
20

Mapping Abstract and Concrete
Hardware Models for Design Understanding

Tino Flenker∗ and Görschwin Fey∗†
∗University of Bremen, Institute of Computer Science, 28359 Bremen, Germany
†Institute of Space Systems, German Aerospace Center, 28359 Bremen, Germany

Email: {flenker, fey}@informatik.uni-bremen.de

Abstract—Before a microchip’s concrete implementation is
available a very abstract model is created, e.g., on Electronic
System Level (ESL) or even more abstract. To ensure a better
design understanding, we propose an automated mapping from
a given abstract model to an unfamiliar concrete implementation
at Register Transfer Level (RTL). But how to map a variable
from the abstract model to a variable from the concrete model?
We address this problem by a simulation based approach. We
instrument the abstract model to get traces for each variable
in both models and propose four heuristics to evaluate which
variable maps to a corresponding variable of the other model.
Experiments on an Instruction Set Simulator (ISS) versus RTL
processor show mappings which offer an insight into the RTL
implementation.

Keywords — Design Understanding
I. INTRODUCTION

Microchip’s complexity increases at tremendous speed. To
adhere to strict time-to-market constraints, tools are required
to facilitate a rapid understanding and incorporation of hard-
ware designs. This makes design understanding an important
research topic. A faster understanding supports new colleagues
in a company, enables a more efficient debugging tool for
support, and reduces the training period.

During microchip’s development a module is described on
different abstraction levels. This is done by checking the
microchip’s functional design at an early stage on an abstract
level. Later, the equivalence of different models is ensured.
Over time a project increases in complexity. Old code is
reused and third party libraries are used so that no one
knows every detail of each model. A mapping of distinctive
parts from one model to another model on a different level
of abstraction is desirable. However, no accurate mapping
between very abstract and concrete models can be expected,
due to unavailability of structural and timing information.

To solve Equivalence Checking (EC) between abstraction
levels, several approaches have been proposed. In [1][2] for-
mal methods are used but it is not feasible to perform EC
using conventional equivalence checkers due to significant
internal differences in the very abstract and the concrete model.
Simulation is used to find potentially equivalent nodes as
a preprocessing step for formal EC. Such equivalent nodes
are often called cut-points. This also applies to situations
dealing with concrete models and relatively detailed abstract
ones [3][4][5][6]. However, EC often expects complete equiva-

This work was supported by the University of Bremens Graduate School
SyDe, funded by the German Excellence Initiative, and the German Research
Foundation (DFG, grant no. FE 797/6-2).

This work has also been partially funded from the European Unions
Horizon 2020 research and innovation programme under grant agreement No.
644905 (IMMORTAL).

lence of models including cycle accuracy [7]. These techniques
are not suitable in our case, because of too many structural
differences and the absence of timing information on the
abstract level.

In [8] Chauhan et al. proposed a method for non cycle ac-
curate EC. However, this approach is only suitable for RTL to
RTL EC so it is not relevant for an ESL to RTL mapping. Groe
et al. [9] used a simulation-based approach with the assumption
that both models are available in SystemC [10]. In [11], Fujita
et al. present three techniques that utilize models on ESL for
debugging designs of various lower abstraction levels. They
work across multiple abstraction levels but new statements,
synchronization statements, and modules are introduced to
describe hardware oriented behavior on abstract level.

For design understanding, we propose an approach to map
very abstract models to concrete models. Our approach uses
simulation to find corresponding parts of the original model
in a model of another abstraction level. We aim to find
characteristic parts of a more abstract model than typical
ESL written in C/C++ in a concrete model available on RTL
written in Verilog. By this, the designer can directly find the
implementation of abstract functionality. Mapping models is
reduced to mapping variables between the two abstraction
levels. We use simulation traces to perform the mapping. The
underlying assumption is that variables relating to the same
functionality yield similar simulation traces.

However, for design understanding it is harder to find
correspondences than for EC because the two models are
expected to be quite different. Usually a very abstract model
lacks the following information:
• Timing

Generally, the very abstract module implements the func-
tional behavior in an early state of the development. Thus,
cycle accurate timing is not implemented and is conse-
quently absent.

