
Efficient Cross-Level Testing for
Processor Verification: A RISC-V Case-Study

Vladimir Herdt1 Daniel Große1,2 Eyck Jentzsch3 Rolf Drechsler1,4
1Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

2Chair of Complex Systems, Johannes Kepler University Linz, Austria
3MINRES® Technologies GmbH, Munich, Germany

4Institute of Computer Science, University of Bremen, Bremen, Germany
Vladimir.Herdt@dfki.de, daniel.grosse@jku.at, eyck@minres.com, drechsle@informatik.uni-bremen.de

Abstract—Extensive processor verification at the Register-
Transfer Level (RTL) is crucial to avoid bugs. Therefore,
simulation-based approaches are prevalent but they require effi-
cient test generation methods to achieve a thorough verification.

In this paper we propose an efficient cross-level testing
approach for processor verification targeting the RISC-V Instruc-
tion Set Architecture (ISA). We generate an endless instruction
stream without restrictions on the generated instructions by
evolving the instruction stream on-the-fly during simulation.
An Instruction Set Simulator (ISS) is leveraged as reference
model for the RTL core under test in a tightly coupled cross-
level co-simulation setting. This enables a very efficient and
comprehensive testing process. As a case-study we present results
on the verification of the 32 bit pipelined RISC-V core of
MINRES The Good Folk (TGF) Series Our approach has been
very effective in finding several serious bugs.

Index Terms—RISC-V, Cross-Level, Processor Verification,
Instruction Stream, Co-Simulation

I. INTRODUCTION

RISC-V is an open and royalty-free Instruction Set Architec-
ture (ISA) that gained enormous momentum in both academia
and industry in recent years. The major goal of the RISC-V
ISA is to provide a path to a new era of processor innovation
via open standard collaboration. RISC-V features an extremely
modular and extensible design that provides enormous flexibility
in building application specific solutions that can leverage cus-
tom extensions and only include features that are really required.
RISC-V became a game changer for embedded systems in sev-
eral application areas including e.g. IoT and Edge devices. Thus,
many emerging designs feature a RISC-V processor, which is at
the heart of the design.

Extensive verification of the processor at the Register-Transfer
Level (RTL) is crucial to avoid bugs, which could lead to longer
design cycles and significant follow-up costs. Due to their ease
of use and scalability, simulation-based methods are still preva-
lent in the verification domain and form the back-bone of the

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project Scale4Edge under
contract no. 16ME0127 and no. 16ME0135, and within the BMBF
project VerSys under contract no. 01IW19001, and by the German
Research Foundation (DFG) as part of the Collaborative Research Center
(Sonderforschungsbereich) 1320 EASE – Everyday Activity Science and
Engineering, University of Bremen (http://www.ease-crc.org/) in subproject
P04.

978-1-7281-8928-4/20/$31.00 ©2020 IEEE

verification effort. However, they require efficient test generation
methods to achieve a thorough verification.

Several approaches have been proposed for the purpose of
instruction stream generation for processor verification. In par-
ticular model-based approaches, which separate the test gen-
erator from the architecture description, have a long history.
Prominent examples using constraint solving techniques are [1],
[2]. An optimized test generation framework has been presented
in [3]. It propagates constraints among multiple instructions in
an effective manner. The test program generator of [4] includes
a coverage model that holds constraints describing execution
paths of individual instructions. Alternative approaches integrate
coverage-guided test generation based on bayesian networks [5]
and other machine learning techniques [6] as well as fuzzing [7].
However, these approaches are either not designed for RTL
verification or impose restrictions on the generated instruction
streams. In addition, they do not target the RISC-V ISA.

In this paper we propose an efficient cross-level testing ap-
proach for processor verification at RTL targeting the RISC-V
ISA. Our approach generates an endless instruction stream with-
out restrictions on the generated instructions by evolving the
instruction stream on-the-fly during simulation. An Instruction
Set Simulator (ISS) is leveraged as reference model for the RTL
core under test in a tightly coupled cross-level co-simulation
setting. This enables a very efficient and comprehensive testing
process. Our solution provides a testbench that feeds the gen-
erated instruction stream to the ISS and RTL core and compares
the results after each executed instruction in order to detect errors
in the RTL core immediately when they occur. As a case-study
we present results on the verification of the 32 bit pipelined
RISC-V core of MINRES The Good Folk (TGF) Series. Our
approach has been very effective in finding several serious bugs
in the industrial core. Moreover, our approach is very efficient
with more than 200 million processed instructions per hour on a
standard laptop.1

II. RELATED WORK

We already mentioned related work on general methods to
generate processor-level stimuli in the introduction. Here we
focus on RISC-V specific solutions which have started to emerge
recently.

