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Abstract. This work in progress report proposes a new metric for es-
timating nearest neighbor cost at the reversible circuit level. This is in
contrast to existing literature where nearest neighbor constraints are
usually considered at the quantum circuit level. In order to define the
metric, investigations on a state-of-the-art reversible to quantum map-
ping scheme have been conducted. From the retrieved information, a
proper estimation to be used as a cost metric has been obtained. Using
the metric, it becomes possible for the first time to optimize a reversible
circuit with respect to nearest neighbor constraints.
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1 Introduction

Motivated by the promises of quantum computation [6] researchers started to
investigate how to efficiently synthesize quantum circuits. This eventually es-
tablished a design flow for quantum circuits representing Boolean components
which (1) realizes the desired functionality as a reversible circuit (using meth-
ods e.g. proposed in [4, 11, 13, 12, 7]) and (2) maps the resulting circuit in its
respective technological quantum circuit description (using mapping schemes as
e.g. proposed in [1, 3, 5, 14]).

However, while this design flow leads to proper results, it does not consider
certain technological constraints. In particular, so-called nearest neighbor con-
straints are not considered by this flow, although many important quantum com-
puting technologies heavily rely on them. In order to satisfy these constraints,
it has to be ensured that computations are only performed between adjacent
(i.e. nearest neighbor) signals.

A major problem is thereby that methods considering nearest neighbor con-
straints are usually applicable at the quantum circuit level only (see e.g. [9, 10,
16]). This is mainly caused by the absence of proper cost metrics which could be
applied at the reversible logic level. In the established design flow sketched above,
the handling of nearest neighbor constraints is indeed considered as another sep-
arate (third) design step which is applied not until the technology mapping of
the second step has been completed.



In this work in progress, we aim for overcoming this drawback and for allow-
ing nearest neighbor optimization at the reversible logic level – the abstraction
level in which the actual synthesis is performed. For this purpose, we propose
a cost metric which, for the first time, can be used to evaluate nearest neigh-
bor constraints for reversible circuits rather than quantum circuits. In order
to define the metric, investigations on a state-of-the-art reversible to quantum
mapping scheme have been conducted. From the retrieved information, a proper
estimation to be used as a cost metric has been obtained.

2 A Nearest Neighbor Cost Metric
for the Reversible Logic Level

In general, the Nearest Neighbor Costs (NNC) for a quantum gate circuit are
defined as the number of SWAP gates needed to make it nearest neighbor com-
pliant. Thus far, the various works that have been reported to make a circuit
nearest neighbor compliant target quantum circuits only and are unable to pro-
vide any cost estimate e.g. for synthesis at the reversible logic level1. In this
work, we propose a cost metric which serves this purpose. To this end, we in-
vestigate a state-of-the-art reversible to quantum mapping scheme and derive
systematic information to be utilized in order to formulate an NNC metric for
the reversible logic level. In this section, the underlying reversible to quantum
mapping scheme is reviewed first. Afterwards, we summarize our analyzes and,
eventually, present the resulting metric.

2.1 Mapping of Reversible to Quantum Circuits

Our investigations are based on the mapping scheme as introduced by Miller et
al. in [5]. The general idea is to partition a Toffoli gate g(C; t) with a set of control
lines C into a cascade of smaller gates including subsets C1, C2 with C = C1∪C2

and C1 ∩ C2 = ∅. For this purpose, a so-called ancilla line (denoted by a)
with a /∈ C and a 6= t is additionally applied. More precisely,

T (C; t) = V (a; t)T (C1; a)V †(a; t)T (C2; a)

V (a; t)T (C1; a)V †(a; t)T (C2; a) (1)

is applied where T (C; t) denotes an MCT gate, V (a; t) denotes a V -gate, and
V †(a; t) denotes a V †-gate with the respective control and target lines. Fig. 1
illustrates the resulting structure.

This partitioning is repeated until only Toffoli gates with two control lines
result. While decomposing C1 in the respective iterations, some of the control
lines in C2 can be used as ancilla. However, further ancilla lines may be required
to decompose C2. Those can be chosen as follows:

1 Note that the authors of [2] proposed a solution to achieve adjacency of Toffoli gates.
But as discussed in the previous section, this is not sufficient to also ensure nearest
neighbor compliance at the quantum logic level. In [15], nearest neighbor compliance
at the reversible circuit level was investigated. But here a special model (based on
multi-level quantum systems) has been assumed.
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Fig. 1. Reversible to quantum mapping scheme

a) First choice: Use the target line t (this is possible only one time).
b) Second choice: Use any other free line a′ with a′ /∈ C1 ∪ C2 ∪ {t}.
c) Third choice: Use any of the control lines in C1 (this results in higher quan-

tum cost compared to options (a) and (b)).

