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Abstract

A bottleneck during hardware design is the localization and the correction of faults — so-called
debugging. Several approaches for automation of debugging have been proposed. This paper describes
a methodology for evaluation and comparison of automated debugging algorithms. A fault model for
faults occurring in SystemC descriptions at design time or during implementation is an essential part of
this methodology. Each type of fault is characterized by mutations on the program dependence graph.
The presented methodology is applied to evaluate the capability of a simulation based debugging
procedure.

1 Introduction

During design of Very Large Scale Integrated (VLSI) circuits often functional mismatches between a
given specification and the final implementation occur. When an implemented design produces erro-
neous output due to the presence of one or more faults, debugging begins. First sophisticated automatic
approaches for debugging exist [1, 2, 3, 4] and several further diagnosis techniques have been developed,
e.g. [5, 6].

So far the work on comparing these approaches and on understanding which types of design bugs can
be efficiently handled by a certain approach is very limited. In [7, 8] different debugging approaches were
compared. In [8] a procedure based on explanation is compared to a model-based diagnosis technique.
The comparison is mainly done on the basis of a case study. In [7] a simulation-based diagnosis technique
and a diagnosis technique based on Boolean Satisfiability (SAT) are compared. There the quality of the
two techniques is quantitatively assessed and compared by measuring the distance between gate level
fault candidates and actual faults. No generalization to the source level, e.g. in a Hardware Description
Language (HDL) has been done. Also the work in [3] quantitatively assesses a debugging algorithm by
measuring the distance between actual fault sites and candidate fault sites determined by the algorithm.
By this, all of these approaches and the conclusions drawn are restricted to the respective benchmarks
considered. Generalizing the results is difficult.

One way towards generalizing the result is the use of fault models to assess the performance of an
algorithm for certain types of design bugs. No appropriate fault model has been introduced so far.

Previous fault models have been developed for other purposes. Fault models known from testing
integrated circuits for production faults, like e.g. the stuck-at fault model [9] are efficient in modeling
physical failures. They are not applicable when considering design bugs. A fault model on the netlist
level has been proposed in [10] to capture faults introduced after synthesizing HDL. Additionally, high-
level fault models have been introduced. For example, in [11] a fault model is described for determining
bit coverage information. The fault model for SystemC presented in [12] describes transient and perma-
nent faults. These previous fault models cannot be used for describing bugs at the HDL level.

In this paper a methodology is presented to evaluate debugging algorithms from a qualitative per-
spective. As a basis we use an extensible fault model that describes different types of bugs in SystemC
descriptions. Some parts of the model are inspired by previous work from Abadir, Ferguson, and Kirk-
land [10]. We lift this fault model originally defined for gate level netlists to higher level descriptions.
Based on this fault model, debugging algorithms can be assessed to understand their capabilities with
respect to different types of bugs.

In a first case study we show that some types of bugs can be handled using a simulation based al-
gorithm while other types of bugs cannot be handled. By this, our methodology qualitatively classifies
the debugging algorithm. Knowing such restrictions is important from two points of view: i) the results
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void main(int n) {
int i = 1;
int sum = O;
while (i<n) {
sum = sum + 1i;
1++;
}

print(sum);

Figure 1: Program Figure 2: Program dependency graph

returned by the debugging algorithm may be misleading for those bugs that cannot be handled, ii) a com-
parison to other debugging algorithms becomes possible. We will also discuss why using a quantitative
approach like in [3, 7] is difficult and requires further research before a generalization of the results is
possible.

The contributions of the presented work are

e a methodology for evaluating debugging algorithms,
e a fault model on the HDL level to classify design bugs, and

e adiscussion and evaluation of a quantitative approach to assess debugging algorithms.

This paper is structured as follows. In Section 2 a short introduction to source code analysis and
simulation-based debugging is given. The general idea underlying this paper is described in more detail in
Section 3. The section also discusses the problems of quantitative approaches when evaluating debugging
algorithms. Section 4 explains the fault model for bugs in SystemC designs offering a possibility for
evaluation and comparison of debugging methods. In Section 5 the applicability and accuracy of the
debugging procedure for SystemC designs is evaluated using the formerly described fault model. In
Section 6 we give a conclusion.

