2017 IEEE Computer Society Annual Symposium on VLSI

Towards Making Fault Injection
on Abstract Models a More Accurate Tool
for Predicting RT-Level Effects

Tino Flenker*, Jan MalburgT, Gorschwin Fey*T, Serhiy Avramenko?, Massimo Violantet, Matteo Sonza Reorda?
*Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
TInstitute of Space Systems, German Aerospace Center, 28359 Bremen, Germany
iDepartmen‘[of Control and Computer Engineering, Politecnico di Torino, 10129 Torino, Italy
Email: flenker@cs.uni-bremen.de, {jan.malburg, goerschwin.fey} @dlr.de,
{serhiy.avramenko, massimo.violante, matteo.sonzareorda} @polito.it

Abstract—Fault injection and fault simulation are a typical
approach to analyze the effect of a fault on a hardware/software
system. Often fault injection is done on abstract models of the
system either to retrieve early results when no implementation
is available, yet, or to speed-up the runtime intensive fault
simulation on detailed models. The simulation results from the
abstract model are typically inaccurate because details of the
concrete hardware are missing.

Here, we propose an approach to relate faults from an
abstract untimed algorithmic model to their counterparts in
the concrete register transfer models. This allows to understand
which faults are covered on the concrete model and to speed up
the fault simulation process.

We use a mapping between both models’ variables and
mapped timing states for fault injection to corresponding vari-
ables on both models. After fault simulations the results are
compared to check, whether a given fault produces the same
behavior on both models. The results show that an injected fault
to corresponding variables leads to the same behavior of both
models for a large share of faults.

Keywords — fault simulation, fault injection, mapping models

I. INTRODUCTION

Hardware systems are omnipresent in our daily life. At
the same time they gain in complexity. Depending on the
application scenario, a system must continue to work properly
even under internal faults. At the same time, progress in circuit
technology makes the components more susceptible to faults.
E.g., for space applications soft-errors in hardware due to
cosmic radiation must be handled. Therefore integrated circuits
in space applications must be soft-error resilient. One way
to prove the system’s resilience to soft-errors is the use of
proton- or neutron-beams. This approach, however, has several
drawbacks. First of all, the validation of a design against soft-
errors should be done as early as possible, but the evaluation of
soft-errors based on proton- or neutron-beams requires silicon
chips. Second, such tests are expensive and may not yield very
much information about the part of the design, that requires
additional hardening. A widely used alternative is register
transfer level (RTL) fault simulation, where artificial bit-flips

This work was supported in part by the University of Bremen’s Graduate
School SyDe, funded by the German Excellence Initiative and the Ger-
man Research Foundation (DFG, grant no. FE 797/6-2), by the European
Union (IMMORTAL project, grant no. 644905) and has received funding from
the European Union’s Horizon 2020 research and innovation programme (grant
agreement no. 637616).

2159-3477/17 $31.00 © 2017 IEEE

DOI 10.1109/ISVLSI.2017.99

533

are introduced into flip-flops and latches of the design. Sanda
et. al. showed that fault simulation models work very well for
radiation induced soft-errors [1].

But modern hardware designs get more complex and typi-
cal fault simulation on RTL becomes computationally expen-
sive. For example, the authors of [2] used several FPGA em-
ulation systems and a petascale computing system to evaluate
different soft-error protection schemes. Fault simulation on a
higher level of abstraction can largely reduce the computational
cost. However, existing higher level fault simulation does badly
correspond to RTL fault simulation [3].

The technique presented in this paper ultimately aims to
predict the effect of faults on RTL by fault injection on
abstract level. As a first step we study how to determine
correspondences between fault injection in abstract models and
fault injection in RTL models. This is a challenging problem as
typically the results for the two levels may differ arbitrarily [3].
However, in certain situations results can be correlated [4].
Thus, drawing conclusions about the behavior of the RTL
model by fault simulation of the corresponding abstract model
is a challenging task.

We propose an approach based on a mapping between
variables of the abstract and the RTL model. Based on this
mapping we correlate the results of abstract and RTL fault
simulation. The approach works even though timing informa-
tion on the abstract level is absent. To achieve this, for both
hardware models synchronized fault lists are generated. The
synchronization is done by state information of a given set of
variables present in both models. After this, fault simulation
is performed and the faults are categorized which allows to
find equal behavior for corresponding parts in the models. Our
experimental results show that our mapping approach allows to
predict the results of the RTL fault simulation quite accurately.