After all iterations have been completed, a circuit results which is composed of
either V - and V †-gates (which are already quantum gates) or Toffoli gates with
at most two control lines. These Toffoli gates are eventually mapped to quantum
gate cascades as shown in Fig. 2. Overall, the functionality of the original Toffoli
gate has been realized as a quantum circuit.

c1

c2

t

(a)

≡
c1

c2

t V V† V

(b)

Fig. 2. Toffoli gate and its equivalent NCV cascade

In [5], further simplifications are conducted which allow for reducing the
number of quantum gates in the resulting cascade by a so-called line labeling
procedure. However, considering those simplifications would make the derivation
an NNC cost metric significantly harder. Hence, they have been omitted in our
investigations. Initial evaluations show that this has an acceptable effect on the
precision of the proposed metric.

2.2 Investigations and Resulting Cost Metric

The mapping scheme reviewed above provides the basis of our investigations
towards an NNC metric for the reversible logic level. According to Eqn. 1, each
MCT gate T (C; t) is mapped into four quantum gates V (a; t) with the same
control and target lines2, two identical MCT gates T (C1; a), and another two

2 For simplicity, V and V †-gates are used interchangeably in the following.



identical MCT gates T (C2; a). Hence, the NNC resulting from the mapping from
the gate T (C; t) has to be the sum of the NNCs resulting from each of these gates.
This leads to:

NNC (T (C; t)) = 4 ∗NNC (V (a; t)) + 2 ∗NNC (T (C1; a))

+ 2 ∗NNC (T (C2; a)), (2)

The NNC of the quantum gates can directly be determined by considering
the distance between the control and the target line. It is usually assumed that
two SWAP gates are required in order to decrease this distance by one [8] –
(one SWAP gate for moving the control and the target line together; another to
restore the original order). Hence, assuming a numerical encoding of the control
and target lines from the topmost line to the undermost line, the NNC of the
quantum gates is NNC (V (a; t)) = 2(|a− t| − 1).

The NNC of the respective T (Ci; a) gates can be computed by recursively
applying Eqn. 2 together with the following base conditions:

a) |Ci| = 1:

NNC (T ({c}; t)) = 2(|c− t| − 1)

That is, similar to the quantum gates, the NNC is determined by considering
the distance between the control and target lines.

b) |Ci| = 2:

NNC (T ({c1, c2}; t)) = 4(|c1 − c2| − 1)

+ min{4(|c1 − t| − 1), 4(|c2 − t| − 1)}
+ max{2(|c1 − t| − 1), 2(|c2 − t| − 1)}

Here, the mapping of a Toffoli gate T ({c1, c2}; t) into a a cascade of five
quantum gates (shown in Fig. 2) is considered. The NNC value of the two
controlled-NOT gates can be estimated as 4(|c1−c2|−1) – this is reflected in
the first term. Similarly, the second term indicates the NNC value for the two
controlled-V and controlled-V † gates. Finally, the third term contributes to
the NNC due to the controlled-V or controlled-V † from the cascade. For the
latter two terms, the respective configuration of the Toffoli gate T ({c1, c2}; t)
with respect to its control and target lines has to be taken into account. Fig. 3
shows the two possibilities. This motivates the respective application of the
min/max-values.

All these observations eventually result in the following cost metric for nearest
neighbor costs to be applied at the reversible logic level:

Definition 1. Given a reversible circuit G = g1g2 . . . g|G| composed of multiple
control Toffoli gates. The Nearest Neighbor Costs (NNC) of G is defined as the
sum of the NNCs of its gates, i.e. NNC(G) = NNC(g1) + NNC(g2) + · · · +
NNC(g|G|). The NNC of a gate gi is defined as the result of the linear-time
algorithm given in Fig. 4.
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Fig. 3. Toffoli gates and their respective decomposed netlist

3 Conclusions and Future Work

In this work in progress report, we proposed a cost metric that, for the first
time, allows for the consideration of nearest neighbor constraints at the reversible
circuit level. Thus far, corresponding optimizations could usually be applied after
technology mapping only, i.e. rather late in the design process. By investigating a
state-of-the-art reversible to quantum mapping scheme, we were able to derive a
proper approximation which, eventually, allows those considerations e.g. directly
during the synthesis of the reversible circuit. Evaluations on the accuracy as well
on the applicability of the proposed metric are left for future work.
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