.
Only for three benchmarks, i.e. ¢7552, des and pair, the exact
approach further increases the accuracy.

Completeness of fault candidates in sequential circuits is
harder to determine. Five Boolean variables are universally
quantified per component, because each time frame requires
a new variable. The resource usage in terms of run time and
memory consumption for QBF solving is affected. Additional
counterexamples for b04, obtained by the proposed exact
algorithm, reduce the number of fault candidates from 13 to
5. However, additional resources are required.

Experimental results on multiple fault diagnosis are pre-
sented in Table II. Due to the exponential growth of poten-
tial fault candidates, a maximum of 30 fault candidates are
extracted only. For both approaches, the run time increases
drastically.

For combinational circuits, the exact approach often handles
the circuits very efficiently. However, not all fault candidates
are proved to be complete with the exact approach. Often
more than 30 fault candidates are contained and the analysis
is performed partially only. Counterexamples requiring larger
cardinalities may be missed.

The heuristic implicitly enumerates all fault candidates
within the SAT solver. But performing a complete check with
respect to all possible scenarios and all fault candidates causes
overhead. For the benchmarks ¢7552, misex3 and seq the time
out of 24 hours has been reached.

Multiple fault diagnosis for sequential circuits shows the
limitation of the exact approach. While increasing the number
of universally quantified variables, the overhead significantly
increases for a QBF solver. Often memory outs occurred
while checking completeness of fault candidates. The heuristic
still provides results within moderate run time. For example,
the minimal cardinality for b/2 is determined to be 4 by
the heuristic, but the exact approach computes a minimal
cardinality of 3, only.

This observation has been confirmed by experiments on
hierarchical designs from OpenCores [19] available in the
IWLS05 benchmark suite. Single faults are considered and the
circuits are unrolled for five time frames. For the hierarchical
benchmarks the activation of one component controls the
activation of the correction logic on over 1000 gates. In all
cases, the exact approach was not applicable and exceeds
the memory limitation. The heuristic is more powerful and
provides results for all benchmarks within a moderate run time.

In summary, the proposed approach based on QBF creates
high quality counterexamples covering any erroneous behav-
ior. If the exact algorithm exceeds the given resources, the
heuristic of [11] still provides a very good set of counterexam-
ples. The automatically retrieved high quality counterexamples
identify all aspects of faulty behavior and thereby reduce the
time required for debugging.

REFERENCES

A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Transactions on Software Engineering, vol. 28, no. 2, pp.
183-200, 2002.
A. Groce, D. Kroening, and F. Lerda, “Understanding counterexamples
with explain,” in Computer Aided Verification, ser. LNCS, R. Alur and
D. A. Peled, Eds., no. 3114, July 2004, pp. 453—456.
E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in Tools and Algorithms for the Construction and Analysis
of S}stems ser Lecture Notes in Computer Science, vol. 2988. Springer,
P-
R Rellpter A theory of dia; gnosw from first principles,” Artificial
Intelltgence vol. 32, pp. 57-9
A. Smith, A. Venerls M. F. Ali, dndAV1glas “Fault diagnosis and logic
debugging using boolean satisﬁability,” IEEE Trans. on CAD, vol. 24,
no. 10, pp. 1606-1621, 2005.
M. F. Ali, S. Safarpour, A. Veneris, M. S. Abadir, and R. Drechsler,
“Post-verification debugging of hierarchical designs,” in Int’l Conf. on
CAD, 2005, pp. 871-876.
H. Mangassarian, A. Veneris, S. Safarpour, M. Benedetti, and D. Smith,
“A performance-driven QBF-based iterative loglc array representation
with apphcatlons to verification, debug and test,” in Int’l Conf. on CAD,
2007, pp. 2
S. Staber and R B]oem “Fault localization and correction with QBF,”
in International Conference on Theory and Applications of Satisfiability
Testing, ser. LNCS, no. 4501, 2007, pp. 355 f
K.-H. Chang, 1. Markov and V. Bertacco “lemg design errors with
counterexamples and resynthesis,” IEEE Trans. on CAD, vol. 27, no. 1,
pp. 184-188, 2008.
G. Fey and R. Drechsler, “Finding good counter-examples to aid design
verification,” in ACM & IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE), 2003, pp. 51-52.
A. Sulﬂow G. Fey, C. Braunstein, U. Kiihne, dnd R. Drechsler, “In-
creasing the accuracy of SAT- based debugglng in Design, Automation
and Test in Europe, 2009, Fp 1326-13
G. Fey, S. Staber, R. Bloem, and R Drechsler “Automatic fault
localization for property checkmg, IEEE Trans. on CAD, vol. 27, no. 6,
pp. 1138-1149, 2008.
A. Griesmayer, S Staber, and R. Bloem, “Automated fault localization
for ¢ 5programs > Electron. Notes Theor. Comput. Sci., vol. 174, no. 4,
pp. 95-111, 2007.
M. Nguyen, M. Thalmaier, M. Wedler, J. Bormann, D. Stoffel, and
W. Kunz, “Unbounded protocol compllance verification using interval
propert; checkin w1th invariants,” IEEE Trans. on CAD, vol. 27, no. 11,
pp- 2068 2082
A. Biere, Resolve and expand,” in Intl. Conf. on Theory and Appli-
ggtiogs of Satisfiability Testing (SAT), ser. LNCS, vol. 3542, 2005, pp.
—70.
, “PicoSAT essentials,” in Journal on Satisfiability, Boolean Mod-
eling and Computation, vol. 4, 2008, pp. 75-97.
M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an efficient SAT solver,” in Design Automation Conf., 2001,
pp. 530-535.
J. Whittemore, J. Kim, and K. Sakallah, “SATIRE: A new incremental
satisfiability engine,” in Design Automation Conf., 2001, pp. 542-545.
OpenCores, http://www.opencores.org.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]
[19]

