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Abstract—As RISC-V processors become more widely dis-
tributed, security issues arise. To this end, security verification
techniques for processors should be incorporated into the
design process to ensure the processor specifications, security
requirements, and its actual implementation are consistent.
Among the verification techniques, assertion-based verification
has emerged as one of the most promising techniques. Although
assertions are widely used for functional verification, there is
limited effort in applying assertions for security verification.
Thus, in this work, a novel security assertion-based technique
is introduced for verifying the invulnerability of the processors
against Trojan attacks. The experiments show that the proposed
method can automatically generate security assertions in a very
short amount of time and detect all the inserted Hardware Tro-
jans in the processor, thereby accurately verifying the security
of the processor.

Keywords—Automatic Security Verification, RISC-V Security
Verification, Security Assertion Mining, RISC-V Processors, Data
Mining

I. INTRODUCTION

Processors are ubiquitous in our daily lives and are
embedded in nearly every electronic device [1]. In the
world of processor design, RISC-V is regarded as one of
the most promising technologies. RISC-V’s Instruction Set
Architecture (ISA) is increasingly adopted in open-source
and commercial processor designs due to its flexibility in
supporting extensions and customization, as well as its
open instruction set [2]. While the openness of the RISC-
V ISA is advantageous for fostering a large community
to examine and extend the ISA continually, it also poses
a disadvantage, as attackers can more easily target the
architecture [3].

In this context, an innovative method is required to
verify the alignment between the specifications and security
requirements of RISC-V, the corresponding security-related
ISA, and the practical implementation of the RISC-V exten-
sion.
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PSG837 and the German Federal Ministry of Education and Research
(BMBF) within the project ECXL under contract no. 01IW22002, the project
SASPIT under contract no. 16KIS1852K and VE-HEP under grant no.
16KIS1342.

Numerous mature works on functional verification in
the design process exist in the literature [4–12], and some
of them can be applied to security verification [6, 13,
14]. The fundamental distinction between functional and
security verification lies in their objectives: the former
addresses functional problems in alignment with functional
specifications, while the latter identifies security issues by
considering security requirements and threat models [15].

Among functional verification techniques, semi-formal
methods like assertion-based verification (ABV) [16] have
garnered interest due to their scalability. In the realm of
ABV, assertions represent logical formulas that describe the
design’s behavior. They enhance both the design’s observ-
ability and error localization capabilities [17, 18].

There is limited literature on utilizing assertions for the
security verification of processors [19–25]. In [20], security
assertions for processor vulnerabilities are manually crafted
to validate security requirements against the processor
design. However, this manual approach demands signifi-
cant time and expertise, incurring high costs. The method
presented in [21] translates security assertion sets from
one design to another, but it relies on manual assertion
definition and is only evaluated for the OR1200 processor.
The other study presented in [23, 24] proposes a method
for manually identifying security-critical properties for use
in the security verification of the OR1200 processor. Fur-
thermore, [25] introduces a method named SPECS, which
serves as a lightweight mechanism to protect software from
security-critical bugs in the OR1200 processor. The work in
[22] introduces a tool named Isadora for generating security
assertions based on information flow tracking techniques,
which is more suitable for only tracking the information
flows of the processors and hardware designs. The work
in [19] formally verifies information flow security for ARM
processor kernel and user modes. Nevertheless, its formal
nature introduces scalability issues, making it less appli-
cable to large designs. Moreover, the work presented in
[6] introduces an assertion miner called HARM designed
explicitly for the functional verification of hardware designs.
However, it purports the ability to identify Hardware Trojans
(HTs) within these designs.

All in all, the majority of current approaches neither979-8-3315-1766-3/24/$31.00 ©2024 IEEE



explicitly focus on the security verification of RISCV proces-
sors nor include an automated method to generate security
assertions to check the consistency between processor’s
security requirements and the actual implementation [26].

