
ASNet: Introducing Approximate Hardware to
High-Level Synthesis of Neural Networks

Saman Froehlich Lucas Klemmer Daniel Große Rolf Drechsler
Cyber-Physical Systems, DFKI GmbH and Group of Computer Architecture, University of Bremen, Germany

froehlich@cs.uni-bremen.de lucas.klemmer@dfki.de grosse@cs.uni-bremen.de drechsle@cs.uni-bremen.de

Abstract—Approximate Computing is a design paradigm
which makes use of error tolerance inherent to many appli-
cations in order to trade off accuracy for performance. One
classic example for such an application is machine learning with
Neural Networks (NNs). Recently, LeFlow, a High-Level Synthesis
(HLS) flow for mapping Tensorflow NNs into hardware has
been proposed. The main steps of LeFlow are to compile the
Tensorflow models into the LLVM Intermediate Representation
(IR), perform several transformations and feed the result into a
HLS tool.

In this work we take HLS-based NN synthesis one step further
by integrating hardware approximation. To achieve this goal, we
upgrade LeFlow such that (a) the user can specify hardware
approximations, and (b) the user can analyze the impact of
hardware approximation already at the SW level. Based on the
exploration results which satisfy the NN quality expectations, we
import the chosen approx. HW components into an extended
version of the HLS tool to finally synthesize the NN to Verilog.
The experimental evaluation demonstrates the advantages of our
proposed ASNet for several NNs. Significant area reductions as
well as improvements in operation frequency are achieved.

I. INTRODUCTION

Approximate Computing (AC) is an emerging field of re-
search which deals with exploiting the inherent error tolerance
of applications. AC tries to improve the performance of these
applications in terms of computation time, power consumption
and/or HW complexity by introducing errors which are usually
either timing induced or caused by functional approximation.
The applications of AC range from machine learning and
digital image processing to robotics, just to name a few.

Neural Networks (NNs) have been successfully utilized to
solve problems of applications in the context of machine learn-
ing and pattern recognition. NNs usually consist of multiple
different layers with many neurons and filters leading to very
complex structures with many parameters. These parameters
are adjusted (trained) with a set of input-output pairs and
finally evaluated wrt. a test data set.

In order to deal with the complexity of NNs, different
SW tools have been published to model and work with
these structures efficiently. One of the most commonly used
frameworks is Tensorflow (TF) [1]. TF is an open source
machine learning library which utilizes data flow graphs. For
the High-Level Synthesis (HLS) of NNs, recently, LeFlow [2]
has been proposed. LeFlow is a HLS design flow which allows
to generate synthesizable Verilog for TF models of NNs via
the HLS tool LegUp [3].

Since NN models can be very complex and computing
intensive, novel approaches are needed to boost the perfor-

This work was supported by the German Research Foundation (DFG) within
the project PLiM (DR 287/35-1) and project number 276397488 – SFB 1232
in subproject P01 ‘Predictive function’.

mance of NN implementations. Different approaches have
been proposed. The most common approaches are quantization
and pruning methods (e.g. [4], [5], [6]) which aim to reduce the
size and complexity of NNs. In general, all these approaches
either reduce the size of the needed memory (weight quantiza-
tion) or modify the architecture of the NN (pruning). However,
none of these approaches allow to use and evaluate custom
approx. HW to further increase the performance of the final
HW implementation. A lot of different AC architectures exist
which allow to reduce power consumption, HW complexity
and/or delay of functional units (e.g. [7], [8], [9]). However,
the large range of possible AC configurations for NNs leads to
the need of efficient approaches for design space exploration
and prototyping.

In this paper, we present such an approach for Approximate
High-Level Synthesis of Neural Networks (ASNet1). A core
component of ASNet is the novel Approximation Test Bed
(ATB) which allows to perform approx. design space explo-
ration on the SW level, i.e. the user can evaluate whether the
quality expectations (e.g. classification error of the NN) are
still met when integrating approx. HW components.

To the best of our knowledge, ASNet is the first HLS
approach which allows to automatically evaluate approx. HW
wrt. NN accuracy. It enables fast prototyping and testing of
different configurations.