This paper has the following structure. In Section II the
presented work is compared with related work. Section III
depicts the overall flow of this work. Sections IV and V explain
how fault list synchronization is done and how faults are
categorized, respectively. The evaluation metric is presented
in Section VI. Next, Section VII discusses the advantages and
limitations of our approach. Finally, the experimental results
are described in Section VIII and at the end a conclusion is
given in Section IX.

IEEE
computer
® psouety

I1.

For evaluating a design with respect to robustness against
soft-errors, for example introduced by radiation, the system
is simulated while artificial faults are introduced. These faults
can be introduced at different levels of abstraction. One level
typically used is the RTL. At this level, storage elements are
randomly flipped to simulate the effect of radiation on the real
chip [5]. Sanda et. al. showed that RTL fault injection very
closely relates to real radiation caused faults [1]. However,
this type of simulation is computationally expensive.

An approach to reduce the computational cost is to com-
mence fault injection at a higher level of abstraction. There
are several techniques that evaluate the effect of soft errors on
higher levels of abstraction, e.g., [4], [6], [7], or [8].

In case of software level fault injection, the value of
program variables or contents of the heap memory can be
changed [8]. The main advantages of software level fault
injection is the speed and that no knowledge of the underlying
hardware is needed.

Instruction set architecture (ISA) based fault injection [7]
introduces errors by changing the value of ISA registers of the
design. Compared to the source code level fault injection, this
means that stack-pointers and return addresses for functions
may be affected, resulting in irregular program flow. ISA
based fault injection is typically done by using a debugger
or instrumenting the test program at assembly level.

Micro-architecture level soft-error injection uses a model
of the design under test [6]. This model includes not only
the ISA visible part of the design, but also internal storage
elements, like caches, load/storage queues, issue queues or
branch prediction logic. The faults can be introduced in all
of those memory elements leading to reading from or writing
to incorrect cache lines or performance penalty due to incorrect
branch prediction.

All the above mentioned abstraction approaches have in
common that they do not take into account the relation be-
tween soft-errors happening in real systems and the abstracted
system. This can lead to large deviation between the behavior
of the real system and the abstracted system with respect to soft
errors [3]. The approach presented in this paper mitigates this
difference by relating soft-errors to corresponding abstracted
faults.

The authors in [4] evaluate the effect of soft-errors on
lossless compression algorithms. In their study they evaluate
the robustness by source code level fault injection and ISA
level fault injection. The authors do not deny that the source
code level fault injection is highly inaccurate, indeed they
focus on relative comparison to rank compression algorithms
in term of robustness. Furthermore the figures obtained by
source code level fault injection are processed using some
hardware dependent information in order to achieve more
realistic estimations. In contrast to our approach, the authors
of [4] want to identify the best option among a set of candidates
of the same class of algorithms, considering compression
algorithms as a case of study. Further they consider the early
phases of the design flow in which all the details about final
hardware are not available yet, thus RTL fault injection is not
an option in their case.

In [9] a combination of gate level and timed behavioral
level fault simulation is presented. In that approach each

RELATED WORK

534

module of the design is provided at gate level as well as
behavioral level. The fault injection is applied to the gate level
model and the effect on the corresponding module’s outputs is
computed. Those outputs then are used to drive the behavioral
models of the modules not affected by faults. Compared to
our approach, this approach allows only a limited amount of
abstraction as the faulty modules must still be simulated at
gate level, further their behavioral models must still be timed
models, where our approach allows any level of abstraction.

The RAVEN tool [10] computes soft error vulnerability
estimation by first partitioning the design into small blocks.
Then they do fault simulation of these blocks with respect to
faults at their primary inputs to compute the probability that a
block propagates a fault at one of its inputs towards its outputs.
Additionally, RAVEN uses fault simulation to compute the
probability of the block propagating SETs and SEUs appearing
inside the block to its outputs. In the last step those measured
probabilities are used to compute an overall estimation of the
circuit vulnerability against soft errors. The RAVEN tool is
orthogonal to the approach presented in this paper.

III.

This section explains the overall flow of our approach,
schematized in Fig. 1.

First, a partial mapping between the variables of the
abstract and the RTL model is required. This partial mapping
can be given as an input or derived by a heuristic [11]. One
requirement to the partial mapping is that the variables defining
the architectural state of both models have a good matching.
The architectural state is defined by a subset of the models’
variables which are mappable from the abstract to the RTL
model. This is required because we want to find corresponding
effects of faults in both models which requires the two models
to be synchronized with respect to their behavior. The output
produced by the models is considered as behavior.