2 Preliminaries

In this section some essentials of source code analysis are briefly reviewed. In particular, terminology
used in this paper, program dependency graphs (PDGs), and simulation-based debugging are considered.

2.1 Faults, Bugs, and Errors

Throughout this paper we consider a bug to be contained in some design description. An error is the
observation of the effect of a bug that contradicts the specification. The input stimuli leading to an
error are called a counterexample (wrt. the specification). A fault is part of a fault model and, by this,
a generalized description of a bug. Note, that the errors caused by a certain bug may be of various
types. For example, having a wrong operator — an addition instead of a subtraction — in a computation
is a typical bug. One potential error caused by this bug is an erroneous outcome of a computation. An
alternative error due to the same bug in some other context may be a deadlock of concurrent processes
because some resource is never released.

2.2 Computation of CFG and PDG

A Control Flow Graph (CFG) is a directed graph where the nodes represent the statements and the edges
depict the control flow. The annotation at each node describes the variables defined, written or read.

Out of the CFG the Data Dependency Graph (DDG) can be computed. The DDG is a directed graph
where the nodes indicate the statements of the program and the edges represent the dependencies between
variable usages by different statements.

Further the Control Dependency Graph (CDG) can be computed out of the CFG. This is a directed
graph where the nodes are statements and the edges depict dependencies between the statements. The
PDG is obtained by merging the DDG and the CDG. A PDG is a directed graph G = (V,E) in which
anode v € V is a statement or a predicate expression and the edges e € E incident to a node represent
both, the data values the operation of the node depends on and the control condition the execution of the
operation depends on. In Fig. 1 an example program is depicted and the corresponding PDG is shown in
Fig. 2. Solid lines reflect control edges and dashed lines data flow.
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2.3 Simulation-Based Debugging

Simulation-based debugging is intended to investigate the effect of statements on a variable or the in-
fluence of a variable on other statements. Simulation-based procedures are used in different areas of
application, e.g. debugging, testing, compiling. In this work the simulation-based algorithm is used as a
case study for the proposed methodology for assessing debugging algorithms.

The objective of the procedure is to reduce the debugging effort by focussing the attention of the
user on a subset of program statements called traces which are expected to contain faulty code [7]. The
principle of the algorithm is shown in Fig. 3. For a given SystemC specification counterexamples are
simulated to generate traces. The intersection of these traces includes and localizes the faulty statement.

3 General Idea and Discussion

The debugging process is comprised of collecting information from the failed simulation trace or coun-
terexample and analyzing the design until the error source is identified. In the meanwhile several debug-
ging algorithms and strategies exist but comparing the algorithms is difficult. Typically, even the types of
bugs that can be detected by a certain algorithm are not clearly known. Therefore interpreting the output
of the algorithm is hard and may even be misleading. Considering these circumstances, the idea of this
paper is to use a qualitative methodology for evaluating debugging algorithms based on a fault model.
This fault model induces a classification of design bugs into different types. Using the fault model, the
applicability of debugging algorithms for certain bugs can be evaluated.

Figure 4 outlines the relation between the faults and the design. A fault described by the fault model
is a generalized description of actual bugs in a specified design. Each type of fault in our fault model
characterizes a set of mutations of the PDG. Applying the reverse mutation of the PDG to the actual
source code is equivalent to the correction of the bug in the design.

Qualitative Assessment The fault model is used to inject different types of faults in a system descrip-
tion. After that debugging algorithms can be assessed by the types of faults they detect and the fault
candidates they return. Note that different bugs may be functionally equivalent.

Example 1 Consider an operation a+b where b is faulty and the result is assigned to a variable t emp
further used in a condition. In this case we have a data operation fault. If the operation a+b is directly
inserted in the condition without using t emp we have a control operation fault.

