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Abstract—Resistive random access memory (RRAM) is a non-
volatile memory technology which allows to perform computa-
tions in both digital and analog circuits. Multiply-Accumulate
(MAC) is an analog column-based operation enabled on RRAM
crossbars providing high efficiency to perform complex matrix
vector multiplications, which is attractive for neural network
accelerators. However, the analog computational capability of
RRAM devices has not been yet utilized for logic synthesis.

In this paper, we show how a synthesis approach based on
binary decision diagrams (BDD) can efficiently exploit efficient
MAC computation enabled by RRAM. The proposed approach
highly benefits from a symmetric structure of Boolean functions.
Therefore, a design methodology is presented which optimizes
and approximates BDDs under provided error thresholds to
maximize efficiency of synthesized logic circuits under negligible
loss of accuracy. In the experiments, we show that our proposed
synthesis approach allows for an average reduction of up to 47 %
in the number of operations and up to 66% in the number
of required devices compared to state-of-the art methods, even
without approximation. Using approximation, we can further
reduce the number of required devices.

I. INTRODUCTION

Resistive Random Access Memory (RRAM) is a non-volatile
memory technology. Its low power consumption and inherent
computing capabilities make RRAM a promising candidate as
a basis for future computer architectures. However, in order
to utilize the full potential of RRAM based computations,
efficient synthesis approaches are needed. Graph-based repre-
sentations provide a state-of-the art basis for logic synthesis.
Structures such as Binary Decision Diagrams (BDDs), And-
Inverter Graphs (AlGs) and Majority-Inverter Graphs (MIGs)
have been successfully utilized. Thus, recent research focuses
on synthesis approaches for BDDs [1], [2], AIGs [3] and
MIGs [4]. Conventional approaches for BDD-based synthe-
sis try to map the BDD nodes to the implication (IMP)
or majority (MAJ) function, which can be implemented in
RRAM efficiently (c.f. [2]). Besides digital computation,
RRAM also allows for efficient computation of Multiply-
Accumulate (MAC) which is the basis for RRAM-based neural
network implementations (e.g. [5], [6]).

In this paper, we propose a novel BDD-based synthesis
approach for RRAM. This approach utilizes the efficient MAC
computation capabilities of RRAM in order to compute BDD
nodes. BDD nodes can be represented by multiplexers, which
can be directly mapped to MAC operations. Since a RRAM
array can compute multiple MAC operations in parallel, it
allows for the computation of multiple BDD nodes within a
single cycle. In order to reduce the number of nodes in the
respective BDD and thus the number of computational cycles
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in a RRAM-based implementation, we use an Evolutionary
Algorithm (EA) to find a variable ordering, which minimizes
the average number of nodes per level. To further boost the
efficiency of the proposed approach, we combine the EA
with symmetric BDD approximation, which further reduces
the number of required devices. In the experiments we show
that our approach can outperform state-of-the art BDD-based
synthesis methods.

II. BACKGROUND

A. Basic Concepts

1) Resistive RAM: Resistive Random Access Mem-
ory (RRAM) is a nano-scale, two-terminal, non-volatile mem-
ristive device [7]. If the voltage V., is applied, the device is
put into a high resistive state. Likewise, if the voltage Vi .cset
is applied, the state switches to a low resistive state. RRAM
crossbars have successfully been utilized for both, digital and
analog computing (e.g. [3], [8]).

2) Binary Decision Diagrams: Reduced Order Binary De-
cision Diagrams (BDDs) are a graph-based, canonical repre-
sentation of Boolean functions, consisting of multiple nodes.
The nodes are ordered on levels, each level being associated
with a Boolean input of the function. Each node f in a BDD
has two child nodes fy and f;,. If the level of f is associated
with the variable x;, then f implements the function

f=x fu+z; fL )]

B. RRAM MAC Computation

For applications such as neural networks and neuromorphic
computing which perform a lot of matrix multiplications, an
efficient implementation of the MAC operation is needed.
RRAM provides the basis for such an efficient implementation,
by allowing to compute multiple MAC operations in parallel.

