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ABSTRACT
Machine Learning (ML) algorithms are essential for emerging tech-
nologies such as autonomous driving and application-specific In-
ternet of Things (IoT) devices. Convolutional Neural Network (CNN)
is one of the major techniques used in such systems. This leads to
leveraging ML accelerators like GPGPUs to meet the design con-
straints. However, GPGPUs have high power consumption, and
selecting the most appropriate accelerator requires Design Space
Exploration (DSE), which is usually time-consuming and needs
high manual effort. Neural Hardware Search (NHS) is an upcoming
approach to automate the DSE for Neural Networks. Therefore,
automatic approaches for power, performance, and memory esti-
mations are needed.

In this paper, we present a novel approach, enabling designers
to fast and accurately estimate the power consumption of CNNs
inferencing on GPGPUs with Dynamic Frequency Scaling (DFS)
in the early stages of the design process. The proposed approach
uses static analysis for feature extraction and Random Forest Tree
regression analysis for predictive model generation. Experimental
results demonstrate that our approach can predict the CNNs power
consumption with a Mean Absolute Percentage Error (MAPE) of
5.03% compared to the actual hardware.

CCS CONCEPTS
• Hardware → Platform power issues; • Computing methodolo-
gies → Classification and regression trees.
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1 INTRODUCTION
Machine Learning (ML) has become very popular in almost all
industries, ranging from manufacturing to scientific-, health- and
security-related applications, as well as autonomous driving [11,
12]. Among the existing ML algorithms, CNN is the most popular
ML algorithm for image recognition in autonomous driving [15].
However, CNNs need high numbers of operations (e.g., floating
point). The convolutional layers are responsible for over 90% of the
computation in a CNN and require massive parallel processing with
potentially trillions of computations per second [8]. This leads to
the usage of ML accelerators (e.g., GPGPU) to speed up both neural
network training and inferencing.

GPGPUs require high energy consumption. For example, to
achieve high performance, the Summit supercomputer uses 27,648
NVIDIA Volta GPUs, leading to high energy consumption where a
power supply of 13 million watts is required [9]. While data cen-
ters or cloud systems can provide this high number of GPGPUs to
perform High-Performance Computing (HPC), due to power con-
sumption limitations, for most emerging technologies applications,
only a limited number of GPGPUs with certain configurations w.r.t
the power consumption is available. On the other hand, due to
the emerging usage of ML algorithms in IoT devices, embedded
and edge computing systems, the need for HPC has been signifi-
cantly increasing. This leads to an increase in power consumption
of almost all devices that are using ML algorithms (e.g., CNNs).
Hence, finding a trade-off between power consumption and HPC is
of utmost importance for such applications.

Performing Design Space Exploration (DSE) is highly important
to find such a trade-off, especially for applications with a limited
power supply like IoT and edge devices where unlimited power
supply is unavailable. A promising power management technique
that is widely used during DSE is Dynamic Voltage and Frequency
Scaling (DVFS) or Dynamic Frequency Scaling (DFS). The DVFS
technique changes the voltage/frequency during the processing of
applications, while DFS only changes the frequency. Both energy
consumption as well as performance, can be optimized with these
techniques. While the DVFS/DFS techniques for CPU-based appli-
cations are well-developed, in the case of the GPGPU, the study
started only a few years ago [17]. Moreover, [1] pointed out that
DVFS techniques for CPU do not suit for GPGPUs. Consequently,
for GPGPUs, new DVFS techniques need to be developed.

In order to support system designers in finding suitable devices,
GPGPU simulators can be used for DSE. Those simulators deliver
details of GPGPU kernels to understand the execution behavior
on GPGPUs [23]. Therefore, they use performance counters and
specific hardware details to estimate the execution time and power
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consumption. They reach an accuracy between 10% to 20% com-
pared to real hardware [24]. However, these simulators require a
long execution time and are significantly slower than native execu-
tion on real hardware [23, 24].