Second, simulation on both levels of abstraction is per-
formed to validate the method. For fault list generation @ a
golden run simulating the same use case on both models is
mandatory, because the same use case on both models produces
the same results on both levels. For example, calculating the

G
mappings

OVERALL FLOW

generation of
fault list

@

L categorisation

/ results ;

Overall flow for fault injection and categorization process

Figure 1.

Fibonacci numbers on both models gives the same numbers
on both levels. The golden run produces a trace from which
we retrieve values of the variables and timing information. In
addition, a memory dump at the end of the golden run is stored.
The golden traces and the mapping enable generating synchro-
nized fault lists. Two synchronized fault lists map a fault from
the abstract model to a corresponding fault in the RTL model.
Section IV provides details about the synchronization.

Next, the generated fault lists are used for fault simulation.
For each fault on the corresponding list, a simulation on each
model is executed. At the end of the simulation a memory
dump is stored in a separate file. The next step, described in
Section V, is the categorization of the faults @. The memory
dump resulting from the golden run is used to determine the
differences in the resulting data.

The results yield an insight whether the mapping between
variables is useful to predict actual fault effects on RTL by the
fault simulation of the abstract model.

IV. FAULT LIST SYNCHRONIZATION

This section describes the process for the fault list syn-
chronization. At first, all needed definitions for the fault list
are presented. Finally, the fault list generation is shown which
also ensures the synchronization of the fault list for the abstract
and the RTL model. The synchronization is for considering
the architectural states in two models. Thus, two fault lists for
models of different abstraction levels are called synchronized,
if

e both lists contain the same faults and
e the faults are injected, when the models have the same
architectural state.

To simplify the presentation we consider all variables in
the RTL model and in the abstract model to be bit vectors.
The extension to other types of variables is straightforward
and handled by our implementation. An exception are pointer
which are not considered in this approach. The sets Y and
V€ contain the variables of the abstract model A and the
RTL model C, respectively. In the following, registers and
signals out of C are also called variables. For a given variable
v € VAUVC, bitsize (v) returns the number of bits of that
variable.

For fault simulation a fault location [€ L is defined as
a tuple (v,b) of a variable v out of the set of the models
variables) and one variable index b which specifies the
intended bit vy, to be flipped in the fault simulation.

l:=(v,b) withveVand 0<b<bitsize(v)

The set V represents VA and VC as a generic placeholder. The
domains £4 and £€ contain all fault locations of the abstract
and the RTL model, respectively, where the fault locations
I € LA contain the variables v out of V* and analogously the
variables in the fault locations | € £E are from V<.

Next, to get the correspondence between the variables
of the models on the different abstraction levels, a mapping
function is needed. Thus, the function map is introduced which
represents a partial mapping for the correspondences between
the variables from the abstract model V4 to the variables of
the RTL model V¢ if exist.

map : VA —s V¢

535

This function is used for the calculation of the points of time
for the fault injection on abstract level.

Subsequently, the identification of a point of time is
mandatory which indicates when a given fault is injected. The
definitions for a fault’s point of time are necessarily different
for the two models, because on the abstract level no accurate
timing information is present but on RTL this information
exists.

To get the points of time 7 for the fault injection on RTL,
the timing information of the RTL trace, e.g., in simulation
cycles, is used. So all values in TC are bounded between 0
and Cyc where Cyc is the number of clock cycles for the
golden simulation of C.

TC¢.={t|0<t<cyc}

The abstract model does not have a time reference. Instead
the architectural states are used to construct a time reference
for the fault injection. Later these two time references are used
to synchronize faults. The function tr. for a trace of the RTL
model indicates the value assigned to a variable at a specific
point of time. The RTL trace is a mapping of a variable out
of V¢ and a point of time out of 7 to an assigned value out
of N:

tre : V6 x T¢ — N

The trace is required by the determination of the architectural
states of the abstract model which is used for the fault list. For
the determination the trace of the RTL model is used, because
this trace is more detailed in comparison to the trace of the
abstract model.

