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Abstract—SystemC-based Virtual Prototypes (VPs) are an
industry-proven solution to tackle the rising complexity of em-
bedded systems in the design flow. This paper proposes a com-
prehensive set of novel approaches that strongly enhance all major
aspects of a modern VP-based design flow. A strong emphasis is put
on automated formal verification methods and advanced coverage-
guided testing techniques tailored for SystemC-based VPs and also
the software. In addition, we consider VP modeling techniques
that cover functional as well as non-functional aspects and also
propose automated correspondence analyses between the hardware-
and VP-level to utilize information available at different levels of
abstraction. All approaches have been extensively evaluated with
several experiments that clearly demonstrate their effectiveness
in strongly enhancing the VP-based design flow, in particular
by drastically improving the overall quality in combination with
a reduction in time-to-market. Furthermore, this paper puts a
particular focus on the modern RISC-V Instruction Set Architecture
(ISA).

I. INTRODUCTION

Embedded systems are prevalent nowadays in many different
application areas ranging from Internet-of-Things (IoT) to auto-
motive and production as well as communication and multi-media
applications. Embedded systems consist of Hardware (HW) and
Software (SW) components and are typically small resource con-
strained systems that are highly specialized to implement application
specific solutions. Hence, design flows for embedded systems require
efficient and flexible design space exploration techniques to satisfy
all application specific requirements such as power consumption and
performance constraints.

To cope with the rising complexity of embedded devices, a Virtual
Prototype (VP) based design flow is being widely adopted [1]-[8].
A VP is essentially an executable abstract model of the entire Hard-
ware (HW) platform and pre-dominantly created in SystemC TLM
(Transaction Level Modeling) [9], [10]. In contrast to a traditional
design flow, which first builds the HW and then the Software (SW), a
VP-based design flow enables parallel development of HW and SW
by leveraging the VP for early SW development and as reference
model for the subsequent design flow steps. However, this modern
VP-based design flow still has weaknesses, in particular due to the
significant manual effort involved for verification and analysis as
well as modeling tasks which is both time consuming and error
prone.

This paper proposes several novel approaches that cover modeling,
verification and analysis aspects to strongly enhance the VP-based
design flow. It is a summary of the PhD thesis [11]. The contri-
butions are essentially divided in four areas: The first contribution
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is an open-source RISC-V VP that is implemented in SystemC
TLM and covers functional as well as non-functional aspects [12]—
[14]. The second contribution improves the verification flow for
VPs by considering novel formal verification methods and advanced
automated coverage-guided testing techniques tailored for SystemC-
based VPs [15]-[21]. The third contribution are efficient coverage-
guided approaches that improve the VP-based SW verification and
analysis, covering functional as well as non-functional aspects [22]—
[25]. The fourth and final contribution are approaches that perform a
correspondence analysis between RTL (Register-Transfer Level) and
TLM to utilize information available at different levels of abstrac-
tion [26], [27]. All approaches have been extensively evaluated with
several experiments that clearly demonstrate their effectiveness in
strongly enhancing the VP-based design flow. In the following we
summarize the main results of the four contribution areas.

II. OPEN-SOURCE RISC-V EVALUATION PLATFORM

The first contribution is an open-source RISC-V VP implemented
in SystemC TLM. The VP serves as evaluation platform for several
VP-based approaches.

RISC-V is an open and free Instruction Set Architecture
(ISA) [28], [29] which is license-free and royalty-free. Similar
to the enormous momentum of open-source SW the open-source
RISC-V ISA is also gaining large momentum in both industry and
academia. In particular for embedded devices, e.g. in the IoT area,
RISC-V is becoming a game changer. A large and continuously
growing ecosystem is available around RISC-V ranging from several
HW implementations (i.e. RISC-V cores) to SW libraries, operat-
ing systems, compilers and language implementations. In addition,
several open-source high-speed Instruction Set Simulators (ISS) are
available. However, these ISSs are primarily designed for a high
simulation performance and hence can hardly be extended to support
further system-level use cases such as design space exploration, pow-
er/timing/performance validation or analysis of complex HW/SW
interactions. The goal of the proposed RISC-V VP is to fill this
gap in the RISC-V ecosystem and stimulate further research and
development.