Consider the RRAM crossbar depicted in Fig. 1. The
RRAM crossbar in this figure computes I = Ax, where

—(; CNT T
I="(i1,...,im)", x=(2x1,...,2,)" and
1.1 ai.n
A =
am,1 Qm,n

The resistive values of the RRAM devices are set to aj_,i.

Applying the voltages z1,...,x, to the corresponding rows
computes i; = >_r_, a; %) Thus, after writing the resistive
values a;,i to the corresponding devices, m MAC operations
are computed in parallel within a single cycle, each consisting
of n multiplications.
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Fig. 1. MAC computation with RRAM

C. Symmetric BDD Approximation

Approximate Computing is a design paradigm, which trades
off accuracy for complexity. Many approaches for approximate
HW synthesis exist (e.g. [9], [10], [11], [12], [13]). The authors
of [14] propose an approach which enhances the symmetry
of a given BDD while introducing errors to the outputs. The
error is measured in terms of the bit threshold B;, which is a
specialization of the error rate. The B; counts the number of
output bits, which differ in the truth table of the approximated
function from that of the original function. The presented
algorithm computes the symmetric approximation and the
corresponding B; of a given BDD in polynomial time. The
number of bit flips needed in order to make a function fully
symmetric with respect to the number of input variables is
computed in the process. Thus, the B; is computed implicitly
while performing the symmetrization. Increasing the symmetry
reduces the number of nodes for most benchmarks presented
in [14]. If a BDD has more than one output, the algorithm
uses a greedy approach in order to make the outputs fully
symmetric while ensuring that the error bound is met. Partial
symmetry (i.e., with respect to some of the input variables)
is observed not to have a positive impact on the BDD size in
general.

D. Related Work

In [1], the authors propose an implication based synthesis
approach which maps BDD nodes to RRAM devices. Each
BDD node is implemented by five RRAM devices and requires
six steps for computation. In contrast, our approach requires
only two RRAM devices per BDD node, needs only two steps
for initialization of the devices and two write cycles per node.

The authors of [2] present a comprehensive approach for
RRAM-based circuitry. The appraoches allow for AIGs, MIGs
and BDDs as basic circuit representation. The authors use
an EA for the optimization of the BDD size, by finding
an optimal variable ordering. Besides the implication based
approach of [1], the authors also use a majority based approach
for synthesis. This approach needs six devices, while only
needing five steps for computation. While we use an EA
for the optimization of the BDD, we further use symmetric
approximation. In addition, we use a novel synthesis approach
to implement BDD nodes, which only needs two devices and
less cycles for computation.
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Fig. 2. BDD level computation on RRAM crossbar using multiply- accumu-
late (MAC) operation.
III. APPROXIMATE BDD-BASED SYNTHESIS
FOR RRAM CROSSBAR

We propose an approach for logic synthesis on regular
RRAM crossbars which uses BDDs for efficient representation
of arbitrary Boolean functions. The proposed approach partic-
ularly benefits from efficient realization of logic primitives,
i.e., multiplexers in case of BDDs, using the MAC operation
executed in RRAM crossbar columns. This section explains
the procedure to compute a BDD on RRAM crossbar and dis-
cusses the cost functions and employed optimization schemes
to tackle them.

To compute a BDD on a RRAM crossbar, every node has
to be realized as a 2x1 multiplexer (mux) designating Boolean
relation 5-x+s-y, where s is the select line and = and y are the
two inputs. For BDD implementation, all multiplexers realiz-
ing nodes in the i;;, BDD level use an identical input variable
of the target function as select line. In a BDD representing
a function with N input variables using an initial ascending
variable ordering, ie., g < 1 < -+ < m(v_1), level ¢
corresponds to input variable x;. Using an arbitrary variable
ordering, a BDD level of index ¢ can correspond to any input
variable with a different index 7, while j € 0,..., N — 1.

