
Finding Good Counter-Examples to Aid Design Verification

Görschwin Fey Rolf Drechsler

Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
{fey,drechsle}@informatik.uni-bremen.de

Abstract

Today up to 80% of the design costs for integrated cir-
cuits are due to verification. Verification tools guarantee
completeness if equivalence of two designs or a property
for a design are proven. In the other case usually only one
counter-example is produced. Then debugging has to be
carried out to locate the design error.

This paper investigates, how debugging can benefit from
using more than one counter-example generated by the
verification tool. The problem of finding useful counter-
examples is theoretically analyzed and proven to be difficult.
Heuristics are introduced and their quality is underlined by
experimental results. Guidelines how to generate counter-
examples are extracted from one of these heuristics.

1. Introduction

The design gap and especially the verification gap is in-
creasing. Circuits of several million gates can be produced
but ensuring correct functional behavior becomes more and
more challenging. Formal verification aids this task by
guaranteeing equivalence of designs or validity of a prop-
erty under any input sequence (see e.g. [3]). But the oppo-
site, i.e. proving inequivalence of two designs or invalidity
of a property is usually only done by providing one counter-
example. This is formally correct, but the designer has to
carry out the tedious task of locating the error based upon
this one counter-example by hand.

In Design Error Detection and Correction (DEDC) fre-
quently a set of test-vectors is used to reduce the number of
candidate error sites (e.g. [4]). But this set of test-vectors is
assumed to be given by a tool previous to error detection.

Here, we investigate the problem of choosing from the
available counter-examples a set, that leads to the smallest
possible number of candidate error sites. The decision if
a given set of counter-examples is ’good’ in this sense is
proven to be NP-complete. Therefore, two heuristics will
be introduced to choose counter-examples.

Binary Decision Diagrams (BDDs) are used to repre-
sent the set of all counter-examples. This allows to eval-
uate the quality of the heuristics. The first heuristic can be
considered as a general guideline, how to choose counter-
examples, i.e. it gives an idea how to produce good counter-
examples by other approaches than BDDs, e.g. by sim-
ulation based methods. The second heuristic efficiently
chooses counter-examples from BDDs.

2. Preliminaries

In formal verification commonly sequential problems are
transferred to combinational problems by unrolling the cir-
cuit in time or by splitting loops at storing elements as
e.g. flip-flops. Due to this combinational circuits are inves-
tigated in the following. The library of basic gates contains
all Boolean functions.

An erroneous circuitCE differs from its specificationCS

due to an error. The functional difference can be observed
at an outputα upon applying the input assignmenta to the
primary inputs. The tupleA = (α, a) is called acounter-
example (to the equivalence ofCE andCS).

Let FE(αi)(FS(αi)) denote the function calculated at
the primary outputαi of the circuitCE (CS) in terms of pri-
mary inputs. ThenFE(αi)⊕FS(αi) represents the counter-
examples observed atαi. Using a BDD to represent this
difference all counter-examples are given.

The erroneous circuit is assumed to have exactly one er-
ror of the following types (a subset of the error model in
[1]): (1) the function of a node is changed, (2) an extra node
is added, (3) a gate is missing at one input to a node, (4) an
input is added or (5) an input is removed at a node.

Given a counter-example for an erroneous circuit the
candidate error sites are determined by means of the path
tracing procedure from [5]. The procedure traces a path
from the output where the counter-example is observed
back to the primary inputs. At each gate an arbitrary input,
that has a controlling value, or all inputs, if none is control-
ling, are traced backwards1. All gates on the sensitized path
are candidate error sites.

3. Choosing good counter-examples

Given an erroneous circuitCE and its specificationCS

the set of all counter-examples can be determined. The
path tracing procedure leads to a set of candidate error sites
for each of the counter-examples. The intersection of all
these sets gives the minimal set of candidates that can be
determined. Usually it is too expensive to use all counter-
examples, since the number of counter-examples can be ex-
ponential in the number of inputs to the circuits. Therefore,
a subset of counter-examples has to be chosen, that leads to
a small number of candidate error sites.
Theorem 1. Given a set of size k of counter-examples for
an erroneous circuit. The decision problem, if this set leads

1An input value to a gate is controlling, if it determines the output of
the gate regardless of all other inputs values.