The VP provides a 32/64 bit RISC-V core with an essential set of
peripherals and support for multi-core simulations. In addition, the
VP also provides SW debug (through the Eclipse IDE) and coverage
measurement capabilities and supports the FreeRTOS, Zephyr and
Linux operating system. The VP is designed as extensible and config-
urable platform (as an example we provide a configuration matching
the RISC-V HiFivel board from SiFive) with a generic bus system
and implemented in standard-compliant SystemC. The latter point
is very important, since it allows to leverage cutting-edge SystemC-
based modeling techniques needed for the mentioned system-level
use cases. Finally, the VP allows a significantly faster simulation
compared to RTL, while being more accurate than existing ISSs.



In addition, the VP integrates an efficient core timing model to
enable fast and accurate performance evaluation for RISC-V based
systems. The timing model is attached to the core using a set of
well-defined interfaces that decouple the functional from the non-
functional aspects and enable easy re-configuration of the timing
model. As example a timing configuration matching the RISC-V
HiFivel board from SiFive is provided.

III. VERIFICATION OF SYSTEMC-BASED VPs

By virtue of their impact on the design flow, verification of VPs
is crucial. We consider novel formal verification methods as well
as advanced coverage-guided test-case generation techniques, which
are presented in the following.

A. Formal Verification using Symbolic Simulation

Formal verification of SystemC is very challenging due to its
object-oriented nature and event-driven simulation semantics [30]:

1) It must obviously consider all possible inputs of the Design-
Under-Verification (DUV).

2) A typical high-level SystemC DUV consists of multiple asyn-
chronous processes, whose different orders of execution (i.e.
schedules) can lead to different behaviors, these must also be
considered to the full extent by the verifier.

3) The defined state space very often contains cycles that arise
naturally due to the use of unbounded loops inside the asyn-
chronous processes.

4) The verifier is required to deal with the full complexity of C++
to extract a suitable formal model.

A promising direction to make the overall challenge more man-
ageable is to work on an Intermediate Verification Language (IVL)
that separates front-end and back-end issues. Such an IVL for
SystemC has been introduced in our previous work [31]. The IVL
is an open, compact and readable language with a freely available
parser designed for both manual and automatic transformations from
SystemC.

a) Stateful Symbolic Simulation: With the IVL in place one
can focus on developing techniques to enhance the scalability and
efficiency of the back-end (i.e. addressing the first three challenges).
To this end, we present a stateful symbolic simulation approach
together with a State Subsumption Reduction (SSR) technique at its
heart, for the efficient verification of cyclic state spaces in high-level
SystemC designs. More precisely, the stateful symbolic simulation
combines SSR with POR and Symbolic Execution (SymEXx) [32]
under the SystemC simulation semantics. POR prunes redundant
process scheduling sequences, while SymEx efficiently explores all
conditional execution paths of each individual process in conjunction
with symbolic inputs. Subsequently, the SymEx+POR combination
enables to cover all possible inputs and scheduling sequences of the
DUV exhaustively in a stateless manner. To deal with cycles, the
stateful search keeps a record of already visited states to avoid re-
exploration.

However, before discussing SSR, please let us note that two
major challenges must be solved to enable a stateful search in
combination with SymEx and POR. First, SymEx stores and ma-
nipulates symbolic expressions, which represent sets of concrete
values. Therefore, the state matching process, required by a stateful
search to decide whether a state has already been visited, involves
non-trivial comparison of complex symbolic expressions. Second, a
naive combination of POR with stateful search can potentially lead
to unsoundness, i.e. assertion violations can be missed. This is due to
the (transition) ignoring problem, which refers to a situation, where
a relevant transition is not explored.

SSR solves the first challenge by applying symbolic subsumption
checking, inspired by [33]. The basic idea is as follows. If the set
of concrete states represented by a symbolic state so contains the
set of concrete states represented by a symbolic state sj, sp is
subsumed by so and it is not necessary to explore s; if s has already
been explored. We employ a powerful exact subsumption checking
method which involves solving a quantified SMT formula. As this
computation is potentially very expensive, we also employ several
optimizations. To address the second issue, we develop a tailored
cycle proviso and show that its integration preserves the soundness
of our stateful symbolic simulation (i.e. SSR+SymEx+POR combi-
nation).