In the experiments we show the applicability of ASNet by
applying ASNet to different NNs, data sets and HW configura-
tions. We show that using ASNet, HW configurations can be
analyzed wrt. their impact on classification accuracy before
synthesis is performed and feasible configurations can be
identified. Finally, ASNet can be used to perform the synthesis
of the feasible HW configurations which are analyzed wrt.
their performance in terms of area and operation frequency.

II. RELATED WORK

To the best of our knowledge no other Approximate High-
Level Synthesis (AHLS) tool tailored for NNs and therefore
includes mechanisms for quality evaluation of the generated
designs has been proposed. Nevertheless, we present some of
the general AHLS tools in this section.

In [10] a general Approximate High-Level Synthesis (AHLS)
flow has been introduced. This flow focuses on using approx.
HW components. An analytic error-model is proposed, and for
scheduling an iterative algorithm is presented. The advantage
of the scheduling algorithm is that it allows to merge approx.
operations with exact operations avoiding unnecessary over-
head. In ASNet, the approximation is incorporated only after

1ASNet is available at https://github.com/LucasKl/asnet

https://github.com/LucasKl/asnet

all optimizations have been done. This way, the question of
handling relationships between approx. and exact operations
is avoided. Just like [10] other work has presented analytic
error-models (e.g. [11]). However for analytic error-models,
an error-model for each used approx. component is needed.
Further, when computing how an error propagates many
computations are needed to have an estimation for the actual
error and scalability becomes an issue. Since the quality of
NNs is evaluated wrt. test data sets, there is no need for an
analytical model for these kinds of applications.

The authors of [12] provide an AHLS tool which is able
to generate RTL from a given C-file using approx. HW. The
tool allows to approx. operations by rounding or eliminating
them completely. [12] provides the option to use voltage
scaling for approximation by employing an energy model. In
contrast, ASNet can directly work with TF NNs which are
defined in Python and ASNet is tailored for the evaluation
of the effects of approx. HW on the given network. Further,
instead of having a fixed set of approximation operations
(rounding, elimination of operations etc.), ASNet allows the
use of custom approx. HW which can be tailored for the
specific application and thus is much more effective.

[13] presents ABACUS, an automatic synthesis method for
generating approx. circuits. Given a behavioral or a RTL
description, multiple approx. variants are generated using an
Abstract Syntax Tree. These approx. variants are synthesized
and compared to the exact design wrt. accuracy and design
metrics. While ABACUS allows for approx. HLS, the accuracy
of the designs can only be evaluated after the synthesis has
been performed. ASNet allows for accuracy evaluation at SW
level. Thus, designs for which error bounds do not hold can
be eliminated before the synthesis step. Further, for ASNet,
the NNs are specified in Python and ASNet allows for the use
of custom approx. HW designs.

ALWANN [14] is an efficient tool for design space ex-
ploration of approximate HW designs for NNs. The approx.
HW designs are integrated into a custom TF operation and an
evolutionary algorithm is used to find the best configuration.
However, compared to ALWANN we present an AHLS flow,
which ultimately leads to synthesizable Verilog output. Thus,
the user does not need to reconstruct the NN in Verilog
himself.

III. PRELIMINARIES

A. LegUp
LegUp [3] is an open source HLS tool which can be used to

synthesize High-Level descriptions of HW systems to Verilog.
It features two modes: pure HW and a HW/SW hybrid flow.
We utilize the pure HW flow in this paper, but an extension to a
HW/SW hybrid flow is possible. At its core LegUp features the
LLVM framework and LLVM-IR2 which is used by LeFlow
to pass the description of the NNs to LegUp. Instructions
in LLVM-IR correspond directly to HW operations. LegUp
performs the classic HLS steps on the IR which are allocation,
scheduling, binding and generation of HDL [16]. Further,

2The LLVM project [15] is a collection of modular and reusable compiler
and toolchain technologies. The core of LLVM is the Intermediate Represen-
tation (IR), a low-level programming language similar to assembly.