Assume the BDD level shown in Fig. 2(a). Level ¢ including
n nodes is eligible for computation when the low and high
child nodes, i.e, fi,, fi,,1 < ¢ < n are previously computed.
In this case, each node can be computed by a single MAC
operation while the low and high child nodes are stored in
two successive rows within the same column as shown in
Fig. 2(b). The output of MAC operation at each column under
assumption that the rest of RRAM devices are under zero
voltage and ideally do not pass any electrical current is equal
to Z; - fi, +x; - fi,, representing the value of node <.

Using the MAC operation as explained above, a BDD can
be computed on a RRAM crossbar starting from the bottom of
the graph, i.e., 0 and 1 terminals. To compute each level, first
the low and high child nodes have to be stored in the first and



second row of the crossbar, respectively. Assuming that one
word with a maximum length of r can be written into a row
at each cycle, for a BDD level with a size of n, i.e., number
of nodes, it takes 2 (%1 write cycles to store the child node
values on two crossbar rows. For example, for a level with 18
nodes while using a write register with 16 bits it takes 4 write
cycles to have the level inputs ready on the RRAM, as both
low and high child nodes’ values exceed the register size.

When the inputs of the BDD level are stored as shown in
Fig. 2(b), the MAC operation can be carried out by applying
the input variable corresponding to the level being computed.
After computation, the currents of the columns are fed into
analog to digital converters (ADC) and then written into the
crossbar in resistance form in order to be used as the inputs
of the next level. This procedure continues until all levels are
computed.

The number of writes to the memory in the approach
presented above depends on BDD level sizes, the write register
length, and nonconsecutive fanouts/BDD node outputs which
target levels not immediately after their origin level. Fig. 3(a)
shows a BDD based on initial ordering which has a noncon-
secutive fanout indicated in red targeting the second level,
while originating from level four. Since the presented synthesis
procedure uses the outputs of the nodes in the very next level
without permanent copies, such fanouts have to be copied to
be used at the fanout targets. The copy devices can be located
nearby node devices in the remaining idle columns as shown
in Fig. 3(b). In this case, the total number of write cycles
required to compute a BDD on RRAM with our proposed
approach is equal to

ny i
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where n; is the level size, r is the length of the write register,
and f; in the number of nonconsecutive fanouts in the entire
graph.

The devices for node computations are reused for the next
level and therefore their total number depends on the maxi-
mum level size. However, the copy devices for nonconsecutive
fanouts are not reused during implementation, so they are
summed up. Accordingly, the total number of RRAM devices
required is as follows,

R= (max[2] 2+ 3 [£]) 0

An optimization approach has been developed which targets
the number of write cycles and RRAM devices needed by
the proposed synthesis approach which are defined above.
For this purpose, we use a prioritized-e-preferred EA [15]
for variable ordering which has been efficiently applied to
BDDs. We consider the latency a more important criterion
and give a higher priority to it compared to the number of
devices representing area.

As discussed before, both of the cost functions representing
latency and area of the resulting implementations depend
on the level sizes and number of nonconsecutive fanouts
denoted by n; and f;, respectively. Indeed, a BDD with smaller
levels and less nonconsecutive fanouts can be computed more
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Fig. 3. (a) Example BDD with a nonconsecutive fanout indicated in red. (b)
Storing nodes and nonconsecutive fanout values in RRAM crossbar.
efficiently on RRAM crossbar, requiring smaller number of
write cycles and devices. Therefore, maximum value of n;
over all BDD levels as well as f; have been considered as
optimization criteria in a third priority level.

In order to increase efficiency, we also propose an approx-
imation approach besides optimization which lowers the cost
function further at a cost of negligible inaccuracy. We use
the approximation technique proposed in [14] which aims to
make BDDs as symmetric as possible by flipping some output
bits under an error rate of 5%. Symmetrization is particularly
beneficial for our proposed synthesis approach as it is known
that BDDs representing totally symmetric functions grow in
each level at most by one node [16]. Therefore, symmetrization
keeps the level sizes close to each other and avoids extra costs
imposed by levels extremely larger than others.