The unique points of time for the abstract model are stored
in a sequence defined as follows:

TA = (@117 . ..{)nhcl)’ .. (@1157 . ..f)nt,ct)

The 7+ is a sequence of the values of a flexible number
of variables n. The sequence only adds a new tuple, if the
considered tuple has a changed value ©;; of any variable in
comparison to the predecessor tuple. Thus, 0;; # 0;;—1 holds
for at least one j. To each tuple the number of occurrences c;
of the current combination of values ©;; of the variables is
appended. The count is used for an exact determination of the
point of time in the simulation of .A.

Example 1. Considering a data bus model. The model has
the primary input Dataln and the primary output DataOut.
The values in the tuple (Dataln, DataOut,c;) occur in the
following sequence:

(0,0,1)(2,0,1)(0,0,2)(0,2,1)(2,2,1)

The first two values of the tuples above show the values of
the given variables. During the golden simulation first the
values of DatalIn and DataOut are 0. Because this is the
first occurrence of this combination in the trace, the counting
value 1 is appended to the tuple. In the next tuple the value
of Dataln is changed and the combination is a new one.
Therefore, a 1 is appended again. The third tuple consists of
the values (0,0) again which is a combination that already
occurred one time before, so the count value of 2 is added.

The function calc_timing () in Algorithm 1 shows
how unique points of time for the abstract model’s fault list
are computed.

Algorithm 1 Computation of timing values for fault list of A

1: function calc_timing (variables, tr., map)
2: Frame last + [X,...,X]

33 1«0

4 for t < Cyc do

5: Frame frame

6 for all absVar € variables do

7 RT Lvar < map|absV ar]

8: frame.append(tr.(RT Lvar, t))
9: if frame # last then

10: count + counts|frame]

11: TA.append(frame, count)

12: counts[frame] +=1

13: last < frame

14: t+t+1

15: return 74

The input of calc_timing () is a list of variables of
the abstract model (variables C VA). The variables of the
abstract model are used to determine their points of time. In
addition to this, the trace of the golden RTL simulation #r. is
given. Also the mapping (map) between the variables of the
abstract model and the RTL model is given. The generation of
the points of time is done with the trace tr. instead of using
the trace of the abstract model because the RTL trace is cycle
accurate and it allows due to concurrent execution multiple
changes of the values in one time step. On the other side the
abstract trace only changes the values step by step. In some
cases the abstract trace has some value combinations which
do not exist in the RTL trace and vice versa.

The results of calc_timing () are the points of time TA
for the fault injection on the abstract model. In the next step,
the values of 7+ are compared with the trace of the golden
simulation of the abstract model and all combinations not
included in the trace are removed. This reduces the number
of fault injections but guarantees a mapping between the fault
locations of both models for the simulation.

Given the time references, the fault lists are synchronized
as explained in the following. Initially, the definitions for the
different fault lists are shown.

FACLAXTA
FeCLfxTE
Each fault list is a subset of the cross product of all fault

locations (LA or £€) and a Cpoint of time of the corresponding
abstraction level (T4 or T°).

Next, the function Ilmap maps a given fault loca-
tion I € LA with I* = (v,,b,) to the corresponding fault
location 1€ € £ with 1€ = (v, b.).

Imap(1*) := 1€ with v, = map(vy) A by = b,
The function tm represents a mapping of a point of time

in 7€ to the corresponding tuple in 7. This helps to keep
the fault lists synchronized.

tm:TC — TA

Fig. 2 helps to explain how the synchronization of F* and
FC€ is done. The fault list for the abstract model F* is shown

536

.7:‘A = (lf7 (@11, .. .’lA)nl,Cl)),. ..

y

(l,,'ﬁ, (’<y e @'nh Ct))

K

tm - TA ‘[(’Ijllv"'@n17cl)s [(i}lta"'{)’nt7ct)
T t1, L t
]:C = (llca t1)7 cee (lgm tt)
Figure 2. Synchronization of fault lists

on the top. In the center the time mapping tm between the
points of time is shown. Below the mapping is the resultin
fault list for the RTL model F€. The first element in F
and FC respectively consists of the first selected fault location
I{* € £4 and a randomly selected corresponding point of time.
In 7€ it is t; and in F* it is tm(¢;). In Fig. 2
tm(tl) = (1A)117 - f)nlv Cl) where @117 e Upt

are the values of the considered n variables out of VA
at the corresponding point of time ¢; in C. The value c;
is the count value for the exact determination of the
point of time in A because it is possible that the val-
ues 011,...0,1 occur multiple times. For the fault locations
Imap(12) = 1§ holds where 0 < i < m and m is the num-
ber of faults in the list. Both fault lists contain the same
corresponding fault locations with the same corresponding
points of time. Thus, 74 = (I{\, tm(t1)), ..., (IA, tm(t;)) and
FC€ = (Imap(I{*), t1), . .., (Imap(I{*), ;). Fig. 2 shows that to
each fault in the corresponding fault list and depending on the
given model the same associated point of time is assigned.