Thus, to address this gap, the proposed method first
collects the most important security properties of RISC-V
processors by studying RISC-V specifications [27, 28] and
processor security requirements in the literature [20, 21, 23–
25] (Section IV-A); second, proposes a systematic approach
to extract ISA characteristics of each security property (Sec-
tion IV-B); third, introduces an automatic assertion miner
which takes these ISA characteristics as well as simulation
trace of the processor as inputs to automatically extract a
set of security assertions (Section IV-C).

To the best of the author’s knowledge, this is the first
automated security-based assertion miner that can extract
security assertions with the guidelines of ISA characteristics,
directly from the simulation trace of the processor. This
extracted security assertion set is employed in the secu-
rity verification process to uncover vulnerabilities, such as
Hardware Trojans, embedded within the design. Therefore,
the contributions of this paper are listed as follows:

● A systematic method for translating security properties
of the processor to the instruction set architecture. The
idea is that the security properties that describe the
general behavior of a 32-bit processor (e.g., read cor-
rectly from memory) will be translated to the proposer
32-bit instruction set;

● An automatic security-based assertion miner to gen-
erate security assertions with a high Trojan detection
rate;

● The proposed security-based assertion miner can au-
tomatically analyze the ISA characteristics (32-bit in-
struction set) and the simulation traces of the proces-
sor to generate security assertions in a short execution
time;

● The proposed method is expandable to any processor
family and is not limited to RISC-V.

The paper is organized as follows: The preliminaries
are presented in Section II. The related background and
concepts are described in Section III and the proposed
method is elaborated in Section IV. Section V presents the
experimental results and finally, Section VI concludes the
paper.

II. PRELIMINARIES

In this section, we briefly explain the definitions used in
this paper.

Definition 1: A simulation trace consists of the values
of the variables of hardware designs that have been stored
as records of data for different time instants (clock cycles)
during the execution of the designs [6].

Definition 2: A security property in this study is defined
as a critical security aspect of the processor that neglecting
consideration of it can lead to security vulnerabilities in the

processor. These security properties are usually presented
in the specification of the processor [27, 28].

Definition 3: A security assertion is a logical formula
that must hold true during the execution of the design [8].
The general structure of a security assertion in Property
Specification Language (PSL) is like al w ay s(antecedent →
consequent), which implies that the consequent will hold
whenever the antecedent occurs [29]. In this study, secu-
rity assertions check the consistency between the defined
behaviors in the security properties (Definition 2) and the
actual implementation when it faces a vulnerability and a
Trojan attack.

Definition 4: Temporal pattern next[N ]: Next[N ] tempo-
ral pattern in PSL is in the form of: al w ay s(antecedent →
next[N ] consequent) [29]. This temporal pattern means
that when antecedent occurs, after N time instant (clock
cycle), consequent will occur [29]. N is an integer value
and N > 0.

Definition 5: Frequent itemsets refer to a set of variables
in simulation trace that occur with a frequency, indicating
significant relations/associations between the variables.

Definition 6: An Association Rule (AR) is defined as an
implication of the form X →Y where X ,Y ⊆ I , with X ∩Y =
Ø, and I is a set of items [30–32]. X and Y are called
frequent itemsets.

Definition 7: Support is a metric in association rule
mining that indicates how frequently an itemset appears
in the dataset [32, 33]. This value is between 0 and 1. For
the rule X → Y , the value of support is calculated with the
following formula [32]:

Supp(X →Y) = P(X ∪Y) (1)

In (1), P(X ∪Y) is the probability where X ∪Y indicates
that a record contains both X and Y , that is the union of
itemsets X and Y .

Definition 8: The min_supp value is the threshold and a
minimum value for support to decide whether an itemset
is frequent (i.e., occurs frequently in the simulation trace)
or not [32]. If the frequency of the itemset is more than this
threshold, the itemset is considered a frequent itemset [32].
A higher value of min_supp leads to generating commonly
occurring (general) ARs, while a lower value of min_supp
leads to generating rarely occurring ARs (corner cases) [32,
34].

Definition 9: Confidence is an indication of how often
the rule has been found to be true [35]. For the rule X →Y ,
this value is calculated with the following formula [32, 35]:

Con f (X →Y) = P(Y ∣X ) (2)

It evaluates the degree of certainty of the detected associ-
ation rule. This is taken to be the conditional probability
P(Y ∣X ), that is the probability that a record containing X
also contains Y . This value is between 0 and 1.