To tackle this issue, several predictive models have been devel-
oped [4, 17–19]. They can be classified either as empirical or statis-
tical studies. The first one relies on code analysis, while the second
one on the program performance counter. Empirical approaches
can be called a bottom-up approach and usually require detailed
information about the GPGPU micro-architecture. The statistical
approaches ignore the GPGPU architecture and treat it as a black
box. These approaches take details of the application behavior and
analyse the relationship between performance counters, GPGPU
power consumption and runtime [17].

Although the aforementioned methods can help designers to
build fewer prototypes during DSE and avoid costly design loops,
they need detailed application behavior analysis and specific pro-
filer and profiling settings to collect the necessary performance
counter. Moreover, most of them do not support power prediction
in the case of DFS.

In this paper, we present a fast and accurate predictive model con-
sidering the DFS ability of GPGPUs and straightforward collectible
predictors that do not need specific profiling settings. Compared
to other empirical studies, we do not need a detailed break-up of
the GPGPU micro-architecture and treat most parts of the GPGPU
architecture as a black box. Thus, we combine the advantages of
both empirical and statistical approaches. Our predictive model
achieves a MAPE of 5.03%.

In summary, the main contributions of the paper are as follows:
(1) A fast and accurate power estimation model considering DFS

to perform NHS for various configurations of GPGPUs,
(2) evaluation of different machine learning techniques to obtain

the best predictivemodel (i.e., Random Forest Tree regression
analysis),

(3) evaluating the applicability and accuracy of the proposed
approach in estimating power consumption of 30 standard
CNNs for the Nvidia V100S GPGPU (which is one of the
most used GPGPUs in data centers).

The rest of this paper is organized as follows: Section 2 gives an
overview of previous works. The motivation of the work is pre-
sented in Section 3. The proposed methodology is introduced in
Section 4. Experimental results to show the efficacy of our approach
are presented in Section 5. Finally, the paper is concluded in Sec-
tion 6.

2 RELATEDWORK
Power and performance prediction is inevitable to perform NHS.
Hence, several approaches have been introduced to achieve this
goal. Since this work focuses on power prediction, in this section,
we consider the most relevant state-of-the-art power prediction
methods to our work.

In general, power prediction methods can be divided into three
main categories, which are 1) ML-based approaches that rely on
learning the relationship between predictors (features) and output
(i.e., power consumption) [7, 18, 20, 24], 2) simulation-based meth-
ods, which execute the application on virtual devices and measure

the power consumption based on those simulations [2, 10] and
3) statistical approaches [4, 23], which use performance counters
to model the relationship between an application and run-time
profiling. Furthermore, most treat the micro-architecture of the
GPGPU as a black box.

In [7], an ensemble ML-based approach is presented. Therefore,
different ML-based models (e.g., ZeroR simple linear regression,
K-Nearest Neighbors (KNN), bagging, random forest, sequential min-
imal optimization regression, decision tree, and neural networks)
are created. Afterward, those ML-based models are unified in an
ensemble model considering a weighting factor to emphasize those
underlying models with the best prediction. However, this approach
relies on performance counters, which are usually only available
during the applications’ execution and need specific profiling tools
and settings. Subsequently, collecting training data and the input
data for the final model is time-consuming and needs the exact pro-
filer settings. This can limit the generality and applicability of the
method. In contrast, our approach relies on easy-to-access predic-
tors and less on dynamic runtime predictors. Moreover, the quality
of the predicted results is specified as Mean Absolute Error (MAE)
with the reported value 3.5% However, the error should be reported
based on the MAPE as MAE is not a percentage value.

The approach introduced in [20] estimates the power consump-
tion of CNNs for GPGPUs based on a KNN regression analysis.
The prediction is based on hardware architectural details and PTX
instructions. The PTX operations are counted and classified into
different groups used as predictors. Furthermore, all hardware archi-
tectural details which affect the power consumption are considered.
Due to manual feature selection, the most influential predictors
are chosen. However, although the base frequency is a selected
predictor, the approach does not consider DFS during the train-
ing data creation. Thus, it cannot be used in NHS with different
configurations of a given GPGPU in terms of frequencies.