1Visit http://www.systemc-verification.org/risc-v for our most recent
RISC-V related approaches.

http://www.ease-crc.org/
http://www.systemc-verification.org/risc-v

First, the officially provided test-suites [8], [9] need to be
mentioned. They are hand-written and aim to cover basic sanity
checks and several corner-case scenarios with support for differ-
ent RISC-V instruction set extensions. However, by being hand-
written, their overall coverage is obviously very limited and they
are not suitable for continuous testing.

A model-based test generation approach is pursued by
RISC-V Torture Test [10]. It is a Scala-based framework that
generates tests based on randomized instruction sequence tem-
plates and supports several RISC-V ISA extensions. [11] is
another model-based approach that leverages a constraint-based
specification for test generation. However, both approaches
leverage pre-defined building blocks for instruction sequences
which limits their coverage and they do not support illegal
instructions or exceptions.

Another research direction considers coverage-guided fuzzing
tailored for verification at the ISS level [12], [13]. They
loosen some of the instruction stream generation restrictions
but still have problems with branches and jumps to avoid non-
terminating test-cases and problems with platform dependent
CSR and memory access operations. In addition, the fuzzing
result is a test-suite with a comparatively small number of test-
cases (a few thousand).

RISC-V DV [14] by Google is another test generation ap-
proach that leverages SystemVerilog in combination with UVM
(Universal Verification Methodology) to continuously generate
RISC-V instruction streams based on constrained-random de-
scriptions. Each instruction stream represents a test-case and
RISC-V DV provides a high-level co-simulation interface to
compare the results between different simulators via execution
log files. RISC-V DV supports a large set of features includ-
ing several RISC-V instruction set extensions and CSR testing
capabilities. However, it has two major disadvantages: First,
the generated instruction streams are restricted to avoid prob-
lems with infinite loops and platform dependent memory access
operations. Second, RISC-V DV has a significant performance
overhead because it is a generic framework that aims to support a
large range of simulators (and RTL cores perspectively) and thus
fully decoupled the test generation and co-simulation process.
This makes the verification process significantly less efficient,
because each test-case needs to be compiled and then loaded and
executed on the reference simulator and test simulator (and then
execution logs are compared to decide a mismatch). In addition,
it is much more difficult to pass execution feedback to the test
generation engine.

In contrast, our approach generates one endless instruction
stream without any of these restrictions on the generated in-
structions by evolving the instruction stream on-the-fly dur-
ing simulation. In addition, the tight integration of instruction
stream generation and co-simulation environment can make our
approach much more efficient performance-wise. It processes
more than 200 million instructions per hour on a standard laptop
(which typically cannot be achieved with a generate, compile,
execute and compare loop).

Beside test generation methods, there are also a few formal
verification approaches for RISC-V. Notable approaches that
leverage model checking are riscv-formal [15] and the OneSpin

360 DV RISC-V verification app [16]. Though, riscv-formal has
only limited support for the RISC-V privileged ISA and OneSpin
360 DV is only commercially available. Another direction is to
formalize the RISC-V ISA semantics that is pursued by e.g. [17],
[18]. Based on these formalization theorem prover can be utilized
to reason about the RISC-V ISA semantics and generate simula-
tion backends. While formal methods can provide correctness
guarantees, they are significantly more difficult to apply than
simulation-based methods and, due to their complexity and po-
tential scalability issues, should be complemented by simulation-
based methods.

III. PRELIMINARIES

This section presents relevant background information on the
RISC-V ISA as well as SystemC and TLM (Transaction Level
Modeling) [19], [20]. Our co-simulation testbench is imple-
mented in SystemC and uses TLM.