As a result, both fault lists contain the same faults with the
same points of time and are synchronized. The next step shown
in Fig. 1 is the fault simulation. The results of the simulation
are used for categorization described in the next section.

V. FAULT CATEGORIZATION

This section describes how fault categorization is done.
First, we explain how the faults are divided in general and
afterwards how two corresponding faults are categorized.

After fault simulation is done, the faults need to be checked
if the faults on both abstraction levels yield the same effect.
In case of a good mapping between the synchronized fault
lists simulation on both levels should yield the same results,
otherwise the results may be arbitrarily different. In case of
similar results it is possible to argue about the RTL model
given the results for fault simulation on the abstract level.

Fault injection and simulation obtain a partition of all faults
out of FA U FC = F into the two sets unknown Fyy, and
critical F,;. For the sets Fepiy N Fupen = O holds.

The faults assigned to JF,, are called unknown. A fault is
called unknown if the fault causes no observable effect by the
given test stimuli but it is also possible that the fault is critical
with another set of test stimuli. The second set of faults is
called critical (F.,;). A fault is called critical if the effect of
the fault is observable.

Two given faults (Io,t,) € F4 and (I, t.) € FC with
Imap(l,) = l. and t, = tm(t.) are assigned to one of the
following categories:

different:
similar:
equal:

One fault is assigned to F,, and the other to F_,;.
Both faults are assigned to the same set of faults.
Both faults are assigned to F, or both faults are
assigned to F.,; and also produce equal observable
results in fault simulation.

All other fault pairs, which do not fulfill the above mentioned
conditions are not considered, because these pairs do not
correspond to each other.

VI

This section presents the evaluation metric used for our
approach.

First, the faults of the abstract model are divided to F*

unk
and FZ, by fault simulation. The unknown faults of the

abstract model are represented by F-A and the critical faults

. unkn 7
are in F%,. The sets for the RTL model are divided to FC
and FC

nkn
crit

and have the corresponding meaning to the sets of
the abstract model.

EVALUATION METRIC

The function fimap maps a given fault f, € F* with
fa = (lg,t,) to the corresponding fault f. € FC with
f c = (107 tc)-

fmap(f,) := fo with l. =Imap(l,) Nt, = tm(t.)

The set F /“\4,1 is a subset of F4 and includes all faults of
the abstract model which can be mapped to the RTL model.
Thus, .7-"/%1 is the set of the corresponding mapped faults out
of the RTL model which are considered on abstract level.

FSq o= {fe € FC | fo € Fi N fmap(fa) = f.}

The faults about which no conclusions can be drawn are
in the set F€ \ FS,. That are for example faults which do not
exist for the abstract model because these faults affect variables
which have no corresponding variables in the abstract model.

To denote the share of all considered faults of the abstract
and the RTL model the metrics and sh, and sh. are used.

_ |]: éA;il U]:L‘t/gkn ‘
A
The metric sh,. is defined analogously to sh,.

]:C JT_'C

shg

In the following the sets F,,,, F, , are subsets of }'f,l and
Fa., Fo are subsets of Fixy, respectively. Thus, only faults

injected to mappable variables are considered.
VII.

This section summaries the advantages and limitations of
our approach.

DiscuUssION

First, some limitations we need to consider are discussed.
An important role for appropriate results has the mapping
of variables between the models which is given as an input.
No useful results will be obtained, if the mapping does not
give good correspondences between both models. In addition,
in our case the abstract model does not have any timing
information and does not have structural similarities with the
RTL model. The mapping is not able to give correspondences
for missing structures in the abstract model. Nevertheless,

537

structural information which exists in both models enables a
useful mapping. The absent timing information in the abstract
model makes a synchronization method essential. An insight
is already given in Section IV.

Next, the advantages are discussed. In [3] the authors do
fault injection on different levels of abstraction. However,
their results show that the setting does not yield conclusions
regarding the RTL model by simulation on the abstract level.
The authors in [9] also combine RTL model simulation with
a more abstract behavioral model, however, their approach
requires that the abstract model is clock synchronous with
the RTL level which allows only a limited abstraction. Our
approach is capable of finding corresponding points of time
in different abstraction levels despite the timing information
is not available on abstract level. As result the next advantage
is that synchronized fault lists enable the possibility to get
conclusions about the RTL model by results of the fault
injection simulation on abstract level.