This implies that a fault A may be transformed to a fault B without changing the functionality of the
underlying design. The debugging algorithms may only be able to help in one of these cases. The use of
a fault model helps to identify such restrictions of a debugging algorithm.

Limits of Quantitative Assessments Extending the proposed qualitative assessment of debugging al-
gorithms by a quantitative aspect is possible. For example, the works in [3] and [7] used distance mea-
sures between the actual fault sites and the candidate fault sites returned by the algorithms. But such
a quantitative analysis directly depends on the benchmarks considered. The same debugging algorithm
may yield very different results for the same type of bug if the benchmark is changed. For example, con-
sider one data-dominated design performing a computation like a filter operation and a second control-
dominated design containing many conditional branches. In the data-dominated design changing an
operator always influences the output. In the control-dominated design, the output only becomes erro-
neous under certain conditions on the control path. The cause of the error (the bug) can be pinpointed
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much better in the control-dominated design. We will also show this in the evaluation of our methodol-
ogy in Section 5. We measure the number of lines of code between the actual buggy statement and the
fault candidates obtained by the simulation-based algorithm.

4 Fault Model

In this section different types of faults are described and categorized. Faults are usually caused by
specification changes, bugs in automated tools, and the human factor [13]. In the presented model local
code transformations are considered as programming faults whereas global code transformations are
considered to be design faults. Syntactical bugs are not classified within the proposed fault model, e.g. a
missing declaration or forbidden use of a certain data type. This kind of bugs is assumed to be discovered
by a compiler. This means that only semantic and conceptual faults are taken into account. The proposed
fault model is not claimed to be complete but maintains a list of typical faults. Moreover, the fault model
can be extended to encompass additional types of bugs not covered so far. A fault corresponds to certain
modifications of the PDG.
In Fig. 5 we give a hierarchical overview of the fault model described in the following sections.

4.1 Programming Faults

Programming faults inside of SystemC specifications are assumed to be injected during the coding phase.
In the following subsections possible programming faults are described. The effect of a single fault on
the PDG for the design is usually small. This is exemplarily shown for some types of faults.

4.1.1 Assignment Fault

Suppose that a wrong value is assigned to a variable. This could be done by assigning a wrong constant
or a wrong variable. As a result calculations in data dependent nodes are carried out with incorrect values
which may lead to erroneous output data. Only one node of the PDG for the SystemC description has to
be changed to fix the bug.

In Fig. 6 it is assumed that the programmer has inadvertently assigned the value 0 to sum but should
assign 10. The effect of the correction on the PDG is indicated by bold lines.

4.1.2 Operation Fault

A fault is considered as an operation fault if either an incorrect operator or incorrect operands are used in
an operation. Each type of operation fault can be further partitioned in an operand fault and an operator
fault. Depending on which type of operation fault is present, the correction of the fault has a different
effect on the PDG. If only an operator fault exists, the correction corresponds to the modification of a
single node in the PDG. If the operands are wrong, also data edges have to be reconnected.

Data Operation A data operation fault within a statement occurs if a data operator is replaced by
another operator or incorrect operand values are used within the operation. All operators defined in
SystemC (+, -, *, /, %, &, |, etc.) are considered as data operators. Bugs corresponding to this fault are,
e.g. using multiplication instead of division. Operands could be either variables or constants.



Figure 7: Inserting additional code

Figure 6: Correcting an assignment

Control Operation Suppose that a programmer inadvertently writes an incorrect control condition.
This could be done by using incorrect operators or operands in the expression specifying the condition.
There are several types of predicate faults possible affecting the execution of a design. Writing a faulty
predicate in a simple if-statement either leads to not executing the then-branch while it is required, or
executing it, while it is not required. Additionally predicate faults can be injected in loop-statements or
in function calls. A faulty loop-statement is leading to unspecified executions of the loop. A fault in a
function call implies erroneous data.

4.1.3 Incorrect Data/Port Type

Suppose that the programmer has declared a variable with a wrong data type. For example, the variable
is of type unsigned integer instead of integer or integer instead of double and so on. This would
create wrong results in computations.