• Structure
Useful structural information is typically not available on
such an abstract level. Only a very coarse module structure
is described. For example, consider the implementation of
a processor. Implementing a pipeline for an ISS is not
essential because the absence does not change the functional
design but the pipeline exists on RTL.
Fig. 1 shows a mapping of an abstract to a concrete proces-

sor implementation. A mapping of a Program Counter (PC)
variable (blue) from the abstract (above) to the concrete
model (below) is shown. Fig. 1 also shows the part of the
source codes, where the PC is increased by one operation (red
mapping). Further mappings are tough because, e.g., concepts
like pipelining are not included in the abstract implementation.

21

/ / a b s t r a c t model
s t a t i c vo id u p d a t e p c () { . . .

c p u s t a t e . pc = p c n e x t ;
p c n e x t = c p u s t a t e . d e l a y i n s n ?

c p u s t a t e . p c d e l a y : p c n e x t + 4 ;
} /∗ upda te pc () ∗ /

/ / c o n c r e t e model
always @(∗)

i f (r s t)
pc add r = OPTION RESET PC ;

. . .
e l s e i f (d e c o d e b r a n c h i)

pc add r = d e c o d e b r a n c h t a r g e t i ;
e l s e

pc addr = p c f e t c h + 4 ;

Figure 1: Mapping of PC from abstract to concrete model
Section II-A presents a short overview of the work flow.

Four heuristics are presented which compare traces of abstract
and concrete models in Section II-B. The heuristics handle
traces despite lacking timing information and the different
structure of the implementations. Experimental results in Sec-
tion III show that a mapping of functionally similar parts is
possible and Section IV offers a short conclusion.

II. METHODOLOGY

This section describes the proposed approach. First, the
work flow is presented and afterwards four heuristics for
variable mapping are explained.

The main goal is to find relations between variables of an ab-
stract and a concrete hardware model. For that an implementa-
tion written in a Hardware Description Language (HDL) and
another implementation written in a higher level programming
language like C/C++ or SystemC are considered. An example
for an abstract implementation is on a processor with an ISS
model.

A. Work Flow
The work flow of our approach is illustrated in Fig. 2. Given

are an abstract model A with variables VA and also a concrete
model C with variables VC . The set Val includes all occurring
values in all traces. To get a trace of each implementation
some use cases are required as stimuli, which execute the
same functionality and are available for both models. For
the hardware model’s trace C is simulated and the values of
registers and internal signals are printed to T C . The trace of
the abstract model T A is gained by the instrumentation of
A so that the values are collected, when needed. Next, the
traces are used to find a mapping between the variables of
models. Section II-B presents four heuristics to compute a
fitting value for a mapping between to variables. Finally, a
mapping between all variables is gained, which is needed for
presenting corresponding variables between both models.

B. Trace Analysis
This section provides preliminary definitions. Afterwards

four heuristics for mapping variables are introduced. Given
the variable’s values in the traces we consider the following
heuristics:

1) The symmetric difference between the sets of values.
2) The intersection between the sets of values.
3) The number of occurrences of each variable’s values.
4) The sequence of variable’s values.

The set of traces for all variables in the abstract model is
defined as follows:

T A := {(x, s) | x ∈ VA and s = (v1, . . . , vn) with vi ∈ Val}
T A is a set containing pairs of a variable and an associated
sequence. The variable x belongs to the abstract model and
the sequence s includes all values in order of occurrence in
time. No value occurs twice in succession. T A includes the
traces for all variables for one use case. The set of traces for
the concrete model T C is defined analogously.

For the mapping cand takes the cross product of VA and
VC and maps each pair to an integral number, which indicates
the quality of the mapping:

cand : VA × VC → Z

The auxiliary function s(T , x) yields the set of all values
assigned to variable x occurring in a given trace T :

s(T , x) := {vi | (x, (v1, . . . , vn)) ∈ T ∧ 1 ≤ i ≤ n}

1) Symmetric Difference: The first heuristic collects all
values of each variable in a separate set. To match traces, the
symmetric difference SD(x, y) is taken.

SD(x, y) := (s(T A, x) ∪ s(T C , y))\(s(T A, x) ∩ s(T C , y))

The variables with the smallest symmetric difference are the
best fit. The variables with the best fit are considered as
a candidate mapping. The function cand1(x, y) takes the
variables x ∈ VA and y ∈ VC as input and returns the number
of elements in the symmetric difference. Mappings with the
least number of differences are considered as the best fit:

cand1(x, y) := |SD(x, y)|
Finally, we define a normalization unify1(x, y) that becomes 1
for likely matching candidates. The result of cand1(x, y) is
divided by the worst existing symmetric difference value. The
result of the division is subtracted from 1. A unified value
close to 1 means, that the compared variables have a small
symmetric difference, which represents a good fit value.

unify1(x, y) := 1− cand1(x, y)

maxSymDiffValue

use cases
(stimuli)

abstract
model A

instru-
mentation

instr. abs.
model

concrete
model C

concrete
trace T C

abstract
trace T A

mapping

mapped
variables

present
results

simulation of

Figure 2: Work flow for proposed approach

22

2) Intersection: The second heuristic uses the intersection
of two variable’s values.