As the error threshold of 5% does not allow to make
all BDDs fully symmetric, our proposed approach finds the
highest symmetries possible. In this condition, some outputs
of the the approximated function are symmetric with respect
to the inputs but not all of them. Size of BDDs representing
fully symmetric functions do not depend on ordering, while for
partially symmetric functions different ordering vectors result
in different costs. Therefore, in case of partial symmetrization
we perform variable ordering by the EA to lower the costs
further.

It should be noted that the required RRAM crossbar for the
proposed approach needs a minimum number of rows equal
to the sum of the largest level size of the target BDD and
fanout count. The required dimensions can be smaller in case
of using more than a single memory bank. Other hardware
cost includes a light control unit, read and write circuitries, as
well as analog-to-digital/digital-to-analog converters similarly
to what needed by RRAM-based dot-product engines used
in NN-accelerators. This makes it cheap for our proposed
approach to co-exist on such systems without extra hardware
overhead when a synthesis unit is required.

IV. EXPERIMENTAL RESULTS

We have implemented the proposed approach using
CUDD 3.0.0 [17]. We compare our results to those presented
in [1] and [2], which were optimized for the number of
operations in a BDD-based implementation. In order to have
comparable results, we haven chosen benchmarks from the
same benchmark set (23 circuits from LGSynth91 [18]) and



TABLE I
COMPARISON OF RESULTS TO CHAKRABORTI ET AL. [1] AND SHIRINZADEH ET AL. [2]

Chakraborti Shirinzadeh et al. [2] Proposed Approach Proposed Approach
et al. [1] IMP MAJ Exact Approximated, B < 5%
Benchmark PI/PO R (0)3 R OP R OP R OP R OP Red R Red OP R OP Red R Red OP
5xpl_90 7/10 112 19 84 73 65 42 62 42 32 14 714% 26.3% 32 14 71.4% 26.3%
alu4_98 14/8 864 180 642 334 1014 77 1069 77 352 94 593% 47.8% 272 73 68.5% 59.4%
apex| 45/45 8016 1177 1626 705 3040 277 3185 232 1056 244 86.8% 79.3% 672 182 91.6% 84.5%
apex4 9/19 912 147 2073 447 2224 62 2588 53 720 123 21.1% 16.3% 672 112 263% 23.8%
apex6 135/99 3600 621 770 1169 220 813 235 678 1760 390 51.1% 37.2% 1568 760 56.4% -22.4%
apex7 49/37 2176 358 290 437 190 328 151 279 512 130 76.5% 63.7% 448 252 79.4%  29.6%
b9 41721 496 115 125 298 77 267 92 226 240 95 51.6% 17.4% 208 127 58.1% -10.4%
clip 9/5 224 42 120 89 93 63 107 54 64 20 714% 52.4% 64 20 71.4% 52.4%
cm150a 21/1 130848 16412 56 127 28 127 30 106 96 46 999%  99.7% 96 46 999%  99.7%
cml62a 14/5 176 37 46 102 38 89 43 75 80 31 545% 16.2% 80 31 545% 16.2%
cml163a 16/5 192 42 42 116 31 108 32 92 80 35 583% 16.7% 80 35 583% 16.7%
cordic 23/2 64 48 32 149 26 140 29 117 64 48 0% 0% 48 47 25.0% 2.1%
misex1 8/7 80 19 83 69 79 50 91 42 48 17 40.0% 10.5% 32 12 60.0% 36.8%
misex3 14/14 528 185 444 185 681 86 781 72 304 83 42.4%  55.1% 144 37 72.7%  80.0%
parity 16/1 32 32 23 113 6 112 7 96 32 32 0% 0% 32 32 0% 0%
seq 41/35 57040 19099 1566 692 1207 248 1398 207 848 231 98.5% 98.8% 528 159 99.1%  99.2%
481 16/1 144 39 26 107 16 100 30 84 144 39 0% 0% 144 39 0% 0%
table5 17/15 1344 390 580 168 1346 107 1511 90 336 105 75.0% 73.1% 192 60 85.7%  84.6%
too_large 38/3 2624 996 282 232 182 229 212 191 384 114 854% 88.6% 176 73 933% 92.7%
x1 51/35 1408 292 230 398 186 333 217 282 688 159 51.1% 45.5% 416 212 70.5% 27.4%
X2 10/7 144 29 60 80 45 65 52 55 48 21 66.6% 27.5% 48 21 66.7%  27.6%
x3 135/99 3296 716 770 1169 215 813 252 678 1744 389 47.1% 45.7% 1632 762 50.5%  -6.4%
x4 94/71 1968 363 401 642 209 573 333 479 720 233 63.4% 35.8% 992 388 49.6% -6.9%
AVG 9403.8 1798.0 4509 3435 487.7 222.1 543.8 187.3 450.1 117.1 553% 41.5% 3729 1519 61.3% 353%

