
MODELING AND FORMAL VERIFICATION OF COUNTING
HEADS FOR RAILWAYS 1

Sebastian Kinder and Rolf Drechsler
Universität Bremen
Address: Bibliothekstraße 1, D-28359 Bremen, Germany
Phone: +49-421-218-8259, Fax: +49-421-218-7385 ,
E-Mail: {kinder,drechsle}@informatik.uni-bremen.de

Abstract: The demand for safety for electronic systems, especially safety critical systems,
is high. Nowadays such systems are tested and simulated with a manually created set of test
cases. But testing cannot reach a complete coverage for complex designs. Hence, we present
a verification flow for Counting Heads for railways which are used by many electronic railway
interlocking systems from SIEMENS. Our approach is based on SystemC, a powerful system
level description language. Thereby, efficient modeling and simulation-based validation of
railway systems becomes possible. The presented flow allows also for formal verification.

Keywords: railway control systems, domain-specific language, formal methods, bounded
model checking, SystemC

1. INTRODUCTION

Today’s electronic systems become more
and more complex. They are applied in
many areas of our personal lives, e.g. cellu-
lar phones or entertainment electronics, and
it is nearly impossible to imagine a modern
life without them. Failures of these devices
would usually result in minor problems for
the users. But complex electronic systems
are also used for in safety critical applica-
tions, e.g. like those used in medical equip-
ment, avionics and electronic railway inter-
locking systems. Especially, in these sec-
tors the demand for safety is exceptionally
high because human life may depend on the
faultless functionality of such devices.

Nowadays railway systems are de-
signed and tested in a conventional way,
i.e. the systems are simulated with a manu-
ally created test bench. This has the advan-

tage that the designers have a considerable
expertise with this kind of work, but there
is still a lot of potential for human failure.
Furthermore, testing is very cost-intensive
and can never reach complete coverage for
large designs. Hence, an integrated design
flow for railway systems is needed, which
allows for efficient modeling, validation,
simulation-based verification as well as for-
mal verification. Therefor, a well accepted
approach is the system level description lan-
guage SystemC, which is known from the
hardware design domain. SystemC supports
the designer with a suitable methodology for
efficient modeling and validation. With an
integrated simulation kernel, it facilitates a
fast and efficient validation and simulation-
based verification. Finally, formal verifica-
tion can be applied, too.

In this paper we present a design flow
for a railway specific application based on

1This work was supported in part by the Rail Automation Graduate School (RA:GS!) of
Siemens Transportation Systems in Braunschweig, Germany.

SystemC. We show the modeling of Count-
ing Heads (CHs) for railways (Siemens
AG, 2003a), which are used to determine
whether a specified Track Vacancy Detec-
tion Section (TVDS) is clear or occupied.
Especially for electronic railway interlock-
ing systems as constructed by SIEMENS,
which determine automatically whether a
TVDS is clear or occupied, the correct func-
tion of CHs is crucial: If they fail to work
properly, a TVDS would either be falsely
indicated as occupied – resulting in a de-
terioration of availability and reliability –
or falsely indicated as clear – possibly in-
troducing a safety hazard. The proof of
correctness helps to avoid such situations.
Therefore, we present first steps towards a
complete formal verification of CHs using
Bounded Model Checking (BMC).

This paper is structured as follows:
In Section 2 we give a brief introduction
into the system description language Sys-
temC and into the property specification lan-
guage PSL. Furthermore we explain the fun-
damental ideas of BMC. We motivate the
usage of CHs in railway systems in Sec-
tion 3. Afterwards, we explain how they
are modelled in SystemC. In Section 4 the
simulation-based verification of the CHs is
shown. Formal verification results using
BMC and inductive reasoning are presented
in Section 5. The final section concludes
this paper and gives an outlook to future
work.