Stage 1:
Training and

XLA Compilation

Stage 3:

ApproxLegUp

Stage 2:
Approx. Test Bed

(ATB)

Tensorflow
NN

Test Data Set

LLVM-IR

Approx LLVM-IR

Verilog
HW-Description

Approx. HW
Instances

Parameter
Constraints File
(User Specified)

Approx. HW
Descriptions

Fig. 1. ASNet Overview
LegUp allows for several optimizations such as loop unrolling
and dead code removal.

Eventhough LegUp is open source, according to [3] LegUp
produces HW implementations that are of comparable quality
to commercial HLS tools.

B. LeFlow

LeFlow is a design flow, that is based on LegUp. Instead
of feeding a C-Program into LegUp, LeFlow uses TF and
Googles XLA compiler [17] to compile a NN description
(given in Python) to an optimized LLVM-IR.

LeFlow has two stages: The first stage is implemented in
Python. In this stage the description of the NN is imported and
trained. After compiling it to LLVM-IR using Googles XLA
compiler, the LLVM-IR is restructured such that it can be fed
to LegUp. In the second stage, the restructured LLVM-IR is
fed to LegUp which generates synthesizable Verilog.

IV. ASNET: APPROXIMATE HIGH-LEVEL SYNTHESIS OF
NEURAL NETWORKS

In this section we introduce ASNet. At first, we present a
general overview of ASNet. Then, all stages of ASNet are
described in detail in the respective subsections.

A. ASNet Overview

In general, there are two variants of approx. HW de-
scriptions. The first is a fixed approx. HW description. The
second is a parametrized description, where the degree of
approximation can be adapted using one or more parameters
(for example an approx. multiplier which ignores mantissa
bits; the number of mantissa bits can be controlled by a
parameter). Examples for fixed HW designs can be found
in [18]. Examples for parametrized HW designs are described
in [8], [9]. ASNet can handle both fixed and parametrized HW
designs via the Approximate Test Bed (see stage 2).

Parameterized/Fixed
Approx. HW Descriptions

P[0]=?
…

P[N]=?

Parameter
Constraints File

hdl: [{FilePath,
Module,
ParameterNames[],
ParamLow[],
ParamHigh[]}, ...]

Approx.
Function Library

Approximate
Utility Generator

LLVM-IR Test Data Set

Approx. HW Instance
P[0]=ParamLow[0]+1

...
P[N]=ParamLow[N]

Approx. HW Instance
P[0]=ParamHigh[0]

...
P[N]=ParamHigh[N]

...
Approx. HW Instance

P[0]=ParamLow[0]
...

P[N]=ParamLow[N]

Approx LLVM-IR

Prediction
Accuracy

MUX
User Choice

User

Approximate Design Evaluator
(ADE)

Fig. 2. Approximate Test Bed (ATB)

Algorithm 1 Approximate Test Bed (ATB)
1: function EVALDESIGNSPACE(TestData, IR, HWDescr, Params)
2: [ApproxLib, HWInst] = ApproxUtilGen(Params, HWDescr)
3: ADEs = GENERATEADES(ApproxLib, IR, TestDataSet)
4: Accuracies = emptySet()
5: for all ADE in ADEs do
6: Accuracies.append(ADE.evaluateConfiguration())
7: end for
8: SelConfig=PRESENTACCURACIES(Accuracies)
9: return SelConfig, HWInst

10: end function

Figure 1 gives an overview of ASNet. The user provides
four inputs to ASNet (see top of Figure 1): The first is the
definition of the TF NN in Python. The second is the test
data set which is used to evaluate the prediction accuracy
of the NN. The next parameter is the set of potentially
suitable approx. HW descriptions in Verilog. Finally, the user
specifies the constraints on the parameters of each approx. HW
description in a Parameter Constraints File (JSON-format).

In the following subsections, we first describe the stages
of ASNet. In Section IV-B, we give a short description of the
first, unchanged stage wrt. LeFlow. Successively, we introduce
the Approximate Test Bed (Stage 2) in Section IV-C. We
conclude this section by describing ApproxLegUp (Stage 3)
in Section IV-D.

