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Abstract. Quantum computing offers a promising emerging technology
due to the potential theoretical capacity of solving many important
problems with exponentially less complexity. Since most of the known
quantum algorithms include Boolean components, the design of quantum
computers is often conducted by a two-stage approach. In a first step,
the Boolean component is realized in reversible logic and then mapped
to quantum gates in a second step. This paper describes a new mapping
flow for determining quantum gate realizations for single-target gates
(ST). Since each ST gate contains a Boolean control function, our method
attempts to find a decomposition based on its BDD representation. It
consists on breaking large ST gate into smaller ones using additional lines.
Experiments show that we obtain smaller realizations when comparing
to standard mapping.

1 Introduction

Quantum computers are one of the most promising emerging technologies, gener-
ating interest from the corporate sector and attracting government investment.
Quantum computers exploit the often counter-intuitive rules of quantum physics
to perform computations in a substantially different and often much more efficient
way than classical computers, enabling computational solutions to problems that
are considered intractable for classical systems [1]. The design and fabrication of
these machines has progressed rapidly in the past decade, with many research
groups now routinely fabricating and operating small quantum computers in
multiple physical systems.

Quantum computing does not only provide challenges for physicists but also
offers a variety of challenging and interesting problems to the field of computer
science. Large parts of quantum computers perform classical computations which
can be described in terms of classical Boolean functions instead of arbitrary
unitary operations as they are used for general quantum computing. However,
since all quantum computers need to be reversible, also the classical computations
need to be described in terms of reversible Boolean functions [2]. In order to
create a quantum circuit from such a Boolean function, a first intermediate
step synthesizes a reversible circuit description. The most common gate library
for this step consists of mixed-polarity multiple-controlled Toffoli gates. Toffoli



gates offer a convenient representation to model the functionality of a reversible
circuit but are still too abstract to be used as quantum operations. Many aspects,
particularly those considering fault tolerance and error correction properties,
cannot effectively be considered on that abstraction level. For the latter, quantum
gate libraries are used that consist of a few quantum gates that typically act on
at most 2 qubits: one of the currently prominent libraries is the Clifford+T gate
library [3]. Technology mapping is performed in order to map Toffoli gates to
gates from the quantum gate library and the majority of methods that have been
presented so far originate from [4].

Albeit providing a high-level representation for reversible circuits, the lower
bound of the size of a reversible circuit consisting of Toffoli gates is exponential [5],
i.e., for every number of variables there exists a reversible function for which the
size of the minimal circuit is exponential. In order to avoid this complexity when
addressing large reversible functions and circuits, recently single-target gates are
considered as a representation for reversible circuits. They are a generalization of
Toffoli gates and a linear upper bound for reversible circuits composed of these
gates has been shown in [6]. Besides that, synthesis approaches presented in [6]
and [7] are based on this gate representation. However, for technology mapping
into quantum circuits, so far single-target gates are mapped into cascades of
Toffoli gates which are then independently mapped using the techniques described
in [4].

In this paper, we present a technology mapping approach that is directly
based on single-target gates and makes use of Boolean decomposition and a
constant number of ancillary lines. Working on the higher level abstraction allows
significant cost reductions as shown by our experimental evaluations. In the best
case, we were able to reduce the costs of the quantum circuit by 75% and in the
average by about 20% for the Clifford+T gate library.

2 Preliminaries

To keep the paper self-contained, this section reviews definitions and notations
from Boolean functions, function decomposition, reversible circuits, and reversible
synthesis.

2.1 Boolean Functions

Let IB
def
= {0, 1} denote the Boolean values. Then we refer to Bn,m

def
= {f |

f : IBn → IBm} as the set of all Boolean multiple-output functions with n inputs
and m outputs. There are 2m2n

such Boolean functions. We write Bn
def
= Bn,1

and assume that each f ∈ Bn is represented by a propositional formula over
the variables x1, . . . , xn. Furthermore, we assume that each function f ∈ Bn,m
is represented as a tuple f = (f1, . . . , fm) where fi ∈ Bn for each i ∈ {1, . . . ,m}
and hence f(x) = (f1(x), . . . , fm(x)) for each x ∈ IBn. If we emphasize on the
domain of the function we write f(X) where X refers to the set of input variables.