2. Preliminaries

In this section we give some details re-
garding the preliminaries of modeling and
formal verification. First of all we intro-
duce some details of the modeling language
SystemC and the property specification lan-
guage PSL. In the second part we explain
bounded model checking..

2.1 SystemC

SystemC (Grötker et al., 2002) is a C++
class library that can be used to create de-
signs from the hardware domain ranging

from cycle-accurate architectures to system-
level models. Some of the basic concepts of
SystemC are given in the following:

• Modules: Modules are the basic
building blocks of a system. They
encapsulate parts of the design. A
module is realized as a C++ class
and may contain ports, local data,
concurrent processes and submod-
ules. Thus, a hierarchical design de-
scription is possible.

• Processes: Processes are used to de-
scribe the functionality of modules.
They can be sensitive to input sig-
nals, clock signals or more complex
events. SystemC provides three dif-
ferent process abstractions. Concur-
rency is modelled by processes.

• Signals: Signals represent physi-
cal connections and connect mod-
ules through their ports. Signals
transport data without information
about the direction. The assignment
of values to signals takes place ac-
cording to the principle of deferred
assignments known from hardware
description languages, e.g. VHDL
or Verilog.

• Data types: In addition to all C++
data types SystemC supports data
types for multiple design domains,
ranging from four valued logic via
fixed-point to integer with unlimited
length.

The concepts provided by SystemC are
sufficient to model hardware designs. But
on higher levels of abstraction, such as the
transaction level, complex communication
protocols are required, e.g. buffered queues.
Therefore, the concept of channels and in-
terfaces has been implemented in SystemC.

Since SystemC is a C++ class library
the design can be compiled with a stan-
dard C++ compiler to produce an executable
specification. The current state of the sys-
tem can be propagated by using C++ rou-
tines, e.g. cout, or waveforms using the
waveform tracing provided by SystemC.

2.2 Property Specification Language

Properties of a system are often described
using temporal expressions in hardware de-
sign. The system can be checked with these
properties using formal techniques. De-
scribing temporal properties for verification
can be done in many different ways, since
there exist several languages and temporal
logics. As property specification language
we use a subset of the widely known in-
dustrial standard PSL (Accellera, 2004). A
PSL-property consists of two parts: a list of
assumptions and a list of commitments. As-
sumptions and commitments have the form:

next[a] (expression)
or next_a[a,b](expression)
or next_e[a,b](expression)

where a and b are time points. If all assump-
tions hold, all commitments in the proof part
have to hold as well. All used time points
have to be greater or equal to 0. Since a
and b are finite, a property argues only over
a finite time interval, which is called obser-
vation window. Temporal dependencies are
expressed by using the keywords next_a
and next_e, whereas next_a states that
the expression has to hold all the time in
the interval and with next_e the expres-
sion has to hold at least once in the specified
interval. Also a set of advanced operators
and constructs is provided to allow for ex-
pressing complex constraints more easily.

In the way we formulate properties,
they state that whenever some signals have
a given value, some other (or the same) sig-
nals assume specified values. Of course, it
is also possible to describe symbolic rela-
tions of signals. Furthermore the property
language allows to argue over time intervals,
e.g. that a signal has to be stable in a speci-
fied interval.

2.3 Bounded Model Checking

In model checking (also called property
checking) properties for a given system are
formulated in a dedicated “verification lan-
guage”. It is then formally proven whether
these properties hold under all input and
state assignments for the given assumptions.

While “classical” CTL-based model check-
ing (Burch et al., 1990) can only be ap-
plied to medium sized designs, approaches
based on Bounded Model Checking (BMC)
as discussed in (Biere et al., 1999) give very
good results when used for complete blocks.
In BMC the properties are only considered
over a finite interval. BMC has originally
been proposed for circuit verification and in
this context considering a finite number of
steps is reasonable.