Definition 10: The min_conf is the minimum value for
confidence [32]. The higher value of min_conf leads to fewer
but more accurate and valid association rules [32, 34].



Phase 3: Security-Based 
Assertion Miner

Phase 2: Identifying the
ISA Characteristics

Phase 1: Collecting the 
Security Properties

RISC-V
Specifications

Collecting the
Security Properties

Security-Based
Assertion Miner

Simulation
Trace

RISC-V
Processor

Set of Security
Properties

Identifying the
ISA Characteristics

Guidance for
Security-Based
Assertion Miner

Security
Assertions

RISC-V Security
Requirements

Sim. Trace
Extraction

Figure 1: Overview of the proposed method

III. BACKGROUND

In this section, we briefly explain the related concepts
and background used in this paper.

A. RISC-V Instruction Set Architecture

RISC-V provides a flexible instruction set for various
general and application-specific scenarios. In this work, we
utilize the RV32I base instruction set, but the proposed
method is independent of the specific ISA or utilized
instruction set extensions. The RV32I base instruction set
defines a 32 bit architecture around 32 general-purpose
registers x0 to x32 (with x0 being constant 0). More
information on the RISC-V instruction set and its various
extensions can be found in Volume 1 [27], while further
details on the privileged architecture, especially CSRS, can
be found in Volume 2 [28] of the RISC-V Specification.

B. Threat model: MicroRV32 Platform

Amongst the many available open-source implementa-
tions, we chose the MicroRV32 platform [36], implemented
in the open-source Hardware Description Language Spinal-
HDL. Through the modern SpinalHDL language, it is pos-
sible to prototype modifications in the data path quickly,
while keeping control over the generated Verilog or VHDL
description. The platform is synthesizable for FPGAs and
ASICs, while providing a lightweight and robust microar-
chitecture. MicroRV32 features a configurable multi-cycle
processor compliant to RV32IMC, meaning it is capable
of the aforementioned RISC-V 32-bit base instruction set
(I), the multiply/divide extension (M) and the compressed
instruction extension (C). Within the platform, a set of
peripherals enables the interaction with the outside envi-
ronment, similar to other microcontroller units.

In this work, our threat model environment consists of
a processor based on MicroRV32 embedded in a SoC, with
various peripherals and a memory hierarchy.

C. Attack Model

To evaluate the proposed method, we have implemented
Hardware Trojans (HTs) based on the following details. The
attacker targets the RISC-V RTL code, aiming to disrupt
normal operations of IPs and cause damages to the IP de-
sign house, e.g., financial losses for any reason. Specifically,
the attacker intends to add three Hardware Trojans to the
processor: two of them alter the control unit’s functionality,

while one focuses on the memory and illegal access to it.
The attacker possesses knowledge of the design modules
and implementation. HTs typically consist of a trigger and
a payload [37]. The trigger is the condition activating the
Trojan, while the payload executes the malicious function
[37]. Triggers can be of different types like Always-On,
Conditional, or Time-Based, with payloads causing diverse
corruptions like Data and Control Flow Manipulation, DoS,
etc [37]. Our HTs use conditional triggers, activating under
specific rare conditions, and their payload manipulates
program data and control flow. Trojan 1 triggers a specific
input combination in the control flow. Its payload alters the
execution flow and causes incorrect computation in specific
part of control unit. Trojan 2 activates through a specific
sequence of control signals, initiating illegal memory access
with a payload involving unauthorized memory access.
Trojan 3 is triggered by an improbable combination of input
conditions, leading to the alteration of the opcode signal
and manipulation of update registers. Its payload executes
incorrect instructions, disrupting the normal program flow,
potentially compromising system integrity, and enabling
the attacker to control the instruction sequence. In this
work, the HTs have been implemented so that they will
be activated in very rare conditions, making their detection
difficult.

