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Abstract

Formal verification has become an important step in cir-
cuit and system design. A prominent technique is Bounded
Model Checking (BMC) which is widely used in industry. In
BMC it is checked if certain properties hold for the design.
But even if all properties could be successfully verified, it is
difficult to determine if the properties cover the entire func-
tional behavior of the circuit. Recently, a new approach for
estimating coverage in BMC has been presented that can
easily be integrated in existing BMC tools. In this paper we
give experimental results on the application of the technique
to the block-level verification of a RISC CPU. The experi-
ments show that the costs for coverage estimation are com-
parable to the verification costs. Furthermore it is demon-
strated how the technique can be applied to achieve full cov-
erage on a higher level. As an example, we investigate the
instruction set verification of a RISC CPU.

1. Introduction

These days the design of circuits and systems is a very
challenging task. Besides the design of such systems — that
are part of very different kinds of devices — showing the
correct functional behavior has become the most important
issue. For this purpose simulation based verification tech-
niques are not sufficient since they cannot guarantee design
correctness. Therefore, formal methods have gained large
attention because they allow to prove the correctness of the
design. A very successful formal technique to verify that a
finite state system satisfies a temporal property is Bounded
Model Checking (BMC) [3]. In BMC the system is unfolded
for k time frames and together with the property converted
into a Boolean Satisfiability (SAT) problem [4]. If the cor-
responding SAT instance is satisfiable a counter-example of
length %k has been found. Due to significant improvements
in the tools for SAT solving [10, 11, 5] BMC can be applied
to large designs and is widely used in industry [13, 2].

But so far the completeness of the property set was only
ensured manually by a careful analysis of the verification
team. Recently, an automatic approach to estimate the

achieved coverage for BMC has been proposed [8]. The
approach generates a coverage property for each important
signal. If the considered properties do not describe the
signal’s entire behavior, the coverage property fails and a
counter-example is generated. From the counter-example
an uncovered scenario can be derived. Analyzing these
counter-examples and adding corresponding properties al-
lows the verification engineer to stepwise close the coverage
gap.

The contribution of this paper is twofold: First, we want
to quantify the computational costs for the application of the
coverage approach in comparison to pure verification. This
very important aspect has not been studied in [8]. Therefore
we apply the coverage approach to the block-level verifica-
tion of a RISC CPU as a non trivial example. The verifica-
tion and the coverage tests are described in detail by means
of examples. Then, the run-times for verification and cov-
erage estimation are analyzed.

Second, we investigate the estimation of coverage on a
higher level. Based on the results of the complete block-
level verification we consider the RISC CPU at the top-
level. Typically, at this level properties for each CPU in-
struction are formulated. In such a property the exact be-
havior of all involved hardware blocks with respect to the
considered CPU instruction is specified. In other words the
effect that results from the execution of an instruction in-
cluding the communication of hardware blocks is checked.
We show that the coverage approach can be used to guar-
antee coverage at this level. By the means of a detailed ex-
ample the suggested notion of higher level coverage based
on proven correct instructions is discussed and the costs for
the coverage check are analyzed. Following a certain prop-
erty style is helpful for achieving full functional coverage
by reducing the number of uncovered scenarios.

The rest of the paper is structured as follows. In Sec-
tion 2 BMC and the coverage approach are briefly reviewed.
The basic data and modeling aspects of the RISC CPU are
provided in Section 3. In Section 4 the verification and
coverage estimation at different levels as well as the cost
comparison are presented. Finally, in Section 5 the paper is
summarized.



2. Preliminaries

In this section first an overview on BMC is given. After-
wards the coverage approach from [8] is briefly reviewed.

2.1. Bounded Model Checking

For the verification and the coverage tests, we use BMC
as described in [13]. Thus, a property only argues over a
finite time interval. For a design with its transition relation
T5, a BMC instance for a property p over the finite interval
[0, c] is given by:
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This verification problem can be formulated as a SAT prob-
lem by unrolling the circuit for ¢ time frames and generating
logic for the property. In contrast to [3] there is no restric-
tion for the state sq in the first time frame during the proof.
This may lead to false negatives, i.e. counter-examples that
start from an unreachable state. In such a case these states
are excluded by adding additional assumptions to the prop-
erty. But, for BMC as used here, it is not necessary to deter-
mine the diameter of the underlying sequential circuit, i.e. if
the SAT instance is unsatisfiable the property holds.