B. Stage 1: Training and XLA Compilation

In the first stage ASNet follows LeFlow. The NN is created
and trained in TF using a training data set. Its final quality is
evaluated wrt. a test data set and compiled to LLVM-IR using
Googles XLA compiler.

C. Stage 2: Approximate Test Bed (ATB)

In order to choose a suitable configuration of approx.
HW components for a HW NN implementation, an efficient
approach for the exploration of the approx. design space is
needed. For this purpose ASNet includes an Approximate Test
Bed (ATB). The ATB is depicted in Figure 2. The approx.
design space is formed by the Cartesian product of the approx.

HW instances. Suitable configurations (a configuration is a
set of approx. HW instances) of the approx. design space are
found by evaluating them using generated Approximate Design
Evaluators (ADEs) (depicted on the left side of Figure 2 and
detailed in Section IV-C2). The user can define the parameter
space of each approx. HW description and thus the approx.
design space inside the Parameter Constraints File. Each ADE
evaluates the impact of a single approx. HW configuration
on the prediction accuracy of the NN at the SW level. The
Approximate Utility Generator generates the Verilog code
of every approx. HW instance (see right side of Figure 2).
A function library that wraps each approx. HW instance
into a function is also generated by the Approximate Utility
Generator to provide an interface for the ADEs. The ADEs use
this interface to substitute regular operations of the IR code
(’fmul’, ’fdiv’, ...) with their approx. counterpart.

The execution sequence of the ATB is presented in Al-
gorithm 1. First, the Approximate Utility Generator is used
to generate the approx. function library and to instantiate
the approx. HW descriptions in Line 2, given the Parameter
Constraints File and the approx. HW descriptions. Then, the
ADEs are generated and evaluated in Lines 3-7. Finally, the
evaluation results are presented to the user, who chooses the
best approx. HW configuration. This configuration is returned
together with the approx. HW instances in Line 9.

In the following we describe the Approximate Utility Gen-
erator and the ADE in detail.

1) Approximate Utility Generator: To measure the impact
of HW approximation on the prediction accuracy of a NN
at SW level, the accurate operations of the LLVM-IR need
to be substituted by their approx. counter parts. In order to
generate an approx. function library which implements these
approx. counter parts, we have developed the Approximate
Utility Generator. First, the Approximate Utility Generator
instantiates parametrized approx. HW descriptions as approx.
HW instances. The user specifies the feasible values of each
parameter inside the Parameter Constraints File, i.e. ParamLow
and ParamHigh. Each approx. HW description is instantiated
for each feasible parameter value. Fixed approx. HW descrip-
tions can be used directly.

The Approximate Utility Generator compiles a C++-
simulator object for each approx. HW instance using Veri-
lator [19]. A unique ID is assigned to each of these objects
and they are grouped inside a wrapper function. This wrapper
function is responsible for providing the inputs, running and
evaluating the approx. HW instance and returning the result.
Besides the inputs of the approx. HW instances, the ID of the
HW instances is passed to the wrapper function. All wrapper
functions are combined into an approximate function library.

2) Approximate Design Evaluator (ADE): The ADEs are
responsible for evaluating the impact of approx. HW configu-
rations on the prediction accuracy. Therefore, our ADEs pro-
vide an execution environment that takes care of input/output
handling, parameter loading and result evaluation. In this exe-
cution environment, accurate operations in the unapproximated
LLVM-IR are substituted by calls to their approx. counterparts
from the approx. function library. An example for such a
substitution is given in Listing 1. The call to the accurate

operation is depicted in Line 1. Line 2 shows the call to the
approx. counterpart. The float operands %1 and %2 are passed
together with the ID of the approx. HW instance (in this case
31, a 32-bit integer). After compilation, the call is redirected
to the approx. function library.

Listing 1. LLVM-IR substitution

1 %3 = fmul f l o a t %1, %2
2 %3 = c a l l f l o a t @ Z10approx mulff j (f l o a t %1, f l o a t %2, i 3 2 31)

After generating the ADE for a concrete approx. HW
configuration, the ADE executes the approx. LLVM-IR rep-
resentation of the NN on the test data set and evaluates the
prediction accuracy.