IV. METHODOLOGY

Fig. 1 provides an overview of our proposed method,
which is structured in three key phases. These phases are
1- Collecting the Security Properties, 2- Identifying the ISA
Characteristics, and 3- Security-Based Assertion Miner.

In the first phase, leveraging RISC-V specifications and
already introduced security properties from literature, a set
of RISC-V security properties (Definition 2) is collected. In
the second phase, the security properties of the processor
are translated to the instruction set architecture. In the third
phase, operating with the simulation trace generated from
the RISC-V design and the guidance report, the security-
based assertion miner automatically mines a set of security
assertions (Definition 3). Further details for each phase are
elaborated in the subsequent subsections.

A. Collecting the Security Properties

After reviewing the RISC-V specifications [27, 28] and its
security requirements from literature [20, 21, 23–25], a set
of security properties (Definition 2) have been collected for
the purpose of this work. These collected security properties
are outlined in Table I. However, it is noteworthy that
the proposed method can seamlessly extend to encom-
pass other security properties. This versatility enables the
method to cater not only to the collected set in our case
study benchmark (RISC-V) but also to the diverse security
properties of other processors.

In this study, we have collected security properties from
the most important categories pertinent to processor secu-
rity, namely Memory Access, Control Flow, and Updating



Table I: Collected Security Properties

Security Properties
Security Property

Type
1: Calculation of memory address and memory data
is correct.

Memory Access

2: Jumps update the program counter correctly. Control Flow
3: Jumps update the link register correctly. Update Register
4: Addition with register value and immediate value
results in correct result in the correct target register.

Update Register

5: Load immediate value into the upper 20 bits in
the correct target register.

Update Register

6: Adds the immediate as upper 20 bits to the program
counter and puts it into the correct target register.

Update Register

Table II: Description of the Security Properties

Security Property description
1. The first security property describes the correctness and relation between the
current load or store instruction and the resulting memory address and data
on the memory interface. For example, if an HT corrupts the address
maliciously to redirect the data, the mismatch between the intended address
and the actual address should become visible.
2. The second security property ensures, that the jump instructions redirect the
control flow correctly, i.e., the change in program counter reflects the provided
register and immediate values accordingly. In this case, an HT could redirect
the control flow to malicious code before returning to the original application’s
code.
3. As jump instructions are used to call functions and return to the code calling
a function, the storage of this return address can similarly be tampered with.
Thus, the third security property ensures, that the return address saved on jump
instructions is correct.
4. As control flow and memory access instructions prepare addresses and values
through arithmetic and logic operations, their correctness is vital for security. To
avoid information leakage through HT, the fourth security property assures that
the ADDI (add immediate) instruction saves the correct result only into the
correct target register. As an example, an HT could enable writing to the target
register and a temporary register, in order to leak the information in a different
subroutine.
5. The fifth security property ensures the correctness for the LUI (load upper
immediate) instruction, that the accordingly extended immediate value is stored
into the correct target register.
6. The sixth security property addresses the AUIPC (add upper immediate and
program counter) instruction. The security property ensures the correct
arithmetic and storage in the correct target register. As this instruction is utilized
to prepare target addresses, an HT can potentially redirect the control flow to a
different part of the code.

Registers. In papers [20, 21, 23–25] which represent the
latest studies on processor security properties, these cate-
gories have been reported as critical areas requiring scrutiny
in the security verification process of processors as depicted
in Table I. Consequently, they have been employed in this
paper. Further details and descriptions of these security
properties are provided in Table II.

These security properties serve as the inputs for the next
phase, i.e., Identifying the ISA Characteristics.

B. Identifying the ISA Characteristics

In order to identify which parts of the ISA specification
contribute to a security property, we will utilize an example
that covers security properties 2 and 3. Consider the RISC-
V instruction JAL rd, offset, Jump And Link. This
instruction manipulates the control flow of the application,
jumping to a new location in the program by setting the
Program Counter (PC) to an offset encoded as an im-
mediate value (i.e., PC = offset). As a second part, the
instruction will store the value of program counter of the
instruction after the JAL instruction (rd = PC + 4). We
can consider possible violation of security if, for example,
a HW Trojan introduces are change of the offset under
specific system conditions. This could lead to a possible
attack in which an unwanted execution of different code

occurs. Therefore, for the JAL instruction, we can denote
two possible high-level properties:

(a) Jumps update the PC correctly according to the
offset passed in the instruction immediate.