As input language to the verification tool CheckSyC [6]
we use a subset of PSL (Property Specification Language
[1]). In the following we assume that each property is an im-
plication, i.e. the property has the form always(A — C).
A is the antecedent and C' is the consequent of the property
and both consist of a timed expression. A timed expres-
sion is formulated on top of variables that are evaluated at
different points in time within the time interval [0, ¢] of the
property. The operators in a timed expression are the typical
HDL operators, e.g. logic and, logic or, arithmetic operators
and relational operators. The timing is expressed using the
PSL operators next and prev.

2.2. Coverage Estimation

The basic idea of the coverage approach presented in [8]
is the following: First, for each output o of the circuit all
proven properties are identified which argue over o. Then
it is checked whether there exists a scenario where o is not
determined by the set of properties. Here, not determined
means that an input and state assignment has been found
where no consequent of the set of properties specifies the
value of o unambiguously.

This approach is implemented by introducing a multi-
plexor for each bit that is driven by the output o and the
inverted value of o. Then the coverage check can be per-
formed by generating a coverage property for each consid-
ered output o. This coverage property is used to show that

the multiplexor is forced to select the original value of o,
assuming all involved properties. Now if the coverage prop-
erty for the output o holds then o is covered by the proper-
ties. Otherwise from the resulting counter-example an un-
covered scenario can be derived.

For the details on the construction of the coverage prop-
erty we refer the reader to [8].

Complete coverage in terms of the approach is achieved
by considering all outputs of a circuit. If all outputs are
successfully proven to be covered by the properties then the
functional behavior of the circuit is fully specified.

3. RISC CPU
3.1. Basic Data

In Figure 1 the main components of the RISC CPU are
shown. The CPU has been designed as a Harvard architec-
ture. The data width of the program memory and the data
memory is 16 bit. The size of the program memory is 4
KByte and the size of the data memory is 128 KByte. The
length of an instruction is 16 bit. Due to page limitation we
only briefly describe the five different classes of instructions
in the following:

e 6 load/store instructions (movement of data between
register bank and data memory or I/O device, loading
of a constant into high- or low-byte of register)

e 8 arithmetic instructions (addition/subtraction with
and without carry, left/right rotation and shift)

e 8 logic instructions (bit by bit negation, bit by bit
exor, conjunction/disjunction of two operands, mask-
ing, inverting, clearing and setting of single bits of an
operand)

e 5 jump instructions (unconditional jump, conditional
jump, jump on set/cleared carry or zero flag)

e 5 other instructions (stack instructions push and pop,
program halt, subroutine call, return from subroutine)

3.2. Modeling

The RISC CPU has been modeled in SystemC [12, 9].
SystemC is a freely available C++ class library, which pro-
vides the ability to model hardware at different levels of
abstraction. The hierarchical structure of the RISC CPU is
reflected in the SystemC implementation in such a way that
each hardware block corresponds to a SystemC module. A
module in terms of SystemC is a special C++ class. The
behavior of a module is defined by processes.



data

program counter *

register bank

load enable

ALU select data memory

write

= \data

read |_
data

—| address

read
4
PC = address A
[clock read  read L]
address B data A
program ‘ write read
memory address data B [ ]
address write
data
wrireenablﬁT T T T
H L clock
instruction

clock f

status register

write T T
clock

enable

control unit

Figure 1. Structure of the RISC CPU including data and instruction memory

4. Verification and Coverage

First in this section the block-level verification of the
RISC CPU is described. Then the coverage approach is ap-
plied at this level. We discuss in detail how revealed cover-
age gaps are closed. Then we suggest a notion of coverage
on the top-level of the RISC CPU and present the verifica-
tion and coverage estimation at this level. During the ap-
plication of the coverage approach we always compare the
verification and coverage estimation costs.