D. Stage 3: ApproxLegUp
After determining which approx. HW components to use

and how to configure the parameters, the selected configuration
needs to be transmitted to the HLS tool for Verilog generation.
In order to do this, we have modified the LLVM-IR in such a
way, that a binary operator can have three parameters: besides
the first and the second operand, a unique identifier for the
selected approx. HW description is passed.

The identifier points to a Verilog file which implements
the selected HW with the previously determined parameter
configuration. We have upgraded LegUp to ApproxLegUp
which is able to parse the modified LLVM-IR and substitute
the functions calls in the output Verilog implementation of the
NN with the approx. HW.

V. EXPERIMENTAL RESULTS

We demonstrate the advantages of ASNet by applying it
to three NNs using a variety of approx. floating-point (FP)
multipliers as well as an configurable approx. FP divider. We
have evaluated the NNs wrt. the well-known MNIST [20] and
SVHN [21] data-sets. All networks have been trained without
approximation.

This section is structured as follows: In Section V-A we
give a general overview of the used NNs. Section V-B
introduces the approx. HW descriptions. Subsequently, in
Section V-C, we describe the setting of the experiments.
Section V-D presents the results of the approx. design space
exploration. In Section V-E, we present the evaluation for the
final approx. architectures of each NN, which are based on the
approx. design space exploration using the ATB of ASNet.
Finally, in Section V-F, we demonstrate the applicability of
ASNet to other approx. HW designs.

A. Overview of NNs
The first NN is the classificationMNIST network. It comes

with LeFlow and implements a simple feed-forward NN with
a single layer. This layer has 10 neurons and uses the softmax
activation function.

Next, a convolutional NN for the SVHN data set is con-
sidered. It has two convolutional layers with 8 and 16 filters,
respectively, each followed by a relu layer and a maxPooling
layer. After the convolutional layers, a dense layer with 20
neurons and a linear activation function is used, followed by
a 10 neuron output layer with softmax as activation function.
The resulting NN is called convolutionalSVHN.

The third NN benchmark is called convolutionalMNIST.
The architecture of this convolutional NN is similar to that
applied to the SVHN data set. However, since the MNIST
data set consists of 28x28x1 images (compared to 32x32x3
for the SVHN data set), we have adjusted the architecture of
the convolutional NN accordingly. To show the generality of
ASNet, we apply different approximation methods to convo-
lutionalMNIST than to the other two NNs.

B. Approximate Hardware

For our experimental evaluation we have used two different
approximation methodologies. The first has been proposed
in [9] where the authors have introduced an approx. FP
multiplier which ignores the last p bits of the mantissa. We
have instantiated a 32-bit multiplier for FP multiplications with
single precision and let p be in the range from 0 to 22. For
evaluation purposes, we have also designed an approx. FP
divider in the same way, i.e. ignoring bits of the inputs, in
Verilog.

To show the generality of our approach, we have also de-
signed a 32-bit approx. FP multiplier based on approx. integer
multipliers from [22]. The authors of [22] propose to generate
approx. multipliers using Cartesian Genetic Programming
(CGP), and the generated approx. HW can be downloaded
from [23]. Since this HW is generated using CGP, the area
and delay may not necessarily decrease monotonically with
the accuracy.

However, ASNet can be used to find the multiplier archi-
tectures for which the resulting HW implementation of the
corresponding NN meets accuracy requirements and to do
the final synthesis. The resulting approx. FP multiplier has
a parameter m which specifies which approx. multiplier is to
be used internally.

C. Experimental Setup

In order to evaluate the final designs, we use the Quartus II
64-Bit V. 15.0.0 Build 145 SJ Web Edition to synthesize the
final Verilog file to a CycloneV FPGA on a DE1-SoC board.

Evaluating the accuracy of all options for an approx. HW
component using 10,000 test images with ASNet at SW level
has been executed in less than 10 minutes (less than 30 seconds
per configuration) inside a virtual box for classificationMNIST
using only a single thread. For convolutionalSVHN the evalu-
ation with 3,000 test images has been carried out in about 3.5
hours (i.e. less than 10 minutes per configuration).