INS(x, y) := s(T A, x) ∩ s(T C , y)

The variables with the largest intersection are considered as
the best fit:

cand2(x, y) := |INS(x, y)|
The value of this heuristic is unified by unify2(x, y). The

size of the intersection of the compared variables x and y
is divided by the number of values of the variable belonging
to T A.

unify2(x, y) :=
cand2(x, y)

| s(T A, x) |
Both heuristics assume that signals for data get the same

values in both implementations. Consequently, in one hand
the result is the same set of values which implies that the
symmetric difference is the smallest. On the other hand, the
same set of values of two variables implies that the intersection
is the largest.

Hard to distinguish are control signals which typically have
a bit width of one. The sets of values of these signals contain
at most the values 0 and 1. Consequently, the control signals
are indistinguishable using this simple heuristic.

3) Count: The third heuristic encounters the drawback of
method II-B1 and II-B2. This heuristic assumes that different
control signals toggle a different number of times. In this
manner the control signals can be distinguished. This heuristic
collects all values of the different variables, too. But in addition
to that, each occurrence of a value is counted. For this purpose
the function occ calculates how often the variable x has
assigned the value v in sequence (v1, . . . , vn).

occ(T , x, v) := |{i | (x, (v1, . . . , vn)) ∈ T ∧
1 ≤ i ≤ n ∧ vi = v}|

To match traces by the count heuristic, first the function diff
is introduced. This function computes the difference between
the number of occurrences of value v in trace T A assigned by
variable x and v in trace T C assigned by variable y:

diff(x, y, v) := |occ(T A, x, v)− occ(T C , y, v)|
The sum of all differences between two variables is called
divergence. The function cand3(x, y) computes the divergence
between the given two variables x ∈ VA of the abstract model
and y ∈ VC of the concrete model.

cand3(x, y) :=
∑

v∈Val

diff(x, y, v)

The variables with the smallest divergence are the best
fit to be candidates of the mapping. This means the two
corresponding variables have fewer differences in the number
of occurrences of the values than two unrelated variables.

The number of occurrences on both traces may vary substan-
tially. The reason is the difference in the timing information
in the models which is almost missing in the abstract model
while it is cycle accurate in the concrete implementation.

The function unify3(x, y) unifies the results of cand3(x, y).
From 1 the quotient of cand3() and the worst existing value of
the third heuristic is subtracted. A result close to 1 indicates,
that the difference of the count of the values of x and y is
small which represents a good matching.

unify3(x, y) := 1− cand3(x, y)

worstCountValue

Algorithm 1 Computation of penalty value
1: function penalty(s1, s2)
2: m1 ← eval(s1), m2 ← eval(s2)
3: p = 0, i1 = 0, i2 = 0
4: while i1 < length(s1) ∧ i2 < length(s2) do
5: v1 ← s1[i1], v2 ← s2[i2]
6: if v1 ≡ v2 then
7: i1 ← i1 + 1, i2 ← i2 + 1
8: m1[v1].pop(), m2[v2].pop()
9: else

10: p ← p+ 1
11: n1 ← m1[v2].top()
12: n2 ← m2[v1].top()
13: if (n1 − i1) < (n2 − i2) then
14: i1 ← i1 + 1
15: m1[v1].pop()
16: else
17: i2 ← i2 + 1
18: m2[v2].pop()
19: end while
20: p ← p+ ((length(s1)− i1) + (length(s2)− i2)) · w
21: return p

4) Sequence: The fourth heuristic considers the sequence
of values to map the variables between the abstraction levels.
Two sequences with equal values of data indicate two variables
representing the same semantics on the functional level.

The mapping computed by this heuristic is as follows. Two
sequences are observed value by value. If two values are not
equal, then all positions up to the next identical value are
skipped. Each skipped value increases the penalty by one.