The model has to be unrolled as of-
ten as the time interval of the property is
long. The unrolled model and the prop-
erty are translated into a boolean formula.
The formula is solved by a SAT-solver and
if it is satisfiable, a counter example has
been found, disproving the validity of the
property. If the SAT instance is unsatis-
fiable, the property holds. Since there is
no restriction to reachable states during the
proof of the corresponding SAT instance, a
counter-example may start from an unreach-
able state. Usually, if such a case occurs
these states are excluded by additional as-
sumptions. For BMC as used here, it is not
necessary to determine the state space diam-
eter of the underlying model.

3. Modeling of the Counting Heads

Counting Heads (CHs) (Siemens AG,
2003a) are needed to determine whether a
railway track section is vacant or occupied.
This is essential for electronic railway inter-
locking systems in order to position points
into the correct direction for the next train.
CHs are used in a lot of interlocking systems
all over the world. A CH failing to work
properly could result in a collision of rail-
ways and endanger the life of passengers.

In Figure 1 (Siemens AG, 2003b) a
small network of railtracks is shown, which
could be operated by an electronic railway
interlocking system. Every Track Vacancy
Detection Section (TVDS) is defined by at
least two CHs, one at the beginning and one
at the end of such a track section. The out-
put of the CH is transmitted to an evalua-
tion computer. The evaluation computer in-
terprets the signals, compares the number of

Fig. 1. Track Vacancy Detection Section

System1 System2

(5)(4)(3)(2)(1)

(a) Impact on Sensor Systems

System1

System2

(b) Waveform

Fig. 2. Double Wheel Detection

axles which entered and left a TVDS. The
computer issues clear or occupied indica-
tions and monitors the clear/occupied state
of the TVDS. The functionality of a CH is
explained in the following section.

3.1 Counting Head

To operate, a CH is connected to a dou-
ble wheel detector and an evaluation com-
puter. The Figures 2 and 3 are taken
from (Siemens AG, 2003a).

3.1.1 Counting with Double Wheel
Detectors

A double wheel detector is mounted on one
of the rails and detects passing wheels of the
vehicles. A double wheel detector consists

of two sensor systems, which are triggered
when an axle crosses. The impacts on both
sensor systems occur with a delay, which in-
dicates the direction of the crossing axle as
shown in the following example.

Example 1. The triggering of the sensor
system is shown in Figure 2(a). The signal
waveform of both sensor systems is given in
Figure 2(b). These figures correspond to an
axle which crosses the double wheel detec-
tor regularly.

If the space between wheel and sensor
system is big enough, both sensor systems
are unaffected (state (1)) as can be seen in
Figure 2(a). The wheel approaches from the
left side and the left sensor is affected first
(state (2)). When the wheel is positioned

���
�

/evaluate

unaffected

/evaluate

/evaluate
 12 ms

/evaluate

/evaluate

 1 s
 0.1 s

 0.1 s

/++x

/++r,++a

/++r
/++r

/++g,
++a

/++g
/++x

/++l/++r

/++r

/++l

/++r/++l/++r,
++a

system2_affected

was_both_systems

was_both_systems

/evaluate
 12 ms

 0.1 swas_unaffected

was_unaffected

both_systems_affected

system1_affected

Fig. 3. FSM of the Counting Head

right above the double wheel detector, both
sensor systems are affected (state (3)). The
axle moves on and the left sensor is not af-
fected anymore (state (4)). Finally, the axle
left the double wheel detector and both sys-
tems return to their unaffected states (state
(5)). If an axle crosses the detector from
left to right, the states are always traversed
in order (1)-(2)-(3)-(4)-(5) as described in
Example 1. If it crosses from right to left,
the order is (5)-(4)-(3)-(2)-(1). Different se-
quences are also possible, e.g. (1)-(2)-(3)-
(2)-(1). If this sequence occurs, the evalu-
ation computer recognizes the oscillation of
axles.