D. Approximate Design Space Exploration

1) classificationMNIST: We have evaluated the approx. FP
multiplier and divider in the respective 23 different config-
urations for the classificationMNIST network using ASNet.
Results can be seen in Figure 3(a)-Figure 3(c). Figure 3(a)
shows the prediction accuracy for each value of p, respectively.
Figure 3(b) shows the reduction in used Logic Elements (LEs),
while Figure 3(c) shows the resulting frequency FMax. The
blue lines show the results when the approx. FP multiplier is
used, while the red lines show the result for the divider.

As can be seen in Figure 3(a), the accuracy for the ap-
prox. multiplier remains almost constant for up to 20 ignored

0 5 10 15 20

80

90

100

Number of Ignored Mantissa Bits pC
or

re
ct

ly
C

la
ss

ifi
ed

[%
]

Multiplier
Divider

(a) Prediction Accuracy

0 5 10 15 20
0

5

10

15

20

Number of Ignored Mantissa Bits p

L
E

R
ed

uc
tio

n
[%

]

Multiplier
Divider

(b) Reduction of Logic Elements (LEs)

0 5 10 15 20
40

60

80

Number of Ignored Mantissa Bits p

FM
ax

[M
H

z] Multiplier
Divider

(c) FMax
Fig. 3. classificationMNIST

mantissa bits and the accuracy only starts to drop slightly
at p = 21 (89.87% at p = 22 vs 90.69% at p = 21). For
the divider the influence on the accuracy is even smaller,
since the division is only used in the softmax function. The
softmax function is only used to normalize the output and
since the differences between incoming values are large, the
largest output value stays the same, even if the mantissa is
shortened during the normalization step. Thus the influence of
the approx. FP divider on the accuracy is negligible.

While using approximation during multiplication and divi-
sion has only little influence on the results, large gains in the
maximum operation frequency and the utilization of LEs can
be observed.

Figure 3(b) shows that the number of utilized Logic Ele-
ments (LEs) is reduced by up to 5%. For the FP divider an
even greater LE reduction can be observed, i.e. up to 16.9%
can be achieved without a notable loss in prediction accuracy.

Figure 3(c) shows the maximum operation frequency FMax.
We can see that using approximation during the multiplication
allows to increase FMax from 54.89 MHz to 79.79 MHz
and thus increase the maximum operation frequency FMax
by about 45%. The divider allows for almost no increase in
operation frequency. This is because the divider is not on the
critical path.

Overall, the results show that very fast approx. design space
exploration (accuracy evaluation for all parameters of an ap-
prox. HW component) is possible which leads to considerable
LE reduction and substantial improvement of FMax.

2) convolutionalSVHN: Unlike classificationMNIST, con-
volutionalSVHN features convolutional layers. The results of
the evaluation are shown in Figure 4(a) - Figure 4(c). We

0 5 10 15 20
60

70

80

90

Number of Ignored Mantissa Bits pC
or

re
ct

ly
C

la
ss

ifi
ed

[%
]

Multiplier
Divider

(a) Prediction Accuracy

0 5 10 15 20
0

5

10

15

20

Number of Ignored Mantissa Bits p

L
E

R
ed

uc
tio

n
[%

]

Multiplier
Divider

(b) Reduction of Logic Elements (LEs)

0 5 10 15 20
30

35

40

45

50

Number of Ignored Mantissa Bits p

FM
ax

[M
H

z] Multiplier
Divider

(c) FMax
Fig. 4. convolutionalSVHN

TABLE I
FINAL DESIGNS FOR CLASSIFICATIONMNIST AND

CONVOLUTIONALSVHN
Name pm, pd Correctly LE FMax

Classified red. Gain
classificationMNIST 20, 22 88.72% 24.66% 35.62%
convolutionalSVHN 20, 22 73.70% 6.42% 2.88%

use the same coloring as in the classificationMNIST graphs
and perform the same approx. design space exploration (i.e.
ignoring p mantissa bits using the approx. FP multiplier and
the approx. FP divider). Eventhough convolutionalSVHN is
more complex than classificationMNIST, the accuracy only
starts to be reduced significantly if more than 20 mantissa bits
are dropped during the multiplication. However compared to
classificationMNIST, the drop is steeper. This is due to the
increased number of multiplications in the NN. Again, the
usage of an approx. FP divider does not reduce the accuracy of
the NN significantly and allows for more LE reduction than the
approx. FP multiplier, while the approx FP multiplier allows
for a higher increase in operation frequency FMax.
E. Final HW Designs