The function seq(T , x) gets the sequence of x out of T :

seq(T , x) := s with (x, s) ∈ T
The function cand4(x, y) takes the two variables x ∈ VA and
y ∈ VC as inputs and gets the penalty value between their
sequences.

cand4(x, y) := penalty(seq(T A, x), seq(T C , y))

Algorithm 1 shows the computation of the penalty value
between the two given sequences s1 and s2. First, on line 2
the sequences are evaluated. That means each value maps
to a sequence of indices. The indices give the position in
the sequence where to find the mapped value. The indices
determine the order of values in time.

Example 1. Given is the sequence s = (1, 2, 3, 2, 1, 3, 1). The
sequence is transformed to the mappings m:

m = [1 �→ (0, 4, 6), 2 �→ (1, 3), 3 �→ (2, 5)]

On line 3 variables are initialized which represent the
penalty value p and the index variables i1, i2 for iteration
over the sequences. Next, the penalty value of both sequences
is computed in a loop until one sequence is completely
considered. As first step in the loop on line 5, the currently
observed values are loaded. In case both values are equal, a
mapping is found and only the index variables i1 and i2 are
incremented and the corresponding entries in m1 and m2 are
removed. In case the values v1 and v2 differ, the penalty value
is increased. The variables n1 and n2 shown on lines 11 and 12
offer the position when the value of the other sequence occurs
next on the considered sequence. This is needed to determine
the values of which sequence are skipped next. That means the
indices n1 and n2 indicate where the next equal value occurs
on the other trace, respectively. If a value does not occur in

23

i1

v1 ...

5

0

6

1

7

2

8

3 ...

2

15 16

0

17

1

18

2v2

i2
s2 :

s1 :

Figure 3: Compared sequences
other trace, then ni is considered as infinity. The difference
between the positions of the next occurrence of the considered
value and the currently considered value ni − ii determines
the trace in which the value is skipped. After finding the
value to be skipped, the corresponding indices are incremented
on lines 14–18. The last step on line 20 adds the length of
the unconsidered remainder of the sequences multiplied with
a factor w to the penalty value. The factor is to give the
remainder of the sequences a weight.

A minimal penalty value represents the best fit for the
mapping between two considered variables, because a smaller
penalty means that the sequences have a better match between
each other.

Example 2. Fig. 3 illustrates a comparison step of Algorithm 1
if values are not equal. The inner rows (v1, v2) of the sequences
show the values of the traces and the outer rows (i1, i2)
show the indices of the currently compared values. In the red
rectangle the currently considered values are displayed. For
the first sequence s1 the 5th and for the second sequence s2
already the 15th value are compared. Next, it is analyzed
when the currently considered values are occurring in the
other trace, respectively, because the values v1 and v2 are
different. The next time the value 2 is found in sequence s1
is on position n1 = 7 and the value 0 is found on position
n2 = 16 next time. Thus, one value in s2 is skipped to get
two equal values again. In the other case two values would be
skipped. Consequently, i2 is incremented and s2 is considered
at position 16, next.

Normalization of the fourth heuristic cand4(x, y) is done
by unify4(x, y). The result of the division of cand4(x, y) and
the worst existing value computed by the sequence heuristic is
subtracted from 1. A value close to 1 represents a good fitting
value, because less values are skipped during the comparison
of x and y.

unify4(x, y) := 1− cand4(x, y)

worstSequenceValue

III. RESULTS
This section summarizes the experimental setup and shows

the results. For experiments we applied our approach on
two CPU designs. The first is the y86 processor1. A
small processor for educational purposes. Next, we used the
OpenRISC 1000 (OR1k)2. For reduction of the runtime the
best results of the intersection heuristic are used. It is assumed
that the correct correspondences for the other methods will
not falsify the results because two corresponding variables
always have a large intersection of values. For the benchmarks
a computer with an Intel i7-3520M CPU with 2.9 GHz and
8GB RAM is used.

1http://www.digitaltechnik.org/examples/Y86 seq.zip

Table I: Mapping of variables by heuristic for y86
intersection sym. difference count sequence

IP IP (2) IP (2) IP (1) IP (1)
I0 opcode (2) opcode (2) opcode (2) opcode (2)

R[0] eax (1) eax (1) eax (1) eax (1)
R[3] ebx (1) ebx (1) ebx (1) ebx (1)

ZF ZF (6) ZF (4) ZF (1) ZF (1)

A. y86 Processor
This section deals with the experimental results for a y86

processor. This is a simple CPU design implementing a subset
of the x86 32-bit instruction set architecture.