2.2 Exclusive Sum Of Products

Exclusive sum-of-products (ESOPs, cf. [8]) are two-level descriptions for Boolean
functions in which a function is composed of k product terms that are combined
using the exclusive-or (xor, ⊕) operation. A product term is the conjunction
of li literals where a literal is either a propositional variable x1 def

= x or its
negation x0 def

= x̄. ESOPs are the most general form of two-level and-xor
expressions:

f =

k⊕
i=1

x
pi1
i1
∧ · · · ∧ x

pili
ili

(1)

Several restricted subclasses have been considered in the past, e.g., positive polarity
Reed-Muller expressions (PPRM [8]) in which all literals are positive. There are
further subclasses and most of them can be defined based on applying one of the
following decomposition rules. An arbitrary Boolean function f(x1, x2, . . . , xn)
can be expanded with respect to a variable xi as

f = x̄ifx̄i ⊕ xifxi (Shannon)
f = fx̄i ⊕ xi(fx̄i ⊕ fxi) (positive Davio)
f = fxi ⊕ x̄i(fx̄i ⊕ fxi) (negative Davio)

with co-factors fx̄i
= f(x1, . . . , xi−1, 0, xi+1, . . . , xn)

and fxi
= f(x1, . . . , xi−1, 1, xi+1, . . . , xn).

2.3 Boolean Function Decomposition

Boolean function decomposition describes the problem of finding, for a Boolean
function, two or more simpler functions that being composed are functionally
equivalent. Several types of Boolean function decomposition have been found in
the last decades with the most important ones being:

1. Ashenhurst decomposition [9]: A function f ∈ Bn is decomposed into f(X) =
h(g(X1), X2) with g ∈ B|X1|, h ∈ B|X2|+1, and X = X1 ∪X2. If X1 ∩X2 = ∅,
then the decomposition is called disjoint, otherwise it is called a non-disjoint
decomposition. The set X1 is called bound set and the set X2 is called free
set.

2. Curtis decomposition [10] is a generalization of the Ashenhurst decompo-
sition with several inner functions of which each can have multiple out-
puts, i.e., f(X) = h(g1(X1), g2(X2), · · · , gk(Xk), Xk+1) with gi ∈ B|Xi|,mi

,
h ∈ B|Xk+1|+m1+···+mk

, and X = X1 ∪X2 ∪ · · · ∪Xk+1.
3. Factorization [11]: The function is decomposed as f(X) = g(X1) ∧ h(X2) ∨
c(X3), with g ∈ B|X1|, h ∈ B|X2|, c ∈ B|X3| and X = X1 ∪X2 ∪X3.

4. Bi-decomposition [12] is also known as simple decomposition. The function is
decomposed into two sub-functions f(X) = g(X1)� h(X2), with g ∈ B|X1|,
h ∈ B|X2| and X = X1 ∪ X2. The ‘�’ is any binary Boolean operation
(typically ∨, ∧, ⊕, or ↔).
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Fig. 1. Examples of reversible gates

When X1, X2, and X3 are disjoint, the decomposition is called algebraic,
otherwise Boolean or functional. Functional decomposition is much more pow-
erful because the majority of Boolean functions are likely to have a functional
decomposition rather than an algebraic one. Much work has been presented
on decomposition algorithms based on truth tables [13] or binary decision dia-
grams (BDDs) [14–16].

2.4 Reversible Circuits

Reversible functions of n variables can be realized by reversible circuits that
consist of at least n lines and are constructed as cascades of reversible gates that
belong to a certain universal gate library. Although the Toffoli gate library is the
most common gate library, single-target gates are of interest as they can lead to
better circuits, e.g., lower quantum cost [7] and better circuit complexity [17].

Definition 1 (single-target gate). Given a set of variables X = {x1, . . . , xn},
a single-target gate (ST) Tg(C, t) with control lines C = {xi1 , . . . , xik} ⊂ X,
a target line t ∈ X \ C, and a control function g ∈ Bk inverts the variable on
the target line if and only if g(xi1 , . . . , xik) evaluates to true. All other variables
remain unchanged.