ALOHA [4] presents a statistical approach to evaluate CNNs
for hardware-aware NAS on heterogeneous systems (e.g., GPGPUs
and FPGAs). The operations, data transfers, and deployment of
computing and communications resources can be estimated for
a given device and CNN. This provides designers with essential
information for hardware-aware NAS. However, we focus on NHS
in this work. Thus, other details of the CNNs behavior on GPGPUs
are essential. Moreover, this method requires a detailed and accurate
execution model for different heterogeneous devices, which may
not always be available.

Simulators like GPGPU-Sim [2] or GPU-ocelot [10] can execute
CUDA applications on CPU systems. They simulate the behavior of
GPGPUs and allow designers to measure the performance counter
for a given GPGPU. Thus, they can be used to perform DSE as they
provide designers with details of GPGPU kernels. They are versatile
and, thus, can be applied to many applications. However, one major
drawback of these simulators is the low execution speed. Since the
CUDA code is executed on CPUs, the execution time is significantly
slower than native execution on real GPGPUs. Moreover, consid-
ering a general solution to estimate the power consumption can
reduce the final prediction result. This is mainly because applica-
tions from different domains have different features, characteristics,
and behavior. Hence, a specified predictive model is preferable to a
general predictive model.
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(b) Run-time of various CNNs for differen frequencies inferencing on Nvidia V100S

Figure 1: Power consumption and Run-time of various CNNs
inferencing for different frequencies on Nvidia V100S.

Overall, although the results of the aforementioned power pre-
diction methods are complementary to our approach, they have
some limitations in terms of speed, the need for detailed platform
scheduling, as well as specific profiling tools and settings, and the
lack of supporting NHS. Hence, the main goal of this work is to
overcome these limitations.

3 MOTIVATION
A frequently used technique to reduce the power consumption
of processing units like CPUs or GPGPUs is DVFS. However, the
Nvidia Tools (e.g., nvidia-smi) only support frequency scaling and
not voltage scaling [21]. Hence, we are referring to DFS in this work
and not to DVFS.

Since the power consumption relies on the frequency (the higher
the frequency, the more power is consumed), it can be reduced by
scaling the frequency [17]. Consequently, the DFS technique needs
to detect if the performance of a given application is affected by
reducing the frequency of processing units.

Scaling the frequency of a GPGPU during CNN inferencing also
affects the power consumption. In Fig. 1(a), three different CNNs
are executed on the Nvidia V100S with frequencies of 1590MHz,
1005MHz, and 397Mhz, respectively. The results show that the
power consumption is lower with smaller frequencies. However,
the computational frequency has a different impact on the execution
time of the three CNNs. As illustrated in Fig. 1(b), the run-time for
Alexnet does not change significantly, while Densenet 169 is even
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Figure 2: DFS-based power estimation methodology.

faster with lower frequencies. In the case of Densenet 121, lower
frequencies lead to longer run-time.

Hence, system engineers must find the suitable GPGPU and
frequency configuration for a given CNN. In a naive approach,
designers need to execute CNNs for all available frequencies of
a GPGPU and measure their power consumption to find the best
trade-off. This way of exploring the design space for various CNNs
is very time-consuming. For example, this process takes over 195
hours for 30 CNNs and all 196 available frequencies of the Nvidia
V100S GPGPU. Hence, a fast and accurate approach can speed
up the DSE process and significantly reduce the time-to-market
constraints.

4 METHODOLOGY
The proposed methodology is structured into two main phases,
which are 1) training dataset creation and 2) predictive model gener-
ation and evaluation. The overall flow of the proposed methodology
is illustrated in Fig. 2. In the following, we explain each phase of
the proposed approach in more detail.