3.1.2 Axle Counting Procedure

The basic idea for the axle counting proce-
dure is as follows: There are five counters
(l, r, g, x, a). They count a defined type
of state transitions for a single axle, while
traversing the Finite State Machine (FSM)

given in Figure 3, e.g. every clockwise tran-
sition is counted by the counter r. All coun-
ters are real integer values. Times are rang-
ing from 12 ms to 1 s. They are not given
in form of discrete clock cycles as usually
known in hardware design. For a more de-
tailed description see (Siemens AG, 2003a).

Every time the FSM enters state
unaffected, these counters are added to
a second set of counters, which are counting
the whole group of axles. Afterwards, the
counters for a single axle are set to zero. If
the FSM was idle in one state long enough,
the CH evaluates the counters for the whole
group and writes the corresponding values
to its attributes. The CH has some attributes
which are visible from the outside:

1. Number of axles is the signed sum
of all axles which crossed the dou-
ble wheel detector. The sign indi-
cates the direction of the axles.

2. Number of errors is incremented ev-
ery time an error occurred in the CH,

e.g. an undefined counting impulse.

3. Time the CH was not affected, states
for how long no axle crossed the
double wheel detector.

4. Counter control token is set, if the
CH raises suspicions of malfunc-
tions.

5. Several failure tokens, which indi-
cate if a failure occurred, depending
on the type of the CH.

The FSM consists of four states.
They correspond to the four possible im-
pact combinations on both sensor systems.
The states, in which one sensor system
is exclusively affected, are divided into
the two substates was_both_systems
and was_unaffected. Depending on
whether the counting head was in state
unaffected or in state both_sys-
tems_affected before entering this
state.

The states of the FSM are traversed in
a circle either clockwise or counterclock-
wise, depending on the direction in which
the axle crosses the detector. For every state
transition clockwise the counter r is incre-
mented (see Figure 3) and for every tran-
sition counterclockwise l is incremented.
If a transition from state unaffected
to state both_systems_affected
or vice versa occurs, the counter g is
incremented. For transitions between
state system1_affected and state
system2_affected the counter x is
incremented, analogously. The counters x
and g are necessary to determine if an axle
crossed the detector regularly or not. With-
out interferences either the counter r or the
counter l has got a high value and the x and
g stay equal to zero.

At some of the states in Figure 3 there
is a time annotated. This time indicates for
how long the counting head has to stay in
this state, before the counter values are eval-
uated. In the evaluation phase the count-
ing head determines how many axles have
passed the detector. The direction of the

axles is calculated by the values of the coun-
ters l and r. If l is greater than r the num-
ber of axles is decremented by a. If r is
greater than l the number of axles is incre-
mented by a. If these counters are equal, no
axle is counted, because the axles oscillate
over the detector. Thus, the overall num-
ber of axles is calculated. This number is
signed to indicate the direction of the axles.
This is only done, if the counters x and g are
equal to zero or at least within the range of
tolerance. Accepted values for x and g are
calculated with several parameter, which are
defined for every CH type. If these coun-
ters are not within the range of tolerance,
the CH counts the errors and checks if the
counter control token has to be set. If this
token is set, the evaluation computer issues
a permanent occupied indication. There is
a big variety of error patterns, but due to
the page limitations they are not enumerated
here. A short evaluation of counter values
can be seen in Example 2.

Example 2. A train with 40 axles passed
the counting heads. Assuming every axle
passed regularly. The train crossed from
right to left, i.e. the first sensor system
to be affected is system two. After the
train passed completely, counter a = 40,
counter l = 160 and the other counters
are equal to zero. After one second in
state unaffected the CH evaluates the
counter. The absolute number of axles is 40.
Since l is greater than r, the CH transmits
−40 as the number of axles to the evalua-
tion computer.

3.2 SystemC Model

SystemC is well suited to model systems
like the one at hand. To model this system,
it is advisable to partition the design into
a module for the finite state machine and a
module for the timeout control. A sketch is
given in Figure 4.