Based on the results of the approx. design space exploration
obtained with ASNet and reported in the previous section, we
have chosen approximation levels for the approx. FP multiplier
and the approx. FP divider for each NN. The results are
summarized in Table I. The first column shows the name of
the NN, while the second column lists the used values for p for
the multiplier and the divider (pm and pd), respectively. The
evaluated accuracy of the network can be seen in the third
column. The forth column gives the reduction of LEs and
the last column provides the gain of the operation frequency

55
60

65

0

1

2

60

80

100

F

A

FMax [MHz] LE Reduction [%]

C
or

re
ct

ly
C

la
ss

ifi
ed

[%
]

Fig. 5. convolutionalMNIST with approx multipliers

FMax. As can be seen the reduction in the number of LEs is
up to 24.66% and the gain in FMax up to 35.62%.

F. Additional Approximation Techniques
To conduct further experiments based on alternative approx-

imation techniques and to demonstrate that ASNet can handle
them, we have modified the internal structure of the floating
point multipliers by using more than 100 different approximate
32-bit integer multipliers presented in [23] for the multiplica-
tion of the mantissa. The resulting floating point multiplier has
a parameter which defines which of the over 100 approximate
multipliers is to be used for the multiplication. Using ASNet,
we have evaluated how the approximate multipliers influence
the accuracy of convolutionalMNIST. The results can be seen
in Figure 5. The graph shows the resulting accuracy, LE-
reduction (with the size of the largest HW design as baseline)
and operation frequency for each HW design respectively.

Since the approximate multipliers are generated using a
CGP approach, there is no strict link between accuracy, area
and operation frequency. However, ASNet can be used to
filter the designs which meet the accuracy requirements. If
for example an accuracy of more than 95% is required, more
than 86% of the HW designs can be dropped already at the
evaluation step (and thus before synthesis) and the number of
designs which need to be synthesized is significantly reduced.
In Figure 5 the designs which meet the accuracy requirement
of 95% are marked with blue dots, while the rest is marked in
yellow. Finally, the designs which meet the accuracy require-
ments can be synthesized with ASNet and an appropriate HW
design can be determined. If the circuit is to be optimized wrt.
to area, the design which results in the largest LE reduction
can be selected (labeled A in Figure 5 with a total LE reduction
of 2.324% and an operation frequency FMax of 62.33 MHz).
However, if the circuit is to be optimized wrt. to frequency,
the circuit with the highest operation frequency FMax can be

VI. CONCLUSIONS

In this paper we have presented ASNet, an approach for
Approximate High-Level Synthesis of Neural Networks. ASNet

chosen (labeled F in Figure 5 with a total LE reduction of
0.852% and an operation frequency FMax of 63.93 MHz).
allows (a) integration of custom approx. HW descriptions
plus the evaluation of the resulting quality of a given NN
on its test data set, and (b) design space exploration for
parametrized approx. HW descriptions via the Approximate
Test Bed (ATB) already at the SW level. With the ATB the
effects of the approx. HW on the accuracy can be evaluated
before performing synthesis.

In the experiments we have evaluated a broad range of
approx. HW for three different NNs. We have shown that
significant reductions in the number of LEs (up to 24.66%)
and major gains (up to 35.62%) in the operation frequency for
an FPGA with negligible accuracy loss can be achieved.

Finally, we make ASNet open source to stimulate further
research and development of approx. HLS methodologies for
NNs.

REFERENCES

[1] Martı́n Abadi et. al., “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015. [Online]. Available: https://www.tensorflow.org/

[2] D. H. Noronha, B. Salehpour, and S. J. E. Wilton, “LeFlow: Enabling Flexible FPGA
High-Level Synthesis of Tensorflow Deep Neural Networks,” ArXiv e-prints, Jul. 2018.