4.1 Training Data Generation
An HPC Cluster with Simple Linux Ressource Manager (SLURM)
is used for training data creation. The used machine is equipped
with three Nvidia V100S 32GB, 256GB memory, and 2 AMD EPYC
ROME 7272. Since the system is a computing cluster, the Home
directory is a Network Attached Storage (NAS); a 10GBit/s ethernet
connection connects it.

In order to take DFS into account, we used the functionality
supplied by the nvidia-smi tool to set a fixed execution frequency
[21]. This enables us to execute the CNN benchmarks on frequen-
cies between 1597 MHz and 135 MHz on the Nvidia V100S GPGPU.
Therefore, we program the SLURM-based HPC system (a batch
script) to start a Job array for all combinations of available frequen-
cies and CNNs. This program is illustrated in Fig. 3. To avoid any
side effects, we ensure our benchmark is the only running job on the
machine. This is done with the SLURM parameter –exlusive (Fig. 3,
Line 5). The benchmark has three steps 1) setting the frequency,
2) executing the CNN and measuring the power consumption and
execution time, and 3) resetting the frequency for the subsequent
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1 # ! / b in / bash
2 #
3 #SBATCH −−job −name=" Power_Benchmark "
4 . . .
5 #SBATCH −− e x c l u s i v e
6 . . .
7 d e c l a r e −a CLOCK_RATES
8 CLOCK_RATES= (1597 . . . 1 3 5 )
9
10 d e c l a r e −a CNNs
11 CNNs= ( 'm−r50x1 ' . . . ' a l e xne t ' )
12
13 d e c l a r e −a comb ina t i ons
14 index =1
15
16 f o r c l o c k _ r a t e in $ { CLOCK_RATES [ ∗ ] }
17 do
18 f o r CNN in $ { CNNs [ ∗ ] }
19 do
20 comb ina t i on s [ $ index ]= " $ c l o c k _ r a t e $CNN"
21 index=$ ( ( index +1 ) )
22 done
23 done
24
25 pa rame te r s = ( $ { comb ina t i on s [ $ { SLURM_ARRAY_TASK_ID } ] } )
26
27 c l o c k _ r a t e =$ { pa r ame te r s [ 0 ] }
28 cnn=$ { pa r ame te r s [ 1 ] }
29
30 nv id i a −smi −pm 1 − i 0
31 nv id i a −smi − i 0 −ac 1107 , $ { c l o c k _ r a t e }
32 srun python3 benchmark . py −n $ { cnn } − f $ { c l o c k _ r a t e }
33 nv id i a −smi − r a c
34 nv id i a −smi −pm 0 − i 0

Figure 3: Part of SLURM SBATCH Job script to execute the
CNN benchmarks with different frequencies on the experi-
mental setup.

execution (Lines 30 to 34). After the execution of CNN benchmarks
on a given frequency, the measurements are added to a CSV file
containing the GPGPUs name, CNN name, frequency, power con-
sumption, and execution time. The observation is extended during
further data collection steps for the predictors.

In order to get the exact number of executed instructions for
CNN benchmarks, we use the Nvidia Profiler nvprof, which ana-
lyzes the CNN during execution [22]. Thus, we execute all 30 CNN
benchmarks and create a profile for each of them. The extracted
number of executed instructions extends the training dataset. The
main reason is that the total number of PTX instructions cannot be
extracted from abstract PTX files at compilation time as it does not
contain dynamic information such as the length of loops or jump
instructions based on the comparison (Fig. 4, Lines 14 and 15). Thus,
at least one execution of the CNN benchmarks on real hardware
or cycle-level simulators (which take much longer time than real
devices) is required. In the Training Dataset Creation phase, the
Nvidia V100S GPGPU is used to measure the number of executed
instructions for each CNN.

In order to handle this issue for a new CNN in the second phase
(Fig. 2, PM Generation and Evaluation), we take advantage of a
reference GPGPU (which can be any available GPGPU) and the
Nvidia profiler nvprof to obtain the total number of instructions.