Table I shows the results of the matching for the y86
processor. The headline shows which heuristic is presented
in the given column. The first column shows the starting
variable for the mapping and the remaining columns show the
results for the mapping. The number in parentheses behind the
variable shows the number of candidates for the achieved best
fit, i.e., largest value of unify().

The abstract Instruction Pointer (IP) variable is mapped
to the corresponding IP variable in the concrete model. The
intersection and symmetric difference approaches get also
one further candidate for the IP but the count and sequence
methods map to the corresponding IP variable only. The
abstract model splits one instruction to three variables (I0, I1
and I2). The first part of the instruction is extracted to I0 and
includes the opcode of the present instruction. All methods
map the opcode to the opcode and current_opcode
variable of the concrete model. Next, the variables R[0] and
R[3] representing the first and the fourth register of the y86
processor. The reference shows [12] that these are the registers
eax and ebx. Both registers are perfectly mapped by all
methods. The other registers were not used in the given use
cases. The last variable shown represents the Zero Flag (ZF)
variable. The first two methods achieve results with more
than one best fit candidate. That is because a flag variable
is considered here that matches with all other flag variables
or all other variables which get the values zero and one.
Nevertheless, ZF is included in the set of candidates. The count
and sequence methods are more precise and map to the correct
ZF variable, only.

B. OpenRISC 1000
As a more complex example, the OR1k is used providing an

ISS and RTL implementation. To execute both modules with
the same stimuli a simple C/C++ program is implemented.
These use cases are compiled to a binary file and are exe-
cuted on both modules. To get the trace file of the concrete
model T C , a simulation of the CPU with the generated
executable is performed. From the simulator a Value Change
Dump (VCD) file is received which is considered as the trace
of the concrete module. The abstract module for the OR1k is
an ISS which is a very abstract model especially in comparison
to other work [8][9] which consider less abstract models. For
this reason no direct comparison to [8][9] can be carried out.
To get the abstract trace file T A, the ISS is instrumented by
print statements after each assignment operation and variable
initialization. For automatic generation, the Abstract Syntax
Tree is used to include the print statements, which prints the
name of the manipulated variable and its value. Next, the ISS
is executed to get the trace file for the abstract model.

The use case is a C–program that implements a recursive
function which computes the Fibonacci numbers. The function
is called in a loop from 0 to 7. Table II shows an excerpt of

24

Table II: Mapping results for Fibonacci use case
selected candidate fit value # of best fit cand.module variable set/seq size

ISS (A) execute.h cpu_state.pc 670/4298

OR1k (C)

symmetric diff. mor1kx_ctrl_cappuccino pc_execute_i 724 0.93 6
intersection mor1kx_fetch_cappuccino pc_addr 745 1.00 23

count mor1kx_ctrl_cappuccino pc_execute_i 724 0.73 11
sequence mor1kx_ctrl_cappuccino pc_execute_i 6400 0.75 6

the results for the mapping from the abstract model (ISS) A
to the concrete model (OR1k) C. In total, data for 411 times
2372 variables for four heuristics is generated which need to
be filtered.

Table II shows a selected number of mappings for the
Fibonacci use case. The rows headed by ISS in the first column
show the variable of the abstract model. The next four rows
headed by OR1k show the mapped variables of the concrete
model returned by each heuristic printed in the second column.
The third column shows the module where the given variable
comes from. Column four shows for the abstract model the
starting variable for the mapping. The rows related to the
concrete model show one selected candidate returned by the
mapping heuristic. Next column (5th) shows the size of the
related set or sequence for the given variable. The two last
columns show the best fitting value of the selected variable
and the number of variables that also have the best fitting
value.

Table II shows the mapping for the PC variable which
has a corresponding variable in both models. The intersection
heuristic maps cpu_state.pc of the ISS to the register
pc_addr in the Verilog implementation. This is the mapping
already shown in Fig. 1 as an example. The pc_addrs module
mor1kx_fetch_cappuccino contains the part where the
PC is increased by one instruction. From the perspective of
design understanding this is a very good result. Starting from
the ISS in the execute.c file where the PC is increased
a mapping to the module mor1kx_fetch_cappuccino
is present. For the PC an intersection with 669 elements is
achieved. Starting with a set of 670 values in the abstract
model it is only a difference of one element. This means a
fit value of 1. The concrete model has a set with 745 values.
This difference can be explained by the abstraction of the ISS.
In addition to pc_addr 23 more best fit elements are found
but all are related to signals and registers of the PC.