As can be seen the design has three
input signals, the inputs system1 and
system2 indicate which sensor system of
the double wheel detector is affected and

#errors

Timer

Counting Head
FSM

timeout_reqtimeouts

#axlessystem1
system2
reset

Fig. 4. Abstracted Model of a Counting Head

which is not. If the input reset is set, the
system is reset into the initial state. The in-
puts are Boolean values.

As mentioned above, the system con-
sists of two modules, which are intercon-
nected to each other by three timeout signals
and one timeout request signal. The timeout
request to start the timer is issued every time
the module “FSM-Counting Head” reaches
another state of the FSM. The timer module
activates the timeout signals, when the cor-
responding timeout is reached. The internal
signals are Boolean values, too.

The number of outputs depends on the
type of the CH. But all CHs have at least the
following outputs:

• Number of axles, integer value

• Number of errors, integer value

• Time the system has been unaf-
fected (idle time), unsigned integer
value

• Counter control token, Boolean
value

Additionally, there can be several more
outputs, called failure tokens, depending on
the specific needs for a railroad track.

For a better understanding of the
model, we give some implementation de-
tails for state unaffected and state sys-
tem1_affected of the FSM in Figure 5.
The other two states are left out, because
they are similar to the presented ones and
they are implemented analogously.

State unaffected is handled in lines
2 – 23. While traversing the FSM the state
transitions are counted for a single axle. In
Figure 5 the single axle counters are denoted
with the suffix _s. When the system enters
this state, all counters for a single axle are
added to the counters for the whole group
of axles (denoted with the suffix _g in the
figure). This can be seen from line 3 to line
7. Afterwards the counters for a single axle
are set to zero. In line 8 the old_state is
set to the current state, so that the next state
can determine in which direction the FSM
is traversed. The possible impact combina-
tions on both sensor systems are checked in
lines 9 – 21. The corresponding counters are
incremented and the new state is set. Ad-
ditionally, the timeout_req is issued for
the next state. The last action in this state is
the check if the time, the system is allowed
to stay in this state, has expired (line 22).
If the time is expired, the evaluation phase
begins.

State system1_affected is en-
tered, when sensor system 1 is affected and
sensor system 2 is not affected. The sys-
tem stays in this state as long as the im-
pacts on the sensor systems do not change.
If the impact on the sensor systems change,
it is distinguished between the three possi-
ble combinations (lines 25 – 41). The coun-
ters are incremented and the new state is
set accordingly. It is determined if an axle
has passed successfully in lines 34 and 35.
In this case the system is about to enter

1 swi tch (s t a t e) {
2 case u n a f f e c t e d :
3 a_g + = a_s ; a_s = 0 ;
4 r_g + = r _ s ; r _ s = 0 ;
5 l _ g + = l _ s ; l _ s = 0 ;
6 x_g + = x_s ; x_s = 0 ;
7 g_g + = g_s ; g_s = 0 ;
8 o l d _ s t a t e = u n a f f e c t e d ;
9 i f (sys t em1 == 1 && sys t em2 = = 1) {