Every CNN is different in terms of the number of neurons, the
number of layers, activation function, and many more factors [13].
The number of trainable parameters is one option to measure the

complexity of a neural network. A trainable parameter is a connec-
tion between two neurons that has weight. This weight changes
during the training process. Considering the Bias-neurons, the train-
able parameter between two fully connected layers TPff is defined
as follows:

TPff = F−1 ∗ F + F (1)

Where F, F−1 are the number of neurons in the current layer and
the number of neurons of the previous layer, respectively, in or-
der to calculate the total number of trainable parameters TPtotal
for a Neural Network, all trainable parameters of each layer are
summarized regardless of the type of neural network (e.g., Fully
Connected, CNN, Recurrent Neural Network (RNN)).

TPtotal =
n∑︁
i=1

TPi−1,i (2)

However, in the case of convolutional layers, the trainable parame-
ter needs different calculations. There are two cases to cover:

• a convolutional layer connected to another convolutional
layer TPc ,

• a convolutional or pooling layer connected to a fully con-
nected layer TPcf

For each convolutional layer connected to another convolutional
layer, the calculation for TPc is performed based on the following
definition:

TPc = K2 ∗ C ∗ N + N (3)

The parameters 𝐾 , 𝐶 , and 𝑁 are details of the convolutional layers
that stand for the kernel size (width), the number of channels, and
the number of kernels, respectively. In the case that a convolutional
or pooling layer is connected to a fully connected layer, the trainable
parameters TPcf are calculated as follows:

TPcf =

{
𝑂2
𝑐𝑜𝑛𝑣 ∗ 𝑁 ∗ 𝐹 + 𝐹,

𝑂2
𝑝𝑜𝑜𝑙𝑖𝑛𝑔

∗ 𝑁 ∗ 𝐹 + 𝐹 (4)

Oconv =
I − K + 2P

S
+ 1 (5)

Opooling =
I −W

S
+ 1 (6)

Here, the parameter Oconv, I ,K, S and P are standing for the size
(width) of the output image, the size (width) of the input image,
the size (width) of the kernels used, the stride and the padding of a
convolutional layer.

We calculate the trainable parameter (Static Analyzer module
in Fig. 2, Phase 1) for all 30 benchmark CNNs and add the total
number of trainable parameters for each CNN to the corresponding
observation of the DFS benchmark. The final training dataset D is
defined as follows:

D = {di |di = {yi (ci, tpi, insi)}; 0 < i < n} (7)

For each observation di the parameter ci, tpi, insi identify the GPG-
PUs’ frequency, the CNN trainable parameter and the total number
of executed PTX instructions, respectively. The output parameter
yi denotes the measured power consumption (in watts) for each
CNN running on GPGPUs. The training dataset is split into 70%
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1 / / Genera ted by LLVM NVPTX Back −End
2 . v e r s i o n 6 . 0
3 . t a r g e t sm_61
4 . a d d r e s s _ s i z e 64
5 . . .
6 . r e q n t i d 256 , 1 , 1 {
7 . r eg . pred %p<14 >;
8 . . .
9 mov . u32 %r13 , % c t a i d . x ;
10 mov . u32 %r14 , % t i d . x ;
11 s h l . b32 %r15 , %r13 , 1 0 ;
12 s h l . b32 %r16 , %r14 , 2 ;
13 or . b32 %r1 , %r16 , %r15 ;
14 s e t p . l t . u32 %p1 , %r1 , 7 1 8 2 9 6 ;
15 @%p1 bra LBB0_2 ;
16 bra . un i LBB0_1 ;
17 LBB0_2 :
18 l d . param . u64 %rd10 , [ fus ion_135_param_0 ] ;
19 . . .
20 LBB0_1 :
21 r e t ; }
22 . . .