The other heuristics map 6− 10 candidates, which are also
related PC-variables in the pipeline. The heuristics have not
found the pc_addr register as best fit but the next best fitting
variables include this register also. By considering the next
best fitting variables the number of candidates increases to
29. The results of the sequence heuristic show that the PC of
the abstract model obtains 2102 values less than the concrete
model.

The next selected mapping candidate is
cpu_state.insn_ea which stores the effective address
of the current instruction. The specification [13] says, that
the effective address will be translated by the Memory
Management Unit (MMU) to the physical address. So the
effective address is a virtual address which needs to be
translated. All heuristics map from cpu_state.insn_ea
to the MMU of the OR1k and except for the count heuristic,
all heuristics map to the output virt_addr_match_i.
That means that the effective address of the abstract model
maps to the virtual address input of the MMU in the concrete
model. In case of the sequence heuristic both sequences have

a matching of 100% which is an ideal matching outcome of
the mappings.

The mapping for the registers obtains moderate results. To
get better results, another use case is introduced. This use case
simply assigns different values to each register and afterwards
adds distinguishable values to the registers. This is done by
writing explicitly to the registers using assembler code. This
use case is especially introduced to get better results for
the mapping of the registers. The results of the second use
case show that directed use cases can improve the mapping
results. For the PC similar results are achieved. The results
for cpu_state.insn_ea are better than the Fibonacci
use case. All heuristics map to the input of the MMU. All
register variables (reg[*]) are mapping with the intersection
heuristic to the input (rfa/din) and output signals of the
register file module mor1kx_rf_cappuccino. The register
file includes all registers in one memory block and the specific
registers are addressed by additional inputs for the reading and
writing address, respectively. This is an improvement of the
mapping is achieved. All values of the register file module are
the union of the values of all registers of the abstract model.
In a design understanding point of view, a mapping from the
registers to the register file module is ideal.

Fig. 4 shows average of the fit values for multiple
use cases. Fig. 4 illustrates the results for three special
registers (sprs[*]), a signal which stores the instruc-
tion (cpu_insn) and again the PC. For these results a
third use case is introduced that calculates the factorial of
the numbers from one to 14. Fig. 5 presents the number of
calculated candidates with the corresponding fit value in Fig. 4.

For the mapping between sprs[EEAR] to spr_eear the
figure shows the average fit value. The fit value for the first
special register is always 0.33 and the number of matched
candidates is 6 for the intersection and 2 for all other heuristics.
Two candidates (of 2372 variables) is again a very good result.
The next special register (sprs[PPC]) stores the Previous
Program Counter (PPC) and is mapped to spr_ppc. The fit
value are almost equal to the fit value of the PC (last in Fig. 4
and 5) but the best achieved number of candidates for the PPC
special register is 4 while the PC’s best result is 6 candidates.
The fit values of the status register are presented with the
middle bars. The fit value for the intersection heuristic is 1
with 36 more candidates. The other heuristics have a fit value
of 0.57 with 436 candidates, 0.86 with 257 candidates and
the sequence heuristic of 0.97 with 244 candidates together
with the desired variable (spr_sr). The mapping for the
instruction variable of the abstract model maps to a signal in
a debug module which monitors the processor (i_monitor/
insn). Here the heuristics compute exactly one candidate for
the instruction variable.

As a next step, to improve the number of candidates, the
fit values of the symmetric difference and the intersection
heuristic are combined. For all mappings the average of the fit
value is computed. Fig. 4 also shows the average fit value of
the first two methods and Fig. 5 shows how the method also

25

sprs[EEA
R]

�→

spr
eear

sprs[PPC]
�→

spr
ppc

sprs[SR] �→

spr
sr

cpu
insn

�→

i
m

onitor/insn

pc �→pc
execute

i

0

0.2

0.4

0.6

0.8

1

1.) symmetric diff 2.) intersection 3.) count 4.) sequence 5.) 1. + 2.

Figure 4: Mapping of selected variables with merged results

improves the number of candidates. For example the status
register has in the worst case 439 candidates. By combining
both heuristics for the status register only 7 candidates are
obtained which reduces the number of candidates by 431.