(b) Jumps update the register rd with the correct PC (i.e.,
rd = PC+4).

Consequently, the security-based assertion miner would
need to find potential security assertions covering the
signals mentioned in the high-level properties. In a more
general sense, these steps can be abstracted as follows:

1) Identifying instructions affected by threat model (e.g.,
control flow integrity affects the instructions for
branch, jump, and address manipulation).

2) Identifying each part of functional behavior contribut-
ing to instructions (e.g., jump instruction changes PC
and a register based on PC value).

3) Formulating high-level property reflecting parts of the
functional behavior (e.g., resulting addresses for store
or load operations have to be consistent with the initial
instruction and register values).

4) Utilizing the high-level property to identify the affected
signals in the processor and its interfaces. This includes
the relation between instruction bits and the observ-
able behavior on results and interfaces.

In this phase, alongside the guidance report created
based on the identified ISA characteristics, a simulation
trace is generated from the RISC-V design. These inputs
are utilized by the security-based assertion miner in the
next phase.

C. Security-Based Assertion Miner

In this phase, we elaborate on the details of the proposed
security-based assertion miner. As illustrated in Fig. 2,
the proposed miner is comprised of four primary steps:
1) Signal Identification and Pre-processing of Simulation
Trace, 2) Association Rule Mining, 3) Time Notation, and
4) Assertion Conversion.

During the first step, the exhaustive simulation trace of
the RISC-V undergoes pre-processing to prepare the data.
Subsequently, in the Association Rule Mining step, we apply
our algorithm to the pre-processed simulation trace to
mine all association rules (Definition 6) derived from the
simulation trace. Afterward, in the third step, i.e., Time
Notation, the extracted association rules are integrated
with the concept of time to generate appropriate time-
integrated rules (temporal association rules) in the form of
next[N ] pattern (Definition 4). Consequently, the Assertion
Conversion step transforms the rules from the previous step
into assertions.

Algorithm 1 presents the detailed process of the first
three steps of the security-based assertion miner. In this
algorithm, ST denotes the simulation trace and ST ′ is the
pre-processed simulation trace, while f and t represent the
simulation trace’s outputs and input values.

In the following subsections, we discuss each step of the
security-based assertion miner in more detail.
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Figure 2: Proposed Security-Based Assertion Miner

Algorithm 1: Security-Based Assertion Miner
1 Input: N , ST , min_supp
2 Output: next[N ] = antecedent → next[N ]consequent

/* Initialization */
3 R = antecedent → consequent
4 L1 = { f r equent 1− i temset s ∈ST ′}
5 K = 2

/* Signal Identification & Pre-processing */
6 ST

′
← prune_nonrelevant_security_signals(ST )

7 forall f ∈ST ′ do
8 ST

′ = MoveUp( f (N))

/* Association Rule Mining */
9 while Lk−1 ! =∅ do

10 Ck = generate_candidate_itemsets(Lk−1)

11 Lk = prune_infrequent_itemsets(Ck , mi n_supp)
12 k = k +1

13 foreach f r equent i temset Li ∈ L do
14 foreach subset S o f Li do
15 if (S ! =∅) && (S ! = Li ) then
16 con f i dence = suppor t(Li ) / suppor t(S)
17 if con f i dence >=mi n_con f then
18 R← association_rule(S => Li )

19 return R
/* Time Notation */

20 if (R.antecedent == (t ∈ST ′)) and (R.consequent == ( f ∈ST ′)) then
21 next[N ]← label(R)

22 else
23 Discard(R)

1) Signal Identification and Pre-processing of Simulation
Trace

Lines 6 to 8 of the Algorithm 1 are related to the
Signal Identification and Pre-processing step of the security-
based assertion miner. In this step, at first, the RISC-V
simulation trace and guidance report generated from the
second phase of the method (Section IV-B) are processed for
signal identification. In signal identification, the assertion
miner prunes all the signals of the simulation trace that
are not relevant to the identified security properties. Once
signals associated with the specified security properties are
identified, the simulation trace undergoes pre-processing.