Figure 4: Part of the PTX file of a CNN model.

training and 30% evaluation, which are independent and have no
overlapping data. Afterward, the different predictive models (we
use five different ML techniques) are trained on the dataset and
evaluated in terms of accuracy and speed.

4.2 Predictiv Model Generation and Evaluation
We consider five common ML techniques for regression analysis,
namely 1) KNN, 2) Decision Tree, 3) Random Forest Trees, 4) eX-
treme Gradient Boosting (XGBoost) and 5) Linear Regression.

KNN is a non-parametric ML algorithm for clustering. Although
it is designed for classification tasks, it can be used for regres-
sion analysis, too [14]. Decision Tree, Random Forest Tree, and
eXtreme Gradient Boosting are tree-based decision algorithms that
are also usually used for classification, but can also be used for
regression analysis. The Decision Tree technique builds a binary
tree structure, where a predictor defines each node and threshold
[16]. The Random Forest Tree is an extension of this simple Deci-
sion Tree technique and consists of an collection of Decision Trees
that creates a "Forest". Hence, the Random Forest Tree usually has
better results than a single Decision Tree [3]. The XGBoost is a
technique to speed up the runtime of tree-based ML techniques.
Consequently, the execution time of XGBoost models is faster than
for other tree-based ML algorithms [5]. However, to find the tech-
nique that provides the best predictive model, we train five different
models and compare them in terms of accuracy and speed.

In order to compare different ML techniques and evaluate the
generated predictive models, we use the MAPE and the 𝑅2 coef-
ficient. This ensures that the accuracy of all predictive models is
calculated using the identical metric, providing a basis for compari-
son. We calculate the MAPE based on Eq. (8) and 𝑅2 based on Eq.
(9).

MAPE =
1
n

n∑︁
i=1

| yi − ŷi
yi

| (8)

R2 =

∑n
i=1 (ŷi − y)2∑n
i=1 (yi − y)2

(9)

Here, 𝑦𝑖 , 𝑦𝑖 , and 𝑦𝑖 identify the observation value, the prediction
value, and the average value of the output, respectively. Moreover,
this also enables us to compare our results to state-of-the-art works.

5 EXPERIMENTAL RESULTS
The initial experimental results sound promising. We evaluate five
commonly usedML-algorithm to build a predictive model for power
consumption considering DFS. The experimental results are con-
solidated in Table 1, which shows the accuracy of the predictive
models for average, top 10%, and bottom 10% prediction. The Linear
Regression shows the worst result with a MAPE of 15.31% followed
by the KNN with a MAPE of 7.74%. The tree-based ML algorithms,
Decision Tree, XGBoost, and Random Forest Tree attained better
results with MAPE of 6.03%, 5.43%, and 5.03%, respectively. The best
predictive model is based on the Random Forest Tree algorithm,
where the total number of instructions and the fixed frequency are
used as predictors. In this case, the Random Forest Tree predictive
model achieves a MAPE of 0.3% for the top 10% and 5.56% for the
bottom 10% prediction. Since the features are simple to collect and
consist of only two elements, the proposed approach can be easily
applied and used. This can significantly enhance the DSE process
and avoid the heavy tasks of specific setup and configuration, as
well as the extraction of a large number of features that are usually
required by most other approaches.

Compared to the state-of-the-art approach [20] with a MAPE of
8.3%, our proposed approach achieves 1.65× better accuracy. The
main reason is that the proposed approach is specified to a single
GPGPU model and can predict the power consumption for various
CNNs for this specific GPGPU. Please note that the GPGPU can
be changed, and any other GPGPUs can be added to the training
dataset. In this case, based on which GPGPU is considered as the
target device, the predictive model can be adopted. Therefore, any
extension on the training dataset can be quickly established.