Table III shows the average runtime in seconds for the
mapping process that is currently not optimized. Each variable
of the abstract model (411 variables) is compared with each
variable of the concrete model (2372 variables). To calculate
the average runtime, the experiment is repeated ten times.
The first column shows the heuristics. The middle column
presents the elapsed runtime for the mapping process with the
C-program (Fibonacci) as the use case. In the last column the
average time taken by the register usage program is shown.

The execution time for the register usage code is longer than
for Fibonacci. The traces for the register usage program are
longer and have more values, which need to be handled. That
is the reason, why the mapping takes more time for the register
usage code. However, the results show that directed use cases
improve the results so that a longer runtime is worthwhile.

IV. CONCLUSION

A mapping of variables from a very abstract to a concrete
model is possible despite the strong dissimilarities. This is
confirmed by the presented results. The heuristics yield quite
exact results even when comparing an ISS to an RTL imple-
mentation of a processor. This can provide an extremely useful
tool for design understanding in a practical setting.

In future work other concepts will be considered, e. g., a
machine learning approach which uses the results of multiple
use cases. A further approach is to use approximate string
matching when comparing signal traces.

Table III: Average runtime for mapping process (seconds)
heuristics Fibonacci register usage
symmetric diff. 8.0 56.4

intersection 16.0 38.3
count 9.9 58.7

sequence 28.0 108.4

sprs[EEA
R]

sprs[PPC]

sprs[SR]

cpu
insn

pc

1

2

7

36
52

150

257

439

1.) symmetric diff 2.) intersection 3.) count 4.) sequence 5.) 1. + 2.

Figure 5: # of candidates for mappings with merged results
REFERENCES

[1] K. Hao, F. Xie, S. Ray, and J. Yang, “Optimizing equivalence checking
for behavioral synthesis,” in Design, Automation and Test in Europe,
2010, pp. 1500–1505.

[2] S. Vasudevan, V. Viswanath, J. A. Abraham, and J. Tu, “Sequential
equivalence checking between system level and RTL descriptions,”
Design Automation for Embedded Systems, vol. 12, pp. 377–396, 2008.

[3] A. Finder, J. Witte, and G. Fey, “Debugging HDL designs based
on functional equivalences with high-level specifications,” in IEEE
International Symposium on Design and Diagnostics of Electronic
Circuits and Systems, 2013, pp. 60–65.

[4] B. Alizadeh and M. Fujita, “Automatic merge-point detection for se-
quential equivalence checking of system-level and RTL descriptions,” in
Proceedings of the International Conference on Automated Technology
for Verification and Analysis, 2007, pp. 129–144.

[5] X. Feng and A. J. Hu, “Early cutpoint insertion for high-level software
vs. RTL formal combinational equivalence verification,” in Proceedings
of Design Automation Conference, 2006, pp. 1063–1068.

[6] C. Karfa, C. Mandal, D. Sarkar, S. R. Pentakota, and C. Reade, “A
formal verification method of scheduling in high-level synthesis,” in
Proceedings of the International Symposium on Quality Electronic
Design, 2006, pp. 71–78.

[7] S. Vasudevan, J. Abraham, V. Viswanath, and J. Tu, “Automatic
decomposition for sequential equivalence checking of system level and
RTL descriptions,” in Formal Methods and Models for Co-Design, 2006,
pp. 71–80.

[8] P. Chauhan, D. Goyal, G. Hasteer, A. Mathur, and N. Sharma, “Non-
cycle-accurate sequential equivalence checking,” in Design Automation
Conference, 2009, pp. 460–465.

[9] D. Große, M. Groß, U. Kühne, and R. Drechsler, “Simulation-based
equivalence checking between SystemC models at different levels of
abstraction,” in Great Lakes Symposium on VLSI, 2011, pp. 223–228.

[10] IEEE Standards Association, “IEEE Standard for Standard SystemC
Language Reference Manual,” IEEE Std 1666-2011 (Revision of IEEE
Std 1666-2005), Jan 2012.

[11] M. Fujita, Y. Kojima, and A. M. Gharehbaghi, “Debugging from high
level down to gate level,” in Design Automation Conference, 2009, pp.
627–630.

[12] A. Biere, D. Kröning, G. Weissenbacher, and C. Wintersteiger, Digital-
technik - Eine praxisnahe Einführung, ser. Springer-Lehrbuch. Springer
Berlin Heidelberg, 2008.

[13] OpenCores Community, “OpenRISC 1000 Architecture Manual,” 2014.