Definition 2 (Toffoli gate). Mixed-polarity multiple control Toffoli (MPMCT)
gates are a subset of the single-target gates in which the control function g can

be represented with one product term or g =

j∧
k=i

xpi = 1. Multiple-control Toffoli

gates (MCT) in turn are a subset from MPMCT gates in which the product terms
can only consist of positive literals.
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Fig. 2. Reversible circuit
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Fig. 3. Quantum mapping of a Toffoli gate

Following from synthesis algorithm implementations, it can easily be shown that
any reversible function f ∈ Bn,n can be realized by a reversible circuit with n
lines when using MCT gates. That is, it is not necessary to add any temporary
lines (ancilla) to realize the circuit. This can be the case if the MCT (or MPMCT)
gates are restricted to a given size, e.g., three bits. For drawing circuits, we follow
the established conventions of using the symbol ⊕ to denote the target line, solid
black circles to indicate positive controls, and white circles to indicate negative
controls.

Example 1. Figure 1a shows a Toffoli gate with positive controls, Figure 1b
shows a Toffoli gate with mixed-polarity control lines, and Figure 1c shows the
representation of a single-target gate based on Feynman’s notation. Figure 2 shows
different Toffoli gates in a cascade forming a reversible circuit. The annotated
values demonstrate the computation of the gate for a given input assignment.

2.5 Cost Metrics

To compare quantum circuits, we define metrics which depend on the gate library.
For the NCV gate library, the quantum cost of a circuit is used while for the
Clifford+T gate library, the T -depth is used. The motivation for that cost measure
origins from the fact that the T gate is significantly larger compared to the other
gates in the circuit.

Definition 3 (NCV-Cost). The NCV-cost is the total number of elementary
gates used in a quantum circuit.

Definition 4 (T -depth). The T -depth is the number of T -stages in a quantum
circuit where each stage consists of one or more T or T † gates that can be
performed concurrently on separate qubits. The total number of incorporated T
or T † gates in the whole circuit is denoted by T -count
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Fig. 4. Mapping from [4]

Example 2. The NCV-cost of the circuit shown in fig. 2 is equal to 8 since the
total number of the elementary gates that realize a Toffoli gate is equal to 5. The
circuit has a T -count of 7 and T -depth of 3.

2.6 Young Subgroup Synthesis

The young subgroup based synthesis approach makes use of the following property.
Given a variable x, every reversible function f ∈ Bn,n can be decomposed into
three functions f = g2◦f ′◦g1 such that f ′ ∈ Bn,n is a reversible function that does
not change in x, and g1, g2 ∈ Bn,n are reversible functions that can be realized
as single-target gates that act on x. By recursively applying the decomposition
on the inner function f ′, one obtains 2n single-target gates that realize f . After
at most n recursive applications f ′ represents the identity function, i.e., it does
not change in any variable anymore. Details of the proof can be found in [18].
A synthesis algorithm based on the idea has initially been proposed in [6] that
takes as input a reversible function represented by its truth table. The synthesis
algorithm has been extended to work symbolically using binary decision diagrams
in [7], which allows for handling larger functions.

3 Motivation

As mentioned above, a quantum circuits are described in terms of a reversible
Boolean function. In order to derive a quantum circuit for the reversible function,
a two step approach is usually applied: first a circuit description in terms of
reversible gates is derived, which in the second step is mapped to a quantum
circuit composed of gates from a given library. In these steps, reversible gates are
very general; e.g., often MCT gates are used for which the number of controls
is not restricted. More recently, also the use of MPMCT gates became common
practice. Quantum gate libraries are much smaller and usually consist of a few
gates which can act on at most 2 qubits. Two prominent quantum gate libraries
are the NCV gate library and the Clifford+T gate library. In particular, the
latter library is of significant interest in the design of quantum computers due



to its good properties in fault tolerant quantum computing. Minimal quantum
circuit realizations are known for the 2-controlled Toffoli gate and are shown in
Figure 3.

For larger Toffoli gates a procedure from [4] is applied which, according to
Lemma 7.3 in [4], maps a reversible Toffoli gate with c ≥ 3 controls to a network
consisting of two identical gates with m controls and two other identical gates
with c−m+ 1 controls, where m ∈ {2, . . . , c− 2} and each of them are placed
alternately. If no free line is available for the gate, a new helper line must be
added to the circuit. Its value is restored and hence can be reused afterwards.
Finally, each obtained gate is mapped according to Lemma 7.2 in [4]. As a result,
all Toffoli gates have at most 2 control lines. At this point, the mapping given in
Figure 3 can be applied.

Example 3. The procedure is illustrated in Figure 4 for a Toffoli gate with six
control lines. The first circuit depicts the result after the application of Lemma
7.2 in [4], while the second network sketches the obtained circuit from the
decomposition of the first gate in the dashed rectangle after applying Lemma 7.3
in [4].