[3] A. Canis et. al., “Legup: An open-source high-level synthesis tool for fpga-based pro-
cessor/accelerator systems,” ACM Trans. Embed. Comput. Syst., vol. 13, no. 2, pp. 24:1–
24:27, Sep. 2013.

[4] W. Pan, H. Dong, and Y. Guo, “Dropneuron: Simplifying the structure of deep neural
networks,” CoRR, vol. abs/1606.07326, 2016.

[5] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quantized neural
networks: Training neural networks with low precision weights and activations,” CoRR,
vol. abs/1609.07061, 2016. [Online]. Available: http://arxiv.org/abs/1609.07061

[6] B. Moons, K. Goetschalckx, N. Van Berckelaer, and M. Verhelst, “Minimum energy
quantized neural networks,” in 2017 51st Asilomar Conference on Signals, Systems, and
Computers, Oct 2017, pp. 1921–1925.

[7] A. Qureshi and O. Hasan, “Formal probabilistic analysis of low latency approximate
adders,” TCAD, pp. 1–1, 2018.

[8] S. Hashemi, R. I. Bahar, and S. Reda, “Drum: A dynamic range unbiased multiplier for
approximate applications,” in ICCAD, 2015, pp. 418–425.

[9] J. Y. F. Tong, D. Nagle, and R. A. Rutenbar, “Reducing power by optimizing the necessary
precision/range of floating-point arithmetic,” in TVLSI, vol. 8, No. 3, Jun. 2000, pp. 273–
285.

[10] C. Li, W. Luo, S. S. Sapatnekar, and J. Hu, “Joint precision optimization and high level
synthesis for approximate computing,” in DAC, 2015, pp. 1–6.

[11] S. Lee, D. Lee, K. Han, E. Shriver, L. K. John, and A. Gerstlauer, “Statistical quality
modeling of approximate hardware,” in Int’l Symp. on Quality Electronic Design, 2016,
pp. 163–168.

[12] S. Lee, L. K. John, and A. Gerstlauer, “High-level synthesis of approximate hardware
under joint precision and voltage scaling,” in DATE, 2017, pp. 187–192.

[13] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “Abacus: A technique for automated behavioral
synthesis of approximate computing circuits,” in DATE, 2014, pp. 1–6.

[14] V. Mrazek, Z. Vası́cek, L. Sekanina, M. A. Hanif, and M. Shafique, “ALWANN: automatic
layer-wise approximation of deep neural network accelerators without retraining,” CoRR,
vol. abs/1907.07229, 2019. [Online]. Available: http://arxiv.org/abs/1907.07229

[15] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation,” in Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO’04), Palo Alto, California, Mar 2004.

[16] Stefan Hadjis et. al., “Profiling-driven multi-cycling in fpga high-level synthesis,” in
DATE, 2015, pp. 31–36.

[17] Google - TensorFlow, “XLA,” https://www.tensorflow.org/xla/, 2018.
[18] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapprox8b: Library of ap-

proximate adders and multipliers for circuit design and benchmarking of approximation
methods,” in DATE, 2017.

[19] W. Snyder, J. Coiner, D. Galbi, and P. Wasson, “Verilator,” https://www.veripool.org/wiki/
verilator, 2018.

[20] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of handwritten digits,” 2018.
[21] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits in

natural images with unsupervised feature learning,” in IPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

[22] M. Češka, J. Matyaš, V. Mrazek, L. Sekanina, Z. Vasicek, and T. Vojnar, “Approximating
complex arithmetic circuits with formal error guarantees: 32-bit multipliers accom-
plished,” in ICCAD, Nov 2017, pp. 416–423.

[23] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapprox8b: Approximate adders
and multipliers library,” http://www.fit.vutbr.cz/research/groups/ehw/approxlib/, 2016.

https://www.tensorflow.org/
http://arxiv.org/abs/1609.07061
http://arxiv.org/abs/1907.07229
https://www.tensorflow.org/xla/
https://www.veripool.org/wiki/verilator
https://www.veripool.org/wiki/verilator
http://www.fit.vutbr.cz/research/groups/ehw/approxlib/