10 x_s ++;
11 s t a t e = b o t h _ s y s t e m s _ a f f e c t e d ;
12 t i m e o u t _ r e q = 1 ;
13 } e l s e i f (sys t em1 = = 1) {
14 r _ s ++;
15 s t a t e = s y s t e m 1 _ a f f e c t e d ;
16 t i m e o u t _ r e q = 1 ;
17 } e l s e i f (sys t em2 = = 1) {
18 l _ s ++;
19 s t a t e = s y s t e m 2 _ a f f e c t e d ;
20 t i m e o u t _ r e q = 1 ;
21 }
22 i f (t i m e o u t (1 s e c)) e v a l u a t e = 1 ;
23 break ;
24 case s y s t e m 1 _ a f f e c t e d :
25 i f (sys t em1 == 1 && sys t em2 = = 1) {
26 r _ s ++;
27 s t a t e = b o t h _ s y s t e m s _ a f f e c t e d ;
28 t i m e o u t _ r e q = 1 ;
29 }
30 i f (sys t em1 == 0 && sys t em2 = = 0) {
31 l _ s ++;
32 s t a t e = u n a f f e c t e d ;
33 t i m e o u t _ r e q = 1 ;
34 i f (o l d _ s t a t e = = was_bo th_sys t ems)
35 a_s ++;
36 }
37 i f (sys t em2 == 1 && sys t em1 = = 0) {
38 x_s ++;
39 s t a t e = s y s t e m 2 _ a f f e c t e d ;
40 t i m e o u t _ r e q = 1 ;
41 }
42 swi tch (o l d _ s t a t e)
43 case was_bo th_sys t ems :
44 i f (t i m e o u t (0 . 1 s e c)) e v a l u a t e = 1 ;
45 break ;
46 case w a s _ u n a f f e c t e d :
47 i f (t i m e o u t (12 msec)) e v a l u a t e = 1 ;
48 break ;
49 break ;
50 case b o t h _ a f f e c t e d :
51 . . .
52 case s y s t e m 2 _ a f f e c t e d :
53 . . .
54 }

Fig. 5. Implementation of the CH-FSM

<12ms <12ms

<1s <0.1s

System1
System2

Fig. 6. Stimuli Waveform

state unaffected and the old_state
was state was_both_systems. This
means that the FSM has been traversed com-
pletely from state unaffected to state
unaffected. After that the two sub-
states (as can be seen in Figure 3) have
to be distinguished to determine if a time-
out for this substate occurred. In sub-
state was_unaffected the time until the
timeout is triggered is 0.1 s. In substate
was_both_systems it is 12 ms.

If a timeout is triggered in any state,
the system starts the evaluation phase. In
this phase the system determines how many
axles crossed the double wheel detector,
how many errors occurred and if the control
token has to be set. During this phase all
outputs, except idle time, are written.
The total idle time is written continu-
ously to the corresponding output, if the CH
was in state unaffected for more than 12

ms. A failure case, which is detected in the
evaluation phase, is shown in Example 3.

Example 3. The counters x and g are
equal to zero for a regular crossing of a
group of axles. They are only incremented in
a case of failure. A CH-error is triggered, if
the sum of these counters exceeds a specified
value: x+g > ba/gxmaxc. The variables
x, g, and a are counters and gxmax ≥ 4 is
a parameter, which is defined for every CH
type, separately.

This equation denotes that for
gxmax = 4 one failure per four axles
is tolerated. If a < 4, no failure at all is
accepted.

4. Simulation-based Verification

In this section we show the simulation-
based verification of the SystemC model of
the CH.

Since SystemC is a C++ class library,
the modelled system can be compiled to an
executable specification. This specification
can be simulated with the integrated Sys-
temC simulation kernel. To simulate a de-
sign, it is necessary to stimulate its inputs.
This is done by an additional module, the
stimuli generator. The generator has ex-
actly the same number of outputs as the de-
sign’s number of inputs. Each input has to
be connected to the corresponding output of
the stimuli generator. The stimuli generator
has three Boolean outputs to stimulate each
one of the inputs system1, system2 and
reset.

The test cases presented in the follow-
ing are taken from an official test report for
the axle counting procedure. In Figure 6 the
stimuli for the inputs are given. The delay
between two rising and falling edges on the
two sensor systems of the double wheel de-
tector is not allowed to be greater than 12

ms. No high edge may last 0.1 s or longer.
Both sensor systems may not be unaffected
for 1 s or more at the same time. If any of
these times are exceeded, the train isconsid-
ered standing and thus, the evaluation phase
of the CH begins.