So far, there is no mapping approach into quantum circuits that directly
targets the single-target gates as it is done for the MPMCT gates. To map
single-target gates, we aim to decompose them into MPMCT gates so that we
can afterwards map each obtained MPMCT gate using the approach explained
above.

The mapping of a single-target gate to an MPMCT cascade is so far done by
computing the xor decomposition of its controlling function, then each cube in
the obtained expression is represented by an MPMCT gate.

Many other Boolean decompositions do exist and have shown good effi-
ciency [14]. Motivated by this, we want to study the impact of applying different
kinds of Boolean decompositions while mapping single-target gates to MPMCT
gates, i.e., unlike the standard mapping, we will not restrict the decomposition
to xor but also to bi-decomposition, Ashenhurst, and Curtis decomposition.

4 Mapping of Single-target Gates

This section describes how Boolean decomposition can be applied to map re-
versible circuits composed of single-target gates into quantum circuits. Only the
Young subgroup synthesis, for both the truth table based variant [6] and the
BDD-based variant [7], makes use of single-target gates, however, due to the
complexity of reversible circuits based on Toffoli gates (see, e.g., [17]) single-target
gates are a preferable choice especially for large circuits.

Figure 5 shows how the functional decomposition of a single-target gate’s
control function can be used to generate less complex circuits. In the following we
assume that the control function of the single-target gate that should be mapped
depends on the variables x1, . . . , xn−1. Figure 5(a) shows the mapping approach
for a disjoint Ashenhurst-Curtis decomposition. The variables are partitioned
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Fig. 5. Different types of decomposition

into four sets of variables represented as bit-vectors x1, x2, x3, and x4. First,
the inner functions g1, g2, and g3 are computed and each of their results is
stored on an additional helper line that is initialized with a constant 0 value.
Having the resulting values on these lines the outer function can be computed
and afterwards the constant values on the helper lines are restored by reapplying
the inner functions.

Figures 5(b) and (c) show non-disjoint bi-decompositions based on the and
and or operation, respectively. The sub-function f depends on variables in x1 and
x2 and the sub-function g depends on variables in x2 and x3. As can be seen, the
construction follows the representation of the Ashenhurst-Curtis decomposition
in Figure 5(a). Whether a decomposition is disjoint or non-disjoint does not have
an effect on the circuit construction but only on the size of the single-target gates
in terms of their support. Also, a decomposition based on the mux operation can
analogously be performed by adding an extra helper line (see Figure 5(d)).
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When using bi-decomposition based on the xor and xnor operator, one can
update the target line directly as can be seen in Figures 5(e) and (f).

The remainder of this section discusses an example application of the approach
illustrated in Figure 6. The starting point is a single-target gate that is controlled
by a control function

f(x1, x2, x3, x4) = x̄1x̄2x̄3x̄4 ∨ x̄1x2x̄3x4 ∨ x1x̄2x3x̄4 ∨ x1x2x3x4

as also illustrated in its specification.
Decomposing the single-target gate using the standard mapping requires

finding an ESOP representation of the function. Since f is given in terms of its
minterms, it already resembles an ESOP representation. However, one can obtain
a smaller one in terms of literals by applying ESOP minimization techniques
finally resulting in the Toffoli gate cascade depicted in the upper box of Figure 6.
The circuit consists of 4 Toffoli gates each having 2 controls. Mapping it into
quantum circuits using the algorithm presented in [4] gives quantum costs of 21
for the NCV gate library (see Figure 3b and note that a Toffoli gate with two
negative controls requires at most 6 NCV gates) and a T -depth of 12 when using
the Clifford+T gate library. Each Toffoli gate has a T -depth of 3 as it is depicted
in Figure 3c.

Applying our proposed flow will first find a disjoint bi-decomposition

f(x1, x2, x3, x4) = g(x1, x3) ∧ h(x2, x4)

with g(x1, x3) = x1 ↔ x3 and h(x2, x4) = x2 ↔ x4. Next, each of the resulting
single-target gates controlled by g and h are mapped to Toffoli cascades as it
is shown in the reversible circuit, each ST gate has two Toffoli gates with only
one control while the last gate computes the and of both sub-functions using a
Toffoli gate with two controls. Finally, the resulting reversible circuit is mapped
to a quantum network with the same algorithm used in the standard flow. The
number of NCV gates of the resulting circuit is 9 (compared to 21) and the
T -depth is 3 (compared to 12).