Table 1. Results using four counter-examples
Circ. optimal random distance BDD

#In #Out #Nodes avg. dev. avg. dev. avg. dev. avg. dev.
9sym 9 1 269 1.091 0.234 12.085 20.393 2.388 2.323 3.094 6.150
alu2 10 6 261 1.624 0.960 11.513 17.660 2.519 2.095 2.988 2.533
alu4 14 8 2416 1.034 0.302 1.101 0.350 1.171 0.542 1.081 0.346
apex2 39 3 3227 1.028 0.064 1.661 1.274 1.083 0.184 1.406 1.067
apex5 117 88 2734 1.033 0.123 2.201 3.479 1.171 0.495 1.422 0.776
cordic 23 2 2103 1.030 0.049 1.031 0.051 1.040 0.069 1.036 0.061
dalu 75 16 2699 1.340 0.724 2.329 2.711 1.785 2.096 3.719 4.527
e64 65 65 717 1.000 0.000 2.388 2.342 1.000 0.000 6.957 12.852
ex4p 128 28 1593 1.157 0.625 1.988 4.592 1.257 0.812 1.626 2.599
ex5p 8 63 1477 1.279 0.791 8.118 23.456 1.532 1.147 1.662 1.696
seq 41 35 2991 1.030 0.113 1.429 1.996 1.227 0.576 1.333 0.754
t481 16 1 1091 1.011 0.043 1.325 0.573 1.336 0.615 1.269 0.488
x3 135 99 1638 1.083 0.208 3.254 4.801 1.312 0.582 1.577 0.842

to the smallest number of candidate error sites compared to
all other sets of counter-examples is NP-complete.

This theorem is proven by formally defining the prob-
lem of choosing counter-examples and establishing a hier-
archy of problems that allows reduction to the NP-complete
problemMinimum Cover [2] in polynomial time. Thus, it
is difficult to find the set of counter-examples that leads to
the smallest number of candidate error sites - even if all
counter-examples are given.

4. Heuristics to choose counter-examples

Choosing the best set of counter-examples, i.e. the set
leading to the smallest number of candidate error sites, is
difficult. A heuristic to choose a set ofk counter-examples
from all num counter-examples is needed.

Two heuristics are introduced in this section. The first
one can be considered as a general purpose heuristic, that
suggests some conditions how to choose counter-examples.
The second heuristic aims at efficiently choosing counter-
examples, once their representation by a BDD is given.

The intuition behind both heuristics is to choose a set of
counter-examples that are as different as possible.

4.1. Maximum Distance Heuristic

This heuristic makes use of a distance defined between
two counter-examples, based upon three observations:

1. Non-specified inputs in a counter-example lead to non-
defined outputs that are not marked.

2. Different input-values lead to different assignments of
controlling values, i.e. different sensitized paths.

3. Observing errors at different outputs, leads to different
sensitized paths.

A greedy-algorithm chooses counter-examples such that
the sum of pairwise distances is maximized. The greedy-
algorithm runs in timeO(num · k).

4.2. Efficient heuristic on BDDs

Having all counter-examples given by BDDs a more effi-
cient heuristic is desirable. The algorithm explained in this
section runs inO(k · n), wheren is the number of inputs.

To get counter-examples from different outputs, the same
number of counter-examples is taken from the different
BDDs representing counter-examples at different outputs.
Using a flag, which BDD-nodes have already been visited,
assures that no identical counter-examples are chosen. Pre-
ferring short paths leads to a large number of don’t cares.

5. Experimental Results

Benchmarks were taken from the LGSynth93 set. Into
each of the circuits randomly an error was injected. Only
those erroneous circuits were considered where the num-
ber of counter-examples was more than 50 (to have a search
problem) and less than 140 (to be able to determine the opti-
mal choice). For each circuit 100 erroneous instances were
generated and diagnosed by 5 techniques: (1) All counter-
examples were taken into account; (2) the optimal choice of
4 counter-examples was calculated; counter-examples were
chosen (3) randomly, (4) by the maximum distance heuristic
and (5) the efficient heuristic for BDDs.

Table 1 gives results for using 4 counter-examples. All
results are relative to the optimum of using all counter-
examples. Column ’av.’ is the arithmetic mean factor of
nodes marked by the heuristic over nodes marked by all
counter-examples. Column ’dev.’ is the standard deviation.

The heuristics yield better results than random choice
and are often almost optimal. The heuristic for BDDs
has drawbacks on some circuits compared to the distance
heuristic.

References

[1] M. S. Abadir, J. Ferguson, and T. Kirkland. Logic verification
via test generation.IEEE Trans. on CAD, 7:172–177, 1988.

[2] M. Garey and D. Johnson.Computers and Intractability - A
Guide to NP-Completeness. Freeman, San Francisco, 1979.

[3] V. Paruthi and A. Kuehlmann. Equivalence checking combin-
ing a structural SAT-solver, BDDs, and simulation. InInt’l
Conf. on Comp. Design, pages 459–464, 2000.

[4] A. Veneris and I. N. Hajj. Design error diagnosis and cor-
rection via test vector simulation.IEEE Trans. on CAD,
18(12):1803–1816, 1999.

[5] S. Venkataraman and W. K. Fuchs. A decuctive technique for
diagnosis of bridging faults. InInt’l Conf. on CAD, pages
562–567, 1997.