All experiments that are reported have been carried out
on an Intel Pentium M with 1.7 GHz and 1 GB main mem-
ory under the Linux operating system.

4.1. Block-level Verification

In order to guarantee the correct behavior of the RISC
CPU, it has been verified using BMC. In a first step, for
each of the hardware blocks it is checked, whether the in-
put/output behavior of the implemented circuit matches the
specification. Therefore a number of properties have been
formulated in PSL.

As the program counter (PC) will serve as an example,
it is described first. The PC has an internal 11 bit register
pc which holds the current program address. The address is
shown at the output pcout, while the output pcinc shows
the current address increased by 1. The PC is reset to ad-
dress 0 by setting the input reset to 1. If the load enable
input le is set to 1, the PC is loaded with the address from
input din. Otherwise it is increased by 1 in every cycle if
the PC is enabled., i.e. if the enable input en is set to 1.

In Figure 2 some of the properties for the PC can be seen.
The first property RESET checks the correct behavior after
a reset. The second property INC checks that the PC is
increased if it is enabled, there is no reset, no load and if the
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property RESET =
always (
reset == 1
) = (
next (
pcout == 0 && pcinc

)
)

property INC =
always (
reset == 0 && le == 0 &&
pc < 2047
) —=> (
next (
(prev(en) == 1) ?
(pcou prev(pc) + 1)
(pcout == prev(pc))
)

)

property LOAD =
always (
reset

le == 1

) = (

next (
(prev(en)
(pcout ==
(pcout ==

)

1) ?
prev(din))
prev(pc))

)

gure 2. Properties for the program counter.



Table 1. Results for the verification.

Block #p | CPU time | max. mem
register bank 5 295s 15 MB
program counter 4 0.12's 9 MB
control unit 19 0.26 s 8 MB
data memory 2 4.09 s 44 MB
program memory | 2 1.35s 23 MB
ALU 18 5.27s 16 MB

end of the address space has not been reached yet. The third
property LOAD checks the load functionality of the PC.

For all hardware blocks of the CPU properties have been
specified in a similar way. In Table 1 the results of the
block-level verification are shown. The first column gives
the name of the hardware block. The second column pro-
vides the number of properties that have been written for
the respective block. In the last two columns the total CPU
time for the verification and the maximal used memory dur-
ing the verification are given. As can be seen, the verifica-
tion can be carried out very fast using BMC. Note that the
sizes of the memories have been reduced in the verification
model.

4.2. Block-Level Coverage

If all properties hold the coverage check can be per-
formed in a next step. Following the approach described in
Section 2.2, for each single output of each hardware module
it is checked, if its behavior is specified unambiguously by
the properties. Therefore a coverage property is generated
for each output.

Figure 3 shows the coverage property for the output
pcout of the PC. In line 2 the multiplexor needed for the
coverage check is inserted using a special command en-
closed in a comment. The command instructs our BMC
tool to replace the original output pcout by a multiplexor
construct — consisting of a multiplexor for each output bit,
as described in [8] — and to rename it to pcout_orig.
Now the original value pcout _orig is routed to the out-
put pcout iff the signal select is set to 1. In lines 4 to
25 the original properties are assumed'. Furthermore it is
assumed that at time point O the select signal is set to 1 (line
27), i.e. we are dealing with the original value of the circuit
on output pcout at time point 0.

Under these assumptions we want to prove that the select
signal has to be 1 at time point 1 as well (line 29), meaning
that the output is determined in any case. The coverage
property can be automatically checked using BMC. As a
result, the property fails and a counter-example is generated,
see Figure 4. As can be derived from the trace, the value of
pcout is not specified in the case that the PC has already

I'This is expressed in PSL using the c-like ?-operator for an if-then-else
construct, i.e. the property A — C' is transformed to A 7 C' : 1 due to
syntactical restrictions of our PSL parser.

1 property PCOUT-COV =

2 // @insertMuxForSignal: pcout select
3 always(

4 // RESET

5 ((reset == 1) ?