5 Experimental Evaluation

In order to confirm the benefits of incorporating the Boolean decomposition
technique into the mapping flow of reversible circuits to quantum circuits described
in Section 4, we have implemented the proposed idea in the open source toolkit
RevKit [19]. The starting point is reversible circuits obtained from applying the
BDD-based version of the Young subgroup synthesis [7], which creates reversible
circuits composed of single-target gates3. We used the bds-pga tool [20] to
decompose each control fucntion of a single-target gate to smaller ones. We
restricted the decomposition of each single-target gate to at most 3 smaller
3 Benchmarks were taken from http://webhome.cs.uvic.ca/~dmaslov/ and http:
//www.revlib.org



single-target gates to limit the use of additional lines to at most 3. To map the
resulting smaller gates into cascades of Toffoli gates we used the xor minimization
algorithm implemented in exorcism [21]. Finally, we applied the quantum
mapping algorithm explained in [4]. The experimental evaluation has been carried
out on an Intel Core i5 processor with 4 GB of main memory.

Table 1 summarizes the obtained results. All benchmark names and original
lines are listed in the first and second column, respectively. Then, the number
of lines (l), the number of gates g, the NCV quantum costs (NCV), the T -
depth (td), the H-count (hc), and the required run-times (time) are provided for
the synthesized circuits based on standard mapping and the synthesized circuits
based on Boolean decomposition as explained in Section 4.

We provide absolute and relative improvement in the last two columns for
quantum costs in terms of the NCV and the Clifford+T gate libraries. The NCV
quantum cost reductions and its relative improvement of the circuits obtained by
the proposed technique with respect to the realized circuits without taking into
account the Boolean decomposition are given in the columns denoted by ∆ncv
and Imp.ncv, respectively. The procedure presented above yields circuits with
lower NCV quantum cost comparing to circuits obtained by standard mapping.
The table shows a percentage improvement in terms of NCV quantum cost
by approx. 16%. In the best case improvements of up to 67% are observed
(cycle10_2_61 ).

The T -depth cost reductions and its relative improvement are provided in the
columns denoted by ∆td and Imp.TD, respectively. Also for this gate library
realizations with fewer T -depth are obtained when our technique is applied. On
average, the size of the resulting quantum gate cascades was decreased by 20%. In
the best cases, reductions of up to 47916 in the T -depth for the benchmark bw_116
are obtained.
Remarks and Observations. When applying the bds-pga tool to find a de-
composition for a Boolean function that controls a single-target gate, it first
searches for an algebraic decomposition and only looks for a Boolean decompo-
sition if the first attempt is not successful. This process is done recursively for
each resulting sub-function until Boolean functions with at most 2 inputs are
reached. We adapted the tool such that recursion stops after maximum three
decompositions in order to keep a reasonable number of additional lines.

We refer to the common set as the intersection of bound set and free set
in Ashenhurst-Curtis decompositions and as the intersection of supports in bi-
decompositions. We have observed that for large common sets the results of the
standard mapping approach outperforms our approach. To ensure good results,
we only decomposed functions with a small common set.

We further noticed that bi-decompositions based on xor and xnor are less
effective compared to the standard mapping since exorcism finds efficient ESOP
representations. Consequently, we adapted the bds-pga tool such that it does
not try to find bi-decompositions based on xor or xnor.

Finally, factorization with respect to a single variable can usually not improve
the overall result since the incorporation of the variable on the helper line does
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not minimize the functional support. We have therefore turned off that option in
the bds-pga tool.

To summarize, we looked for function decompositions with a small common-set
and allowed bi-decompositions only for the or, and, and mux operator.

6 Conclusions

In this work, we proposed a mapping approach that starts with single-target
gates and therefore significantly differs from the standard mapping approach that
has been state-of-the-art for the last two decades. We observed that incorporating
Boolean decomposition in the mapping process of single-target gates often leads
to better quantum realizations. Motivated by this, we introduced an improved
mapping scheme which uses a constant number of ancillary lines and exploits the
Boolean decomposition when generating the quantum gate cascades for a given
single-target gate. Including our approach results in quantum circuits with a
smaller NCV quantum cost as well as a lower T -depth cost comparing to standard
mapping results.
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