VIII.

This section presents the experimental results of the pre-
sented approach. The experiments are applied on the y86
processor'. This is a small implementation of a processor,
which supports a subset of the x86 instruction set and also
exists on RTL and as a C++ implementation on abstract level.

EXPERIMENTAL RESULTS

The fault injection on abstract level is performed by a GDB
script using the python API which observes the variables of the
architectural state and flips the bit if the correct point of time
is reached. On RTL the fault injection is done by QuestaSim.

For calculating the points of time for the abstract model
four variables are used (opcode, instruction pointer, two reg-
isters (eax, ebx)). As use case, an assembler program with
15 instructions for calculating the Fibonacci numbers is used.
As result 29 points of time are obtained, which exist in both
models.

Next, for fault generation five variables (opcode, instruc-
tion pointer (IP), eax, ebx and the zero flag (ZF)) are
chosen. For these variables the corresponding variables in both
models are known. The total number of faults is the sum of
all bits for all variables. By this, all possible faulty cases are
considered. But to reduce the sum of faults, for example for a
register variable, only one fault for one bit is generated. This
is because, it does not matter which bit is flipped, no effect to
the control flow is caused. For opcode a bit flip for all bits
is generated because the effect can be different for each fault.
In sum 609 corresponding faults are generated for the models.

The share of the considered faults for the abstract model
is sh, = 54% and for the RTL model is sh, = 9%. The
share of 9% is due to the small number of variables in the
abstract model in comparison to the number of variables in the
RTL model. Thus, a small number of variables can be mapped
between the models which also reduces the total number of
possible considerable faults between the models.

To analyze the effect of the faults on both models golden
simulation without fault injection is performed. At the end
of the simulation the memory is dumped. Next, for each
simulation with fault injection the memory is also dumped after
execution. Subsequently, the memory dumps are compared.

Uhttp://www.digitaltechnik.org/examples/Y86_seq.zip

Table 1. CLASSIFICATION FOR THE FAULTS OF THE Y86 MODELS
|]:L‘én ‘Fvcril | ‘Eﬁkn F ucnkn
311 355 298 254
% 51 58 49 42
Table II. CATEGORIES FOR THE FAULTS OF THE Y86 MODEL
| different similar | equal = Fuun Feris
146 463 388 185 203
% 24 76 64 30 33

Table I presents how the faults are classified on both
levels of abstraction. The line with # in the first column
shows the total number of critical or unknown faults. The
next line with % in the first column shows the percentage of
the classified faults. The abstract model has 298 (49%) faults
where the result for the given use case is unknown (F:2,).
The numbers show that the effect of the faults is observable

more frequently on RTL.

How two corresponding faults are categorized is shown in
Table II. The headline shows the category presented in the
given column. The second line shows the number of pairs
of faults classified to the given category. The percentage is
presented in the last line of Table II. Categorized as different
are 146 pairs of faults which mean on abstract level the fault
is in F i, and on RTL the fault is in F_; or vice versa. The
remaining pairs of faults are classified as similar which means
for both models both faults are in F,, or in F,;, respectively.
To be precise, the similar pairs are classified with a percentage
of 84% as equal. For these 388 memory dumps equal dumps
are obtained. From that 53% (33% of all fault pairs) of the
faults are critical (F.,) with an identical observed behavior
in the memory dumps. Of the equal pairs 48% (30% of all
fault pairs) are classified as not observable (F,uk,). These faults
produce no observable behavior on either level of abstraction
in the memory dumps.

The category of the fault pairs per variable is presented
in Table III. The first column shows the considered faulty
variable. The second column contains the number of faults
considered for the given variable. The next two columns
show the percentage of how many faults are categorized as
different and similar, respectively. The next column shows
the percentage of equal categorized fault pairs. The last two
columns show how the splitting of equal fault pairs. The
columns show the percentage of observable (F.;) and not
observable (F,) fault pairs.