6 (next(

7 pcout == 0 && pcinc ==

8 )) 1) &&

9

10 // INC

11 (((reset == 0) && (le == 0) &&
12 (pc < 2047)) ?

13 (next (

14 (prev(en) == 1) ?

15 (pcout == prev(pc) + 1)

16 (pcout == prev(pc))

17 )) 1) &&

18

19 // LOAD

20 (((reset == 0) && (le == 1)) ?
21 (next(

22 (prev(en) == 1) ?

23 (pcout == prev(din))

24 (pcout == prev(pc))

25 )) 1) &&

26

27 select == 1

28 ) —> (

29 next(select == 1) // covered?
30 );

Figure 3. Coverage property for the program
counter.

0 1 2
en
le
reset
select
pcout_orig 2047 o
pcout_orig_not 0 2047
pcout 2047 2047

Figure 4. Counter-example for program
counter coverage.

reached the end of the address space (address 2047) at time
point 0. Looking again at the properties in Figure 2, it can
be seen that the gap is due to the assumption in line 13 of
property INC.

Note that the trace of the counter-example gives us infor-
mation on the actual behavior of the circuit in the scenario
that has not been properly specified. The original value that



Table 2. Results for the block-level coverage.

Block #0 | CPU time mem
register bank 2 1.50s | 18 MB
program counter 2 0.08s | 9MB
control unit 24 0.08s | 9MB
data memory 1 2.88s | 42 MB
program memory 1 1.15s | 25 MB
ALU 3 8.58s | 32 MB

is generated by the circuit is shown as signal pcout_orig
in the trace. Obviously the PC performs a wrap-around and
starts over at address 0 when it reaches the end of the ad-
dress space.

There are different possibilities how to close the cover-
age gap that has been revealed by our approach. One could
add a property which describes the behavior of the PC in
the forgotten scenario and then check again for coverage.
As an alternative, the scenario can be directly excluded in
the coverage property. For the example at hand we choose
to exclude the scenario because the specification itself does
not specify the behavior of the PC at the end of the ad-
dress space. It is left to the programmer to avoid this sit-
uation. The scenario can be excluded from the coverage
check by the additional assumption (pc < 2047) in the cov-
erage property. With this additional assumption the cover-
age property holds, i.e. the output pcout is fully covered
by the properties with respect to all important scenarios.

In the same way coverage properties have been generated
for the outputs of all hardware blocks of the RISC CPU. The
results of the final full coverage proof are shown in Table 2.
The first column gives the name of the hardware block. In
the second column the number of outputs are given that have
been checked for coverage in the respective block. The last
two columns show the run-time and the needed memory for
the coverage check. Note that the run-times and memory
requirements are in the same order of magnitude as for the
verification described in Section 4.1.

In total, if all properties hold that have been specified
during the verification and if they cover the entire behavior
of a design in terms of the coverage approach, then the prop-
erties form a complete and non-ambiguous specification of
the design. This complete verification can be achieved step-
wise by closing all coverage gaps that are being revealed by
our approach.

Whenever a coverage check fails and a counter-example
is generated for the uncovered scenario, the verification en-
gineer has to decide whether the gap has to be considered
harmful. The counter-example provides information on the
actual behavior of the circuit in the uncovered scenario. If
the behavior does not meet the specification then there is a
bug in the design. If the behavior conforms to the specifica-
tion then there is a coverage gap and the verification has to
be completed by adding a property. Afterwards the cover-

Table 3. Results for the instruction set verifi-
cation.

Category #p | CPU time | max. mem
load/store 6 9545 s 122 MB
arithmetic 8 487.25 s 153 MB
logical 8 48.65 s 90 MB
jump 5 16.53 s 80 MB
other, reset | 6 27.32s 89 MB

age check has to be performed again.

But as for the example above it is also possible that the
specification itself is incomplete and the verification engi-
neer has left out certain scenarios intentionally. In this case
the unspecified scenario can be excluded from the coverage
check by an additional assumption in the coverage property.