A similar fault is declaring an incorrect port type (in, inout, out) to a port of the system specification
and binding the correct signal to the port. This would coincidently lead to missing (extra) inputs (outputs)
or vice versa. Note, a fault of this type is a SystemC specific fault and is typically not reproducible in
other hardware description languages like Verilog, where the compiler detects the mismatch.

The correction of these faults would have little effect on the corresponding PDG because only the
content of the nodes concerned has to be changed.

4.2 Design Faults

Design faults inside a given SystemC specification are expected to be introduced during the conceptual
design phase. In the following subsections possible design faults of SystemC designs are described and
the effect on the corresponding PDG is explained.

4.2.1 Missing Code

Similar to a missing gate or inverter in gate level design [10], there could be omitted code in SystemC
descriptions. Here missing simple code and missing complex code are distinguished.

Missing Simple Code Suppose that the designer has inadvertently omitted an operation corresponding
to a simple missing data operation in the SystemC implementation. The correction of this fault is more
sophisticated than the correction of programming faults because it implies adding a node to the PDG and
accompanying control and data edges to or from other nodes. Also already existing edges may have to
be changed.

In Fig. 7 it is assumed that the designer omitted the statement i=n/2. The insertion of this statement
implies adding a new node and a new control edge as well as adding and removing several data edges.
All parts concerned are marked in bold in the figure.

Missing Complex Code Similar to the previous design fault a designer could omit more complex code.
This can be examplarily a function call, an else-branch or a missing control statement in terms of an if-
condition or a loop-condition, embracing a block of statements. The correction of such a fault would
have a large effect on the PDG. Conceivably many nodes and edges have to be added to the existing PDG
restructuring it.



Figure 8: Removing extra code

4.2.2 Extra Code

Assume that the designer has inserted extra simple or complex code complementary to the missing code
described in the previous section. This would lead to unnecessary computations or wrong control and
data paths distorting the results.

The correction involves removing the extra code from the specification resulting in removing nodes
and edges from the PDG. Assume that the designer inadvertently added the extra statement sum=sum+1i
to the initial PDG in Fig. 2. In Fig. 8 the PDG is shown after removing the extra statement.

4.2.3 Misplaced Code

Similarly to missing or extra code, suppose that code within a specification is misplaced. This means that
some statements, function calls, loops etc. will be executed before others so that we may have a faulty
data or control flow within the PDG. A correction would imply reconnecting nodes in the PDG because
of correcting the data or control flow.

4.2.4 Signal Binding Faults

Data transfer between modules is reflected by signal bindings. Each port should be bound to a certain
signal. Signal binding faults may occur during design phase. In the PDG, a correction often can be done
by reconnecting data edges.

Incorrect/Interchanged Signal Binding Suppose that the designer has specified a wrong data transfer
behavior between modules leading to a wrong signal binding at a port or interchanged signals between
ports. This implies incorrect data at inputs or outputs of a certain module in the system design. In the
PDG we typically would have incorrect data flow.

Missing Signal Binding A missing signal binding means that on some arbitrary module a signal bind-
ing to a port has been omitted. That means there exists an input (output) reading (writing) no data
although the data of the ports are used in further computation steps. Note, this fault is comparable to
missing simple code.

S Evaluation: Simulation-based Debugging

To evaluate our methodology, the simulation-based debugging algorithm described in Section 2 has been
implemented. In the experiments, first the limitations of a quantitative analysis are evaluated. Then we
show the results of the qualitative assessment.

Out of the SystemC library [14] a simple FIFO, a pipe, an RSA algorithm and a simple bus im-
plementation have been taken as benchmark. Per design 4-7 fault types of the fault model have been
evaluated. Each type of fault has been injected randomly on 3-5 different positions in a design and for
each faulty version of the design 3-4 traces leading to erroneous output have been applied. Table 1 shows
the benchmarks used. In column LOC the lines of code of the investigated designs are listed excluding
the comments. The percentage of the obtained intersected sets of fault candidates is calculated in relation
to the size of the design. Also the size of the minimal and the maximal trace are denoted in percent.
The percentage of control statements roughly indicates whether the design is control flow or data flow
dominated.