The results for the opcode variable show that 52% of
the fault pairs have equal behavior. For all of these fault
pairs no faulty behavior can be observed in both models.
All faults on the abstract level are not observable by this
given use case. For 48% of the faults on RTL a different
behavior can be observed which is the cause for the 48% of
the different classified fault pairs. The register variables (eax,
ebx) show a different behavior in fault simulation for 28%
and 24%, respectively. Thus, 55% and 66%, respectively, of
the fault pairs have an equal behavior. For the zero flag
register (ZF) 100% of the fault pairs are equal and all faults
are not observable in both models. The fault pairs for the
instruction pointer (IP) have different behavior for 7% but
a large proportion of 93% with a similar behavior which is a
good result for an early work in this topic. More than the half
of the fault pairs (70%) cause an equal behavior in both models

Table III. CATEGORIES DIVIDED BY FAULTY VARIABLE

| | F | | different similar | equal ~ Feris Funkn

opcode 232 48 52 52 0 52
Ip 290 7 93 70 57 13

eax 29 28 72 55 38 17
ebx 29 24 76 66 28 38

ZF 29 0 100 100 0 100

where 81% (57% of all fault pairs) of this are observable
faults (F..). Thus, 81% of all observable fault pairs with
an equal behavior produce an equal memory dump on both
models.

For an early approach to observe the same behavior on
an abstract level without timing information and on RTL the
presented results are pretty good. We can show that for a
relatively large proportion (76%) of the considered faults at
least a similar behavior is observable. A percentage of 64% of
identical observed behavior is a promising result for an early
approach in this direction of research.

IX. CONCLUSION

The results in Section VIII show that with a given mapping
of variables from the abstract model to registers and signals
in the RTL model and synchronized faults for both models a
high rate of similar behavior of 76% is achieved.

As future work a bigger benchmark model can be used.
Besides, the influence of a fault can be analyzed to reduce the
number of faults to be checked. This is supposed to yield more
performance improvements.

REFERENCES

[1] P N. Sanda, J. W. Kellington, P. Kudva, R. Kalla, R. B. McBeth,
J. Ackaret, R. Lockwood, J. Schumann, and C. R. Jones, “Soft-error
resilience of the IBM POWERG6 processor,” IBM Journal of Research
and Development, vol. 52, pp. 275-284, 2008.

[2] E. Cheng, S. Mirkhani, L. G. Szafaryn, C. Y. Cher, H. Cho, K. Skadron,
M. R. Stan, K. Lilja, J. A. Abraham, P. Bose, and S. Mitra, “CLEAR:
Cross-layer exploration for architecting resilience: Combining hardware
and software techniques to tolerate soft errors in processor cores,” in
Design Automation Conference, 2016, pp. 1-6.

[3] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra,
“Quantitative evaluation of soft error injection techniques for robust
system design,” in Design Automation Conference, 2013, pp. 1-10.

[4] S. Avramenko, M. Sonza Reorda, M. Violante, and G. Fey, “A high-level
approach to analyze the effects of soft errors on lossless compression
algorithms,” Journal of Electronic Testing, vol. 33, pp. 53-64, 2017.

[5] P. Ramachandran, P. Kudva, J. Kellington, J. Schumann, and P. Sanda,
“Statistical fault injection,” in International Conference on Dependable
Systems and Networks With FTCS and DCC, 2008, pp. 122-127.

[6] M. Kaliorakis, S. Tselonis, A. Chatzidimitriou, N. Foutris, and D. Gi-
zopoulos, “Differential fault injection on microarchitectural simulators,”
in International Symposium on Workload Characterization, 2015, pp.
172-182.

[7] D. Skarin, R. Barbosa, and J. Karlsson, “GOOFI-2: A tool for ex-

perimental dependability assessment,” in International Conference on
Dependable Systems and Networks, 2010, pp. 557-562.

[8] K.S. Yim, Z. Kalbarczyk, and R. K. Iyer, “Measurement-based analysis
of fault and error sensitivities of dynamic memory,” in International
Conference on Dependable Systems and Networks, 2010, pp. 431-436.

[9]1 S. Mirkhani, M. Lavasani, and Z. Navabi, “Hierarchical fault simulation
using behavioral and gate level hardware models,” in Asian Test
Symposium, 2002, pp. 374-379.

[10] S. Mirkhani, S. Mitra, C. Y. Cher, and J. Abraham, “Efficient soft error
vulnerability estimation of complex designs,” in Design, Automation
and Test in Europe, 2015, pp. 103-108.

[11] T. Flenker and G. Fey, “Mapping abstract and concrete hardware models
for design understanding,” in Design and Diagnostics of Electronic
Circuits and Systems, 2017, pp. 20-25.