In any case our approach provides a feedback for the
verification engineer and enables him to reason about the
uncovered scenarios. In this way it supports design under-
standing and it helps to improve the quality of the verifica-
tion.

4.3. Top-Level Verification

Based on the successful verification of all involved hard-
ware blocks, the instruction set of the RISC CPU has been
formally verified. A property has been formulated for each
of the 32 instructions that checks if the effects of the in-
struction meet the specification. These properties affect all
of the hardware blocks. Due to page limitation we only give
the results of the verification, see Table 3. For details we re-
fer the reader to [7]. The first column gives the category of
the verified instructions. The number of properties for the
respective category can be found in the second column. The
last two columns give the total run-time and the maximum
memory needed during the verification.

4.4. Top-Level Coverage

In contrast to the block-level verification the properties
for the instructions of the RISC CPU do not consider single
outputs or signals. In fact the instruction set verification in-
volves different hardware blocks and their communication.
Therefore the notion of coverage at this level is not as clear
as for single hardware blocks. Obviously it is not sufficient
to prove the coverage of the outputs of the CPU because the
input/output interface is only affected by few instructions.
To be sure that the properties form a complete specification
of the circuit’s behavior, the state bits have to be considered
as well. If the state of the circuit is uniquely determined at
any point in time, its behavior is fully covered in terms of
our approach.

As an example the status bits of the RISC CPU are con-
sidered — the zero flag and the carry flag that indicate the



1 assign OPCODE = instr.range(15,11);
2 assign DEST = instr.range(10,0);

3

4 property JMP =

5 always(

6 reset == 0 &&

7 OPCODE == 711110~

8§ ) —> (

9

10 // jump to target address

11 next( pc.pc == DEST ) &&

12

13 // no sideeffects

14 next (

15 (stat.C == prev(stat.C)) &&

16 (stat.Z == prev(stat.Z)) &&

17 (reg.reg[0] == prev(reg.reg[0])) &&
18 (reg.reg[l] == prev(reg.reg[l])) &&
19 [...]

20 (reg.reg[7] == prev(reg.regl[7]))
21 )

22 )

Figure 5. Property for the jump instruction.

result of the last logical or arithmetic operation (see also
Figure 1). Among the properties of top-level verification
there are 32 properties for the instructions and a reset prop-
erty. In order to achieve full coverage with this partitioning
of the properties, every property has to define the value of
the status bits, regardless whether the respective instruction
changes the flags or not.

As an example consider the property for the jump in-
struction in Figure 5. It states that whenever there is no re-
set (line 6) and the current instruction is a JMP (line 7) then
the program counter is set to the target address in the next
cycle (line 11). This obviously describes the correct behav-
ior of the jump instruction. However, in order to achieve
full coverage the property must also specify what the jump
instruction does not do. This is expressed in lines 14 to 21
which state that in the next cycle the status bits and the con-
tent of the registers remain unchanged.

As a consequence, all properties have to be assumed in
the coverage property for the status bits. In this way, a large
monolithic property is generated including all instructions.
However, the final coverage proof could be carried out faster
than some of the original properties that have been used for
verification. The coverage proof took 72.68 CPU seconds
and used 119 MB of main memory. This clearly demon-
strates the feasibility of our approach. It could be proved
that under all circumstances the value of the status bits is
unambiguously defined by the instruction set properties.

5. Conclusions

In this paper we have demonstrated how coverage es-
timation can be applied in Bounded Model Checking. In a

case study it has been proven that all the outputs of the hard-
ware components of a RISC CPU are fully covered by a set
of properties. Results on run-time and memory usage of the
verification and the coverage check have been provided. It
could be shown that the costs for the coverage check are
comparable to the verification costs.

Furthermore we have presented an approach how the
technique from [8] can be applied on a higher level. As an
example we have shown that the status bits of a RISC CPU
are fully described by a set of properties used for the in-
struction set verification. In order to achieve full coverage,
the properties have to be written in an appropriate style.

Overall, the techniques presented here offer improve-
ments in the quality of verification and in design under-
standing while being easy to integrate.
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