We have implemented the techniques in a tool named SISSI
(SystemC IVL Symbolic Simulator). Our preliminary experi-
ments [31] have already shown the potential of the SymEx+POR
combination in comparison with all available state-of-the-art formal
approaches. The experiments focus on demonstrating the efficiency
of the final stateful approach using an extensive set of benchmarks.

b) Experiments: We have implemented the presented stateful
symbolic simulation approach in Python (version 3.6.0) and evalu-
ated it using the extensive set of benchmarks available in the IVL
format. All experiments are performed on a 3.5 GHz Intel machine
running Linux. The time and memory limits are set to 1000 seconds
and 6GB, respectively. The abbreviations T.O. and M.O. denote
that the time and memory limit has been exceeded, respectively.
N.S. denotes an unsupported benchmark. For unsafe benchmarks
the verifier will stop once the first bug has been found, for safe
benchmarks it needs to prove correctness. Every benchmark contains
a cyclic state space. The Z3 solver [34] in version 4.5.0 is used to
handle all symbolic queries, since it provides quantifier support as
required for the SSR algorithm. We compare our tool SISSI against
KRATOS [35] the state-of-the-art model checker for SystemC for
handling cyclic state spaces.

Table I shows the results. It shows the benchmark name in the first
column and the verification result (V'), with S for safe and U for
unsafe, in the second column. The third (#/VL) and fourth column
(#P) shows the lines of code in IVL and the number of processes,
respectively. All runtimes are specified in seconds.

Our approach shows very competitive results compared to
KRATOS. Improvements up to two orders of magnitude can be ob-
served. This can especially be observed with up-scaled benchmarks,
e.g. the roken-ring, transmitter and pressure benchmarks. This also
demonstrates the scalability of our approach. For example, (nearly)
doubling the number of processes from 51 to 101 in the transmitter
benchmark does increase the runtime of our tool by 2.6x, whereas the
runtime of KRATOS is increased by 58.1x. On some benchmarks,
KRATOS shows better results but the runtime differences are not
significant. This can be explained as follows. KRATOS starts with a
coarse abstraction of the design and gradually refines it until a (real)
counter-example is detected or safety is proven on the (conservative)
abstraction. This is a complete approach that works very well for
benchmarks that require only a small number of refinement steps.
Furthermore, our approach is implemented in an interpreted language
and thus might have a larger overhead on easy benchmarks. Also, on
some safe benchmarks, KRATOS reports spurious counterexamples.
These benchmarks are marked with *.

c) Optimization and Application: In [17] we proposed Com-
piled Symbolic Simulation (CSS) to further boost scalability. CSS
is a major enhancement that augments the DUV to integrate the
symbolic execution engine and the POR based scheduler. Then, a
C++ compiler is used to generate a native binary, whose execution
performs exhaustive verification of the DUV. The whole state space



TABLE I
COMPARISON WITH KRATOS (RUNTIME IN SECONDS)

Benchmark V | #IVL | #P | KRATOS SISSI
buffer.p8 S 99 9 23.68 6.49
buffer.p9 S 107 10 526.78 14.46
pe-sfifo-sym-1 S 49 2 0.14 0.50
pc-sfifo-sym-2 S 65 2 0.17 0.53
pressure2-sym.nb.10.5 S 52 5 1.25% 12.23
pressure2-sym.nb.50.5 S 52 5| 153.30* 158.38
pressure-sym.nb.10.5 S 33 3 0.48% 5.58
pressure-sym.nb.50.5 S 33 3 51.90* 70.60
rbuf-2 S 82 3 15.58%* 0.67
rbuf-4 S 108 5 16.04* 0.79
simple-fifo-1¢2p.20 S 83 3 37.03 1.59
simple-fifo-1c2p.50 S 83 3 T.O. 3.99
simple-fifo-2¢1p.20 S 83 3 33.47 223
simple-fifo-2c1p.50 S 83 3 T.O. 6.07
simple-fifo-bug-1¢2p.20 | U 79 3 18.28 1.06
simple-fifo-bug-2c1p.20 | U 79 3 14.68 1.17
symbolic-counter.1.15 S 41 3 559.96 5.00
symbolic-counter.9.15 S 41 3 155.02 2.06
token-ring2.12 S 224 | 13 42.62 39.00
token-ring2.20 S 360 | 21 M.O 229.43
token-ring-bug2.17 8] 308 18 22.84 1.76
token-ring-bug2.50 U 869 | 51 M.O 5.14
token-ring-bug.20 U 220 | 21 133.20 1.95
token-ring-bug.40 U 420 | 41 M.O 3.58
token-ring.13 S 150 | 14 2.02 2.55
token-ring.15 S 170 16 32.09 3.20
token-ring.40 S 420 | 41 M.O 48.57
toy-sym S 86 5 0.46 1.56
transmitter.50 U 414 | 51 1.13 1.60
transmitter.90 U 734 | 91 M.O 3.54
transmitter. 100 U 814 | 101 65.69 4.21