The execution time of our approach is 0.0109 seconds in theworst
case. Based on this, DSE for 30 different CNNs and 196 possible fre-
quencies of the Nvidia V100S take about 30 ∗ 196 ∗ 0.0109s ≈ 64.1s
which leads to a tremendous speed-up of 11009× in comparison to
the naive approach. Moreover, it also opens another possible use
case; online dynamic frequency scaling of GPGPUs. The predictive
model can be used to estimate the power consumption of a CNN
online on the device and, thus, to scale the frequency depending
on the executed CNN in production. This opens additional power-
saving options for systems executing different CNNs on the same
device (e.g., GPGPU) like HPC-Systems or cloud providers. For ex-
ample, the Nvidia V100S has 196 frequencies between 1597 MHz
and 135 MHz that can be configured. Consequently, finding the
frequency with the lowest power consumption requires 196 exe-
cution of the predictive model, which takes 196 ∗ 0.0109s = 2.1364s.
In the case of the model’s periodic executions, the best frequency
can be calculated and cached after the first inferencing and used in
an additional execution.

A comparison between the predicted power consumption, based
on our predictive model and the actual power consumption on a real
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Table 1: Comparison of four different ML-Regression algorithms in terms of accuracy and execution time

GPGPU Regression Model
Accuracy Execution Time

Average Max Absolute Error Top 10% Bottom 10% fast slow
MAPE R2 MAPE MAPE

V100S

Linear Regression 15.31% 0.6447 117.05 Watts 1.06% 16.88% 3.5099e−5 0.0002
K-Nearest Neighbors 07.74% 0.8027 93.09 Watts 0.52% 8.53% 0.0003 0.0017
Random Forest Tree 05.03% 0.9561 38.24 Watts 0.30% 5.56% 0.0050 0.0109
Decision Tree 06.03% 0.9359 38.38 Watts 0.32% 6.65% 4.219e−5 0.0002
XG Boost 05.43% 0.9512 48.13 Watts 0.34% 5.99% 9 .0800e−5 0.0003

400 600 800 1000 1200 1400 1600
Frequency (MHz)

40

50

60

70

80

P
o
w

e
r 

C
o
n
su

m
p
ti

o
n
 (

W
a
tt

s)

True power consumption

predicted power consumption

(a) Alexnet

400 600 800 1000 1200 1400 1600
Frequency (MHz)

40

50

60

70

80
P
o
w

e
r 

C
o
n
su

m
p
ti

o
n
 (

W
a
tt

s)

True power consumption

predicted power consumption

(b) Densenet121
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(c) Densenet169
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(d) Efficientnetb0
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(e) Efficientnetb1
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Figure 5: Comparison of predicted and real power consumption for six different CNNs for frequencies between 397MHz and
1590MHz on the Nvidia V100S GPGPU.

device (e.g., Nvidia V100S) is illustrated in Fig. 5. This figure shows
that the predictive model is close to the actual power consumption.

6 CONCLUSION
In this paper, we proposed a novel ML-based approach to estimate
the power consumption of CNNs for GPGPUs with DFS. We illus-
trated how the power consumption of CNNs for a given GPGPU
with various frequencies can be estimated by only considering two
main features as predictors, namely the total number of executed
instructions and trainable parameters (related to the CNNs topol-
ogy). The proposed approach empowers designers to apply NHS
and hardware-aware NAS, considering the power consumption of
CNNs for GPGPUs. Our model can predict the power consumption
of various GPGPU frequency configurations without retraining the

model. Experimental results sound promising, and we believe this
new line of research is helpful for making power estimation CNNs
for GPGPUs with DFS truly a cross-cutting activity in the early
stages of the design process.

As part of our future work, we plan to study automatic NHS and
hardware-aware NAS based on our predictive models. Therefore,
we will combine predictive models for power consumption estima-
tion with a predictive model for performance estimation and build
an NHS system. Furthermore, we will investigate other relevant
predictors for CNNs such as FLOPs, Multiply-Accumulated (MAC)
operations, or consider Neural Networks in ONNX [6] format. In
order to harden our predictive model, we work on more standard
CNNs and variations of these as well as GPGPUs.
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