PI/PO: number of primary inputs/number of primary outputs

R: number of RRAM devices, O P: number of operations, Red: Reduction achieved, relative to naive implementation

the same parameters for the EA as the authors of [2]. We have
applied the EA in five independent runs to each benchmark
and evaluated the best out of them, i.e., the smallest number
of operations. We assumed the register size to be 16 bit.

Table I shows the results for the best of the five runs. The
first four columns show the characteristics of the benchmarks.
The first column shows the name of the respective circuit, the
second column the number of primary inputs and outputs and
the columns three and four the number of devices (R) and
operations (OP) needed, if the natural variable ordering is
applied and the proposed synthesis approach is used. The fifth
and sixth column show the results of [1], where again R is
the number of RRAM devices needed and OP is the number
of operations. Next, the results of [2] are shown (columns
seven to ten). First, columns seven and eight show the results
for an I M P-based implementation of the BDD nodes, while
columns nine and ten show the results if M AJ is used. Finally,
the columns eleven and twelve show the absolute results of
the EA, if no approximation is used, while columns thirteen
and fourteen show the reduction relative to the initial results
where the natural variable ordering is used in %. The last four
columns show the results if the circuit is approximated before
the EA is performed. During approximation, we assume an
error bound of 5% for the B;.

We can see that our proposed approach significantly reduces
the number of devices and operations needed compared to [1]
and [2]. Compared to [1], it needs almost the same number of
devices, but reduces the number of operations by about 226.4
(which is a reduction of about 66%) on average. Compared
to [2] our proposed approach needs 37.6 (8%) less devices if

IMP is used and 93.7 (17%) less devices if MAJ is used for
the implementation of [2]. Further, on average, our approach
uses 105.0 (47%) and 70.2 (37%) less operations if IMP or
MAJ are used for the implementation of [2], respectively.

Increasing the symmetry of a given BDD in terms of
the approximation approach of [14] results in balancing the
number of nodes per level. Since the number of needed devices
in the presented approach scales with the maximum number
of nodes per level, using approximation further reduces the
number of devices. However, as reported in [14] the approach
does not always reduce the total number of nodes and thus the
number of operations needed for the computation. On average,
it allows to reduce the number of needed devices at the cost
of computation time and accuracy. However, for ten out of
the 23 benchmarks, the approximate implementation needs
less operations than the exact implementation, while only
performing worse for six benchmarks. Further, on average, the
results of the approximation still need less operations than [2]
and [1].

V. CONCLUSIONS

In this paper, we have presented a novel BDD-based syn-
thesis approach for RRAM crossbars. This approach utilizes
the MAC computation capabilities of RRAM devices, which
allows for the computation of multiple BDD nodes in parallel.
We use an EA to optimize the variable ordering of the BDD
in order to reduce the size of the final implementation. In the
experiments we show that our approach outperforms state-
of-the art BDD synthesis methodologies. We further boost
the performance of our synthesis approach by additionally
applying approximation to the given BDDs.
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