of a DUV, which consists of all possible inputs and process sched-
ules, can thus be exhaustively and efficiently explored. To further
boost the verification process, we proposed an efficient parallelized
exploration algorithm in [18].

In [16] we first showed how to bridge the modeling gap between
the industry-accepted modeling pattern for TLM peripherals and
the semantics currently supported by SystemC formal verification
approaches. Then, we reported verification results for the interrupt
controller of the LEON3-based SoCRocket VP [3] used by the
European Space Agency.

B. Advanced Coverage-guided Testing Techniques

Despite the recent progress in formal verification of SystemC de-
signs as presented in the previous section, simulation-based verifica-
tion is still the method of choice for SystemC-based VPs in industrial
practice thanks to its scalability and ease of use. Basically, a set of
stimuli is applied to the Design Under Verification (DUV; which can
be either a whole VP, a set of components or a single component)
and for each stimulus, the actual behavior is checked against the
expected behavior (e.g. specified by reference outputs or temporal
properties). Since a VP is in essence a software model, simulation-
based verification for VPs is actually very similar to software testing
and therefore, techniques from the software domain can be borrowed
to ensure a high quality of verification results. For example, high
statement coverage of the DUV implied by the set of stimuli (also
referred to as test-suite in the following to reflect the software
testing point of view) is nowadays a minimum requirement. This
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Fig. 1. Overview on CGF for ISS verification

section dicusses two approaches for VP verification using coverage-
guided testcase generation. Both approaches have been shown very
successful in the SW domain to generate a comprehensive testsuite
with a high error detection rate.

The first approach is Data Flow Testing (DFT) for SystemC-based
VPs [20]. The contribution is twofold: First, we developed a set of
SystemC specific coverage criteria for DFT. This requires to consider
the SystemC semantics of using non-preemptive thread scheduling
with shared memory communication and event-based synchroniza-
tion. Second, we explained how to automatically compute the data
flow coverage result for a given VP using a combination of static
and dynamic analysis techniques. The coverage result provides clear
suggestions for the testing engineer to add new testcases in order
to improve the coverage result. The experimental results on real-
world VPs demonstrated the applicability and efficacy of the analysis
approach and the SystemC specific coverage criteria to improve the
testsuite.

The second approach leverages Coverage-Guided Fuzzing (CGF)
to improve the testcase generation process for verification of Instruc-
tion Set Simulators (ISS) [21], which is a crucial component in every
VP. In addition to code coverage we integrated functional cover-
age and a custom mutation procedure tailored for ISS verification.
Fuzzing is particularly useful to trigger and check for error-cases
and can complement other testcase generation techniques. As a case-
study we applied our approach on a set of three publicly available
RISC-V ISSs. We found several errors, including one error in the
official RISC-V reference simulator Spike. We present an overview
and the main results in the following.

a) CGF for ISS Verification: Fig. 1 shows an overview on
our approach for ISS verification. Essentially, it consists of two
subsequent steps: First a testset is generated by the fuzzer (upper
half of Fig. 1), then the testset is used to verify the functionality of
the ISS under test (ISS-UT, lower half of Fig. 1) by comparing the
execution results with other reference ISSs (can be multiple). In the
following we describe the fuzzer loop in more detail.

The fuzzer starts with an empty coverage and empty testset. The
fuzzer iterates until the coverage goal or the specified time limit is
reached. In each step the fuzzer generates a (binary) bytestream.
We interpret this bytestream as a sequence of instructions for the
ISS under test (ISS-UT). Every such bytestream is transformed into
an (ELF-)testcase, by embedding the bytestream into a pre-defined
ELF-template!.