To pre-process the simulation trace, all the identified
output of the simulation trace is moved N records above its
original position (line 8 of the Algorithm 1). However, the
identified inputs of the simulation trace remain as they are.
Traditional association rule mining algorithms (e.g., Apriori
[32]) cannot typically mine the rules in the form of next[N ].
Because of this reason, and also since the corresponding
output of input variables in a sequential hardware design
may occur in the simulation trace N time instants later,

this pre-processing needs to be performed. This ensures
the correct alignment of outputs with their corresponding
inputs, allowing for accurate temporal analysis and also
mining patterns for different N time instants (clock cycles).

Fig. 3 illustrates an example of pre-processing for next[2]
clock cycles. The simulation trace in Fig. 3.1 is pre-
processed by moving the output parts 2 time instants above
their original positions, resulting in the modified simulation
trace shown in Fig. 3.2. The figure uses T to represent the
true value, and F to show the false value. The last two
records in Fig. 3.2 are marked as not available (NA) due
to the absence of data after time instant t4 to be moved in
front of these two records.

Figure 3: (1) Simulation trace (2) Pre-processed simulation trace

2) Association Rule Mining
The resulting pre-processed simulation trace is subse-

quently fed into lines 9 to 19 of Algorithm 1 to mine
association rules. Applying these lines of the algorithm to
the pre-processed simulation trace provides us with a set of
association rules in the form of antecedent → consequent .

In lines 9 to 12 of Algorithm 1, frequent itemsets (Def-
inition 5) of various sizes (1-itemsets, 2-itemsets, etc.) are
generated iteratively until the list of the frequent itemsets is
empty. Specifically, the algorithm mines frequent itemsets
whose support values (Definition 7) exceed the min_supp
value (Definition 8), while pruning the others. In line 10 of
the algorithm, Ck is the candidate itemsets of size k that
are generated by combining frequent (k-1)-itemsets and Lk

in line 11 of the algorithm is the set of frequent k-itemsets.
In this algorithm, 1-itemsets consist of individual variables
of simulation trace, 2-itemsets are pairs of variables, etc.

After mining the frequent itemsets and adding them to
the Lk list, in lines 13 to 19 of the algorithm, the association
rules are extracted from the list of frequent itemsets. Due to
space limits, we refer interested readers to [32] and [38] for
more information on the details of mining frequent itemsets
and association rules.

In Algorithm 1, increasing the min_supp value results in
fewer assertions that describe more general design behav-
ior, while decreasing the min_supp value leads to assertions
covering rare design behavior (corner cases). These corner
cases are important as attackers can consider them for per-
forming any corruption in the design. Similarly, raising the
min_conf value produces fewer but more valid assertions.
Valid assertions refer to assertions that will not be violated
during the simulation with different attack scenarios. The
utilization of these values in the security-based assertion
miner facilitates an effective vulnerability detection process.



Table III: Comparison of the proposed method with HARM

Assertion
Miner

Total number of
Security Assertions

#Security Assertions
Detecting Trojans

Ratio of Security Assertions Detecting Trojans
to the Total Number of Assertions (%)

Execution
Time

Proposed Method 4036 256 6.3 5min30sec
HARM [6] 16073 397 2.4 74min31sec

At this point, with the completion of the association rule
mining, these rules serve as the fundamental components
of the Time Notation step.

3) Time Notation
In the previous step, the method provides us a set of

rules in the general form of antecedent → consequent .
In this step, the method integrates the concept of time
into the association rules generated in the association rule
mining step, leading to a set of temporal association rules
in the form of antecedent → next[N ]consequent . Lines
20 to 23 in Algorithm 1 describe the details of the Time
Notation step. If the antecedent value matches an input in
the simulation trace, and the consequent value has already
been moved to another record in the simulation trace,
the rule is labeled as a next temporal association rule.
Otherwise, other mined rules are discarded.