The stimuli from Figure 6 are produced
by a stimuli generator. This waveform can
be found again in the resulting waveform
of the test run in Figure 7(a). The first
two axles crossed the detector in a regular

(a) Part 1 (b) Part 2

Fig. 7. Waveform of a Simulation with a Tolerated Number of Interferences

(a) Part 1 (b) Part 2

Fig. 8. Waveform of a Simulation with an Untolerated Number of Interferences

way. Since sensor system 2 (system2)
is affected first the FSM of the CH is
traversed counterclockwise, i.e. counter l
would be the only counter to be incre-
mented. But for the last three axles the
FSM is traversed from state unaffected
to state both_systems_affected via
state system2 affected or system1
affected and on the same way back.
Thus, not only counter l is incremented, but
counter r is incremented, too. After the five
axles have passed the detector in the way
given in Figure 7(a) the counter values are:
a = 5, l = 14 and r = 6. Whether this is
within the range of tolerance, is calculated
by the equation:

1 + a/rlmax,

where rlmax ≥ 1 is a parameter, which can
be defined for every CH. In the case at hand
rlmax equals to one. The maximum num-
ber of state transitions contrary to the main

direction is 6. Therefore, a counter value
r = 6 is valid and the five axles are counted
correctly as can be seen in Figure 7(b).

The second test run is shown in Fig-
ure 8. This run is similar to the first one.
But instead of three irregular passing axles
there are four of them (Figure 8(a)). Thus,
the counter values after these six axles have
passed are: a = 6, l = 16 and r =

8. But the maximum number of accepted
state transitions contrary to the main direc-
tion is 7. Corresponding to the equation
1 + a/rlmax the system detects an unde-
fined counting impulse and switches into a
secure state by setting the counter control
token (countctrl), as presented in Fig-
ure 8(b). If the counter control token is set,
the evaluation computer issues a permanent
occupied indication for the corresponding
TVDS. The TVDS can only be cleared by
a reset of the CH.

1 property c n t _ c t r l _ f i n a l =
2 always (
3 1
4) −> (
5 next [1] (
6 ((e v a l u a t e = = 1) ?
7 (((s s > s_max)
8 | | (cc > c_max)) ?
9 c n t _ c t r l _ t o k e n = = 1

10 : 1)
11 : 1)
12)
13) ;

Fig. 9. PSL-property: cnt_ctrl_token

These test cases show the robustness
of this counting procedure against interfer-
ences. But, they also show, that if these in-
terferences exceed a specified threshold the
system switches over into a safe state.

Simulation-based verification produces
results fast. But as mentioned in the intro-
duction, simulation-based approaches can-
not reach complete coverage. Thus, formal
proof-techniques are required to verify cor-
rectness. In the next section such an ap-
proach using BMC and inductive reasoning
is presented.

5. Verification

The SystemC model described in Sec-
tion 3.2 has been implemented in synthe-
sizeable SystemC (Synopsys, 2002). Hence,
the design can be synthesized with the front-
end ParSyC (Fey et al., 2004). The ac-
quired FSM representation of the SystemC
design and a specified PSL property are
taken as inputs for a SystemC property
checker (Drechsler and Große, 2005).

In this section we present the formal
verification of an aspect of CHs, which is
very important for the system to avoid safety
hazards. There are several mechanisms to
manage failures. One of them is the counter
control token (cnt_ctrl_token). If the
cnt_ctrl_token is set, the correspond-
ing TVDS is indicated as occupied. There
are two different classes of failures, which

have to be considered for setting of the
cnt_ctrl_token:

1. Erroneous impacts on a single sen-
sor system (including a breakdown
of a single sensor system).

2. Erroneous impacts on both sensor
systems without axle counting.

The necessary evaluation for these fail-
ure classes is carried out in two steps.
Firstly, the counters for the two failure
classes are calculated. Secondly, the coun-
ters are compared to predefined constants.
For the impact on a single sensor system the
constant is called s_max and for the impact
on both sensor system it is called c_max.
With the property in Figure 9 the condi-
tion to set the cnt_ctrl_token is ver-
ified. This property states, that if the sys-
tem is evaluated (line 6) and if the coun-
ters for the failures are greater than the
corresponding constants (lines 7 – 8), the
cnt_ctrl_token has to be set. This
property is verified in 2.7 seconds on a com-
puter with 1GB main memory and an AMD
Athlon 64 3500+ CPU running under Linux.
But at this point of the verification we still
have to prove that the variables ss and cc
have the correct values, which is performed
in the verification steps to follow.