ITechnically, we use a linker script that generates an empty section in the
ELF-template. Then we use objcopy utility with the —update-section argument
to overwrite the empty section with the (binary) instruction bytestream.



TABLE I
EVALUATION RESULTS - ALL EXECUTION TIMES ARE REPORTED IN SECONDS
-[V1..V7] MEANS ALL 7 ERRORS V1 TO V7 HAVE BEEN FOUND.

Time Coverage Errors found in ISS
Tests / Generator .

(sec.) Code ‘ Func. UT  Spike Forvis
TI: ISA Tests | 2 [9024% | 37.89% | [VI.V3] [ /
T2.1: Torture 1000 || 5280 | 74.30% | 56.20% | V1,v2 / H2
T2.2: 5000 || 26108 | 74.30% | 57.88% | V1,v2 / H2
T2.3: 10000 || 52168 | 74.30% | 63.56% | V1,V2 / H2
T3: CGF [ 32492 | 100.00%| 97.42% | [V1.V7] SI HIH2

The ELF-template contains prefix and suffix code (execution
frame) that is supposed to be executed before and after the actual
sequence of instructions. The prefix is responsible to initialize the
ISS into a pre-defined initial state. This includes initializing all
registers to pre-defined values to ensure that all ISS implementations
start in the same state. The suffix is responsible to collect results and
stop the simulation. It will write all register values into a pre-defined
region in memory (can contain additional content beside the register
values) to enable dumping the result of the execution to a file (an ISS
typically provides an operation to dump specific memory regions),
which can be compared.

The testcase is then executed on the ISS-UT. The ISS-UT gener-
ates execution feedback by tracing relevant information. The tracing
functionality need to be instrumented into the ISS-UT. The fuzzer
will analyze the execution feedback and update its coverage metrics
accordingly. In case the coverage is increased by executing the
testcase, the testcase is added to the fuzzer testset.

b) Experiments: RISC-V ISS Verification: As a case study
we built our CGF approach on top of libFuzzer and verified the
RISC-V ISS extracted from our open-source RISC-V Virtual Pro-
totype (VP) [36]. We denote this ISS as ISS-UT. As reference we use
the following two ISS:

1) Spike, the official RISC-V ISA reference simulator [37].
2) Forvis, an ISS implemented in Haskell aiming to be a formal
specification of the RISC-V ISA [38].

Table II shows the results. The table is separated into four main
columns. The first column (Tests/Generator) reports which testset is
used or how it has been obtained, respectively. In addition to our
CGF, we also use the official RISC-V ISA tests [39] and the RISC-V
Torture testcase generator [40] in the comparison to further evaluate
the effectiveness of our fuzzing approach. The second column (Time)
shows the time in seconds to generate (9h timeout for our fuzzer)
and execute the respective testcases. Please note, the RISC-V ISA
tests are directed tests that are hand-written and thus do not require a
generation step. The third column shows the code- (branch coverage
in particular) and functional coverage obtained by running the re-
spective testset. The coverage is measured based on the instrumented
ISS-UT. The fourth and last column shows which (and how many)
errors have been found by each approach.

Our fuzzing-based approach CGF is able to detect all errors found
by the ISA tests as well as Torture test generator and finds six
additional errors (4 in ISS-UT, 1 in Spike and 1 in Forvis), see
(Table II, column ”Errors found in ISS”, row T3). Most of these
errors relate to dealing with different forms of illegal instructions
in different steps of the execution process. Besides being coverage-
guided, a major benefit of our fuzzer is being not constrained to some
specific instruction subset, as for example Torture (and hence could
not detect the errors our fuzzer did, independent of the number of
testcases generated). In particular the fuzzer operates on the binary

level, thus it can be used to check for errors that might even be
masked by a compiler/assembler (as they do not generate illegal
instructions). This also enables to thoroughly check the instruction
decoder unit, which even revealed an error in the RISC-V reference
simulator Spike.

IV. VP-BASED SW VERIFICATION AND ANALYSIS

After verifiying the VP, the VP is used as platform for SW
development. Todays SW is becoming increasingly complex and
encompasses several abstraction layers ranging from bootcode and
device drivers to complex libraries and operating systems. Verifi-
cation of the embedded SW is very important to avoid errors and
security vulnerabilities.