4) Assertion Conversion
In this step, the mined temporal association rules are

transformed into temporal security assertions (Definition
3) using the labels assigned in the Time Notation step.
Thereby, the output of the Time Notation step for temporal
association rules labeled as next[N ] is transformed into the
PSL format "always(antecedent → next[N ]consequent)".

V. EXPERIMENTAL RESULTS

For our experimental evaluation, we utilized the security-
based assertion miner to generate security assertions in the
form of SystemVerilog. We utilized the processor embedded
in the open-source MicroRV32 platform [36]. For generating
the simulation trace, we executed a software application on
the processor that is centered around checksum calcula-
tions for embedded systems. It features different types of
control flow, loops, arithmetic operations, and interaction
with the memory as well as the available peripherals. Hence,
we generated a simulation trace with 10000 records that
activates various parts of the microarchitecture to provide
a diverse data set for security assertion mining. The gener-
ated assertions are then evaluated by including Hardware
Trojans in the processor’s microarchitecture together with
the generated security properties, to verify them. Notably,
the values for the minimum support (Definition 8) and
minimum confidence (Definition 10) have been set to 0.01
and 1, respectively. Moreover, N has been set to 2 for the
next[N ] pattern, but it can be adjusted to other values.

Table IV exhibits the detailed experimental results about
the assertions that are associated with any of the security
properties that we presented in Section IV-A. The proposed
security-based assertion miner generated a total of 4036
security assertions. It should be noted that while the total
number of generated assertions is 4036, some of them
overlap so that they contain the signals of the design that
are related to several security properties. According to the

Table IV: Detailed Experimental Results on Six Different Security
Properties

#Security
Assertions

#Generated Security Assertions for each Security Property
Security

Property1
Security

Property2
Security

Property3
Security

Property4
Security

Property5
Security

Property6
4036 870 1490 1522 2026 1898 1898

Table V: Experimental Results on Detected Trojans

Trojans #Security Assertions Detecting Trojans Trojan Detection
Trojan 1 16 ✓
Trojan 2 64 ✓
Trojan 3 176 ✓
✓ : Trojan has been detected.

experimental results in Table IV, 870 and 1490 security
assertions are related to security properties 1 and 2, which
means that these numbers of assertions can cover the
behaviors that have been described for these two security
properties. The results indicate that for security properties 3
and 4, 1522 and 2026 security assertions have been mined,
respectively. This figure for both the security properties 5
and 6 is 1898 assertions.

Table V presents the results of Trojan detection. The
column ’#Security Assertions Detecting Trojans’ presents
the number of security assertions that could detect any
of the Trojans. For Trojan 1, 16 assertions detected it and
64 and 176 security assertions detected Trojans 2 and 3,
respectively.

Table III presents a comparative analysis between our
proposed security-based assertion miner and HARM [6].
HARM is explicitly presented as a tool that can be employed
in the context of security verification for Trojan detection,
making it a relevant tool for our comparison. While HARM
generated 16073 assertions, extending the security verifica-
tion process time, our method produced a more compact
and accurate set of 4036 assertions. Among all the mined
assertions by HARM, a total of 397 assertions could detect
the Trojans, while we accomplished Trojan detection with
256 assertions. The ratio of Trojan detection by security
assertions shows our method’s superior effectiveness, with
6.3% compared to HARM’s 2.4%. Considering the fact that
there are only three Trojans, and as mentioned in Sub-
section III-C, the probability of their activation is very
rare, 6.3% shows promise. These findings underscore the
efficiency of our method in producing a smaller yet more
potent and accurate set of security assertions. Moreover,
our proposed miner demonstrated a significantly shorter
execution time, completing the assertion mining in about
5 minutes, compared to HARM’s duration of over an hour.

VI. CONCLUSION

In this paper, we introduced a method to generate secu-
rity assertions for a RISC-V processor to detect Hardware
Trojans. Our experiments show that these assertions effec-
tively capture the intended security properties and detect
injected Hardware Trojans within the design.
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