Erroneous Impacts on single Sensor Sys-
tems: In this paragraph the correct value

of counter ss is proven. Every time the state
unaffected is reached, the counters for
the single axle are added to the correspond-
ing counters for the group of axles. Before
the counters for a single axle are set to zero,
the counter s is calculated and added to the
counter ss. To prove the correctness of the
latter counter, two steps are needed:

1. The correct implementation of s as
a function of the state transitions
performed during the counting pro-
cess has to be verified.

2. The correct implementation of ss
as a function of the sequence of s
values has to be verified.

The first part is an inductive proof. It
takes 7.2 seconds to prove the initial step
and the induction step. The second part has
to hold under any assumption. This means
that no inductive reasoning is necessary to
prove that the value of ss always is the sum
of the previous value of ss and the currently
calculated value of s. Thus, we can con-
clude, that during the evaluation phase ss
is the sum of all s. The proof takes 14.0
seconds.

Erroneous Impacts on both Sensor Sys-
tems: The proof of the correct value of cc
is analogue to the proof for ss. The counter
cc is the sum of all c. And c is calculated
at the same time as s with a different equa-
tion. Like s, c is proven inductively in 6.6
seconds. That cc is the sum of all previous
c, is proven 3.2 seconds.

Altogether, the verification of the counter
controller cnt_ctrl_token and its in-
variants took 33.7 seconds.

6. Conclusions and Future Work

We have shown a design flow oriented at
efficient modeling and verification of CHs.
This design flow is based on SystemC. We
introduced the functionality of a CH and ex-
plained its modeling in detail. This model
can also be simulated and verified.

The future work consists of the com-
plete formal verification of CHs using
bounded model checking and inductive rea-
soning. We already gave a proof of con-
cept by proving the correct behaviour of the
model for the failure class counter control
in the preceding section. Another part in fu-
ture work will be proving completeness of
the verification.

REFERENCES

Accellera (2004). Property Specification Lan-
guage Version 1.1.

Biere, A., A. Cimatti, E.M. Clarke, M. Fujita and
Y. Zhu (1999). Symbolic model checking
using SAT procedures instead of BDDs. In:
Design Automation Conf.. pp. 317–320.

Burch, J.R., E.M. Clarke, K.L. McMillan and D.L.
Dill (1990). Sequential circuit verification
using symbolic model checking. In: Design
Automation Conf.. pp. 46–51.

Drechsler, R. and D. Große (2005). System level
validation using formal techniques. IEE Pro-
ceedings Computer & Digital Techniques,
Special Issue on Embedded Microelectronic
Systems: Status and Trends 152(3), 393–
406.

Fey, G., D. Große, T. Cassens, C. Genz, T. Warode
and R. Drechsler (2004). ParSyC: An Effi-
cient SystemC Parser. In: Workshop on Syn-
thesis And System Integration of Mixed In-
formation technologies (SASIMI). pp. 148–
154.

Grötker, T., S. Liao, G. Martin and S. Swan
(2002). System Design with SystemC.
Kluwer Academic Publishers.

Siemens AG (2003a). Az S M Multiple-section
Axle Counting System. Copyright. Siemens
AG.

Siemens AG (2003b). Safety for the Rail Services.
www.siemenstransportation.co.uk/pdfs/AzS
M%20R.pdf.

Synopsys (2002). Describing Synthesizable RTL
in SystemCTM , Vers. 1.1. Synopsys Inc.
Available at http://www.synopsys.com.