In addition, modern systems must satisfy stringent requirements
on power consumption and performance. With a continuously fast
increase in number of implemented functionalities as well as in their
complexity, meeting these requirements has become one of the major
challenges in embedded system design. This new challenge demands
a major shift in the design flow where power optimization/man-
agement is no longer an afterthought but considered early at the
system level. Here, the focus is not on low-level techniques such as
power gating or dynamic voltage and frequency scaling but rather on
fundamental design decisions that have a large impact on the power
consumption such as power management strategies. These strategies
are typically implemented in firmware and can contribute a great deal
to the overall power saving by putting unused components into low-
power states and waking them up properly in an intelligent manner.
Validation of these firmware-based strategies is very important.

In the following we present our VP-based verification and valida-
tion approaches in more detail.

A. Verification of Embedded Software Binaries using VPs

Here we proposed two approaches. The first approach leverages
state-of-the-art CGF methods in combination with SystemC-based
VPs for verification of embedded SW binaries [23]. Using VPs,
the approach allows a fast and accurate binary-level SW analysis
and enables checking of complex HW/SW interactions. To guide
the fuzzing process the coverage from the embedded SW is com-
bined with the coverage of the SystemC-based peripherals. The
experiments, using real-world RISC-V embedded SW binaries as
examples, demonstrate the effectiveness of the proposed approach.
For example, we obtained a high coverage by fuzzing the TCP/IP
stack of the Zephyr operating system. The analyzed RISC-V binary
had 46,105 lines of assembly code.

The second approach leverages concolic testing tailored for bina-
ries targeting RISC-V systems with peripherals [22]. The approach
works by integrating the Concolic Testing Engine (CTE) with the
architecture specific Instruction Set Simulator (ISS) inside of a VP. A
designated CTE-interface is provided to integrate (SystemC-based)
peripherals into the concolic testing by means of SW models. This
combination enables a high simulation performance at binary level
with comparatively little effort to integrate peripherals with con-
colic execution capabilities. We applied our approach to analyze the
TCP/TP stack of FreeRTOS (v10.0.0) in combination with the RISC-
V port of the FreeRTOS kernel. Therefore, we essentially injected a
single (small) packet with symbolic size and content into the TCP
stack and checked for generic execution errors (including FreeR-
TOS assertions) and heap buffer overflows. We found several buffer
overflow based security vulnerabilities (the runtime was around 860
seconds, our tool executed around 2.5 billion RISC-V instructions
and checked around 14,500 symbolic execution paths).



B. Validation of FW-based Power Management using VPs

The recent advances in ESL power modeling and estimation en-
able to execute a particular SW application in FW/VP co-simulation
and check whether its power budget and performance requirement
are met. However, there is still a number of shortcomings with this
basic simulation-based approach. First, production-level SW is not
yet available in early design stages. Second, simulating a full SW
stack can still be very time-consuming, even at the speed of VPs.
Third, a SW application is executed under some predetermined work-
loads (i.e. application and environment inputs). These workloads
might very possibly miss rare corner cases where the power budget
is exceeded or the performance constraint is violated.

To address these shortcomings, we propose a novel VP-based
approach to assess the power-versus-performance trade-off of FW-
based power management [24]. Instead of executing real SW appli-
cations, the approach makes use of system-level workload scenarios.
The main novelty of the approach is the modeling of workload
scenarios based on constrained random (CR) techniques [41] that
are very successful in the area of SOC/HW functional validation and
verification. Each workload scenario corresponds to a system-level
use-case with a specific power consumption profile and is described
by a set of constraints. The constraints define the set of legal concrete
workloads that are conform to the intended use-case. The constraint-
based description enables automated generation of a large number of
different workloads within the scenario, hence reducing the risk of
missing a corner case.