Table 1: Benchmark designs

design description LOC control intersected trace(%)
statements (%) | min | max | @
simple_fifo simple FIFO 120 0.5 21.7 | 26.7 | 25.0
pipe pipeline 220 1.3 245 | 25.5 | 25.0
rsa RSA cipher 480 6.5 19.8 | 24.0 | 21.3
simple_bus abstract bus model | 1240 6.6 6.4 8.2 6.9

Table 3: Evaluation of simulation-based de-

bugging

Table 2: Average distance of fault candidates [ Fault [ Detection |
| Fault [ simple_fifo [ pipe [ rsa [ simple_bus ‘ Assignment fault v
Assignment 52 27.6 129.8 98.8 Data operation fault v
Operator 48.9 24.4 1170.8 106.7 Control operation fault v
Predicate 43.6 22.1|147.6 98.9 Data/port type fault v
Data/port type - 263 | - 114.8 Missing simple code X
Extra code 38.8 237 | 134 101.8 Missing complex code X
Misplaced code 47.7 23.9|181.8 101.4 Extra code v
Signal binding - 267 - 104.7 Misplaced code v
Incorrect/interchanged signal binding v
Missing signal binding X

For the first two benchmark designs on average a fourth of the design has to be analyzed for detecting
the faulty statement. In the third benchmark the percentage of control statements increased and coinci-
dently the average size of the traces decreased compared to the size of the design. However, the blocks
that are surrounded by control statements are relatively small while large sequences without any control
operations exist. For this reason, the reduction of the traces is not as significant as for the simple_bus
benchmark. Although the simple_bus is larger, the average number of statements in a trace to analyze
is of moderate size.

5.1 Limitations of Quantitative Analysis

Table 2 shows the average distance of the fault candidates to the faulty statement in lines of code as
explained in Section 3. Only traces have been considered where the faulty statement is within a trace.
Distance measurements to missing code are not considered. The experiments show that the distance
strongly depends on the structure of the investigated design and the place where a fault has been injected.
The fault candidates for the simple_fifo benchmark have a large average distance to the faulty state-
ment because the design is mainly sequential where code is carried out successively. The same holds
true for the rsa benchmark. The average distance of fault candidates for pipe is relatively small because
the pipeline is partitioned in several functions. For the same reason the distance of the fault candidates
to a faulty statement is moderate compared to the size of the SystemC description of the simple_bus.
The average distance of the fault candidates is decreasing if a predicate fault is injected such that of-
ten the following control-block is carried out. Thus, quantitative analysis significantly varies with the
benchmarks.

5.2 Qualitative Assessment

In Table 3 the applicability of the debugging procedure is evaluated. Column defection denotes whether
the algorithm is able to detect the specified fault or not. In all cases all types of faults with a checkmark
are detectable. This means that the procedure creates a trace which contains the faulty statement causing
an unexpected behavior. Vice versa, the other types of faults are not detectable with regard to any
trace. Obvious is that the simulation-based algorithm has weaknesses in localization of design faults.
Missing code or signal bindings are not detectable because there are no executed statements that are
faulty, i.e. there are no faulty statements in the trace.

6 Conclusion

Debugging is a process of localization and correction of faults in designs. The problem of evaluating
debugging methods has been studied in this paper and a fault model has been proposed that is suitable



to analyze the applicability of debugging algorithms. Each type of fault is linked to certain mutations
of the PDG. The fault model presented in this paper is extensible and generalizable to other high-level
description languages.

A debugging algorithm has been implemented and evaluated with respect to the fault model. The
analysis has shown that the algorithm is well applicable to detect programming faults while it has weak-
nesses in detecting certain design faults. Results of a quantitative analysis strongly depend on the struc-
ture of the investigated designs.

In further work, additional algorithms will be evaluated and compared. Also quantitative approaches
that are less dependent on individual benchmarks will be addressed by taking the structure of the source
code into account.
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