Although the constraint-based workload description enables au-
tomated generation of a large number of different test-cases (cor-
responding to SW workloads), hence reducing the risk of missing
a corner case, a coverage metric to objectively measure the quality
aspect as well as to guide the generation of scenarios is still an
important missing piece. At the very least, it is mandatory that all
power states of each component are comprehensively exercised by
the generated test-cases. Recent experience from the industry [42]
makes a case for using stronger metrics. This paper argues that the
power states from different components or power domains are not
necessarily independent. This also applies to the context of FW-
based PM, since this global management scheme can change the
power state of several components simultaneously according to the
implemented strategy. Therefore, an appropriate coverage metric
must account for all possible combinations of these interdependent
power states. The cross coverage of power states is such a metric.

Thus, we propose a novel coverage-driven validation approach for
FW-based PM [25]. The main contribution is a feedback-directed
workload generation algorithm that generates testcases in an auto-
mated manner in order to maximize the cross coverage of power
states. The approach works in two phases: first a bootstrap phase
is performed to obtain preliminary coverage information based on
randomly generated test-cases and then a coverage-loop phase to
close the remaining coverage gaps. The main idea is to mix different
pre-calibrated SW blocks, that represent abstract workloads, in order
to move the system into specific power states. Fig. 2 illustrates that
idea: by mixing two SW blocks, the overall system load moves on a
line between these blocks. A refinement loop is integrated to further
guide the test-case generation process (adapt how exactly the blocks
are mixed by observing their real effects to reach a specific goal
load that triggers a power state transition). The applicability and
efficiency of the proposed approach in generating SW to obtain a
high power-state cross-coverage is demonstrated using four different
PM strategies.
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Fig. 2. Example goal load cuboid (three dimensional load vector) together with
the eleven SW block load vectors and all line combinations (dashed blue) shown
in the cross load state space of a CPU, memory and SPU component.

V. RTL CORRESPONDENCE ANALYSIS

The final contribution of this work are two approaches that per-
form a correspondence analysis between TLM and RTL.

The first proposed approach enables an automated TLM-to-RTL
property refinement [27]. It enables to transform high-level TLM
properties into RTL properties to serve as starting point for RTL
property checking. This avoids the manual transformation of prop-
erties from TLM to RTL which is error prone and time consuming.

The second proposed approach performs an RTL-to-TLM fault
correspondence analysis [26]. It enables to identify corresponding
TLM errors for transient bit flips at RTL. The obtained results can
improve the accuracy of a VP-based error effect simulation. An error
effect simulation essentially works by injecting errors into the VP
during SW execution to check the robustness of the SW against
different HW faults. Such an analysis is very important for embedded
systems that operate in vulnerable environments or perform safety
critical tasks to protect against effects of for example radiation and

aging.
VI. GOING BEYOND THE VP-BASED DESIGN FLOW

We considered additional verification and analysis aspects which
are related but go beyond the general VP-based design flow, which
we briefly summarize in the following. In [43] we proposed a novel
approach to SoC security validation at the system level using VPs.
We proposed a novel resilience evaluation framework combining
LLVM-based SW fault injection and SMT-based symbolic execution
in [44]. In [45], [46] we presented an optimized symbolic verification
technique for concurrent C programs using POSIX threads. [47]
discusses methods to enable an early, efficient and systematic design
of FW. Finally, in [48], [49] we proposed techniques for RISC-V
compliance testing that cover positive and negative testing aspects.

VII. CONCLUSION

In the last years the complexity of embedded devices has been
increasing steadily with various conflicting requirements. On the one
hand IoT devices need to provide smart functions with a high perfor-
mance including real-time computing capabilities, connectivity and



remote access as well as safety, security and high reliability. At the
same time they have to be cheap, work efficiently with an extremely
small amount of memory and limited resources and should further
consume only a minimal amount of power to ensure a very long
runtime.

To cope with the rising design complexity a VP-based design flow
is employed. In contrast to a traditional design flow which first builds
the HW and then the SW, a VP-based design flow enables HW/SW
Co-Design by leveraging the VP for early SW development and as
reference model for the subsequent design flow steps. However, this
modern VP-based design flow still has weaknesses, in particular due
to the significant manual effort involved for verification and analysis
tasks which is both time consuming and error prone. We proposed
several novel approaches to strongly enhance the VP-based design
flow and with this provides contributions to every main step in a VP-
based design flow.

All approaches have been extensively evaluated with several ex-
periments. In summary, these contributions significantly enhance
the VP-based design flow by drastically improving the verification
quality and at the same time reduce the overall verification effort due
to the extensive automatization.
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