A. RISC-V

The RISC-V ISA consists of a mandatory base integer instruc-
tion set, denoted RV32I, RV64I or RV128I with corresponding
register widths, and optional extensions denoted as single letters,
e.g. M (integer multiplication and division), C (compressed
instructions) etc. Thus, RV32I denotes a 32 bit core without any
extensions. It has 32 general purpose registers x0 to x31 where
x0 is hardwired to zero. Each register is 32 bit wide. Instructions
are grouped into different classes (e.g. computational, load/store,
branch/jump). They access registers (source: RS1 and RS2,
destination: RD) and immediates to perform their operation.
Immediates are available in different sizes and signed/unsigned
interpretation. RV32I has five immediate types: I-, S-, B-, U- and
J-type. For example, I-type is a signed 12 bit immediate, thus
has a value range of [-2048...2047]. Format and semantics (for
the base ISA and extensions) are defined in the unprivileged ISA
specification [21].

In addition, the privileged (architecture) specification [22]
covers further important functionality that is required for envi-
ronment interaction, operating system execution and trap han-
dling. It includes different execution modes (in particular the
mandatory Machine mode) with corresponding Control and
Status Register (CSR) descriptions. CSRs are registers serving
a special purpose, that form the backbone of the privileged
architecture description. Example CSRs are:

• MISA provides the supported instruction set.
• MTVEC stores the trap handler address and access config-

uration.
• MTVAL provides exception specific information in case of

a trap.
• MEPC stores the return address from a trap for the MRET

instruction.
• MINSTRET counts the number of retired instructions.
• MHARTID provides the read-only core id.
• MSTATUS is the main control and status register for the

core.
CSRs can be read-only and consist of different fields. A field
is part of the CSR (it has a start position and bitwidth) and
has an access specification such as WARL (Write Any Read

1 void Memory::operation(tlm_generic_payload &gp){
2 auto len = gp.get_data_length();
3 auto addr = gp.get_address();
4 uint8_t *ptr = reinterpret_cast<uint8_t*>(

gp.get_data_ptr());
5
6 if (gp.is_read()) { // read access
7 for (auto i=0; i<len; ++i)
8 *(ptr+i) = read_byte(addr+i);
9 } else { // write access

10 assert (gp.is_write());
11 for (auto i=0; i<len; ++i)
12 write_byte(addr+i, *(ptr+i));
13 }
14 }

Fig. 1. Example memory access operation using a TLM transaction

Legal). A WARL field can be written with any value but a read
access will only return legal values. This allows SW to query
the CSRs to obtain more information on the capabilities of the
core. In contrast to the instruction set specifications, the CSR
behavior is much less rigidly defined and often leaves many legal
implementation choices which makes the testing process more
challenging.

B. SystemC and TLM

SystemC in combination with TLM is an industry-proven
modeling standard for building designs at different levels of
abstraction. SystemC is not a new language, rather a C++ class
library which includes an event-driven simulation kernel [19].
The structure of a SystemC design is described with modules,
whereas the behavior is modeled in processes which are triggered
by events. The execution of a process is non-preemptive, i.e. the
simulation kernel receives the control back if the process has
finished its execution or actively suspends itself. Communication
can be implemented via signals (commonly used for RTL mod-
els) or abstracted using TLM transactions (commonly used for
high-level algorithmic models). A transaction object essentially
consists of a command (e.g. read/write), the data (payload) to be
transmitted and the address.

Fig. 1 shows an example memory interface based on
TLM. The memory receives a transaction object called gp
(tlm generic payload type). Based on the TLM command either
a data read (Line 7-8) or write (Line 11-12) operation is executed.
The address, access length and data pointer is obtained from
the transaction object (Line 2-4). The read byte and write byte
functions read and write a single byte from the memory, respec-
tively.

IV. CROSS-LEVEL TESTING FOR PROCESSOR
VERIFICATION

In this section we present our proposed cross-level testing
approach for processor verification via on-the-fly endless in-
struction stream generation. We start in Section IV-A with an
overview on the co-simulation testbench design that feeds the
instruction stream to the ISS and RTL core. Then, we discuss
relevant implementation challenges (Section IV-B) and present
our instruction stream generator in more detail (Section IV-C).

Instr.
Generator

Instr.
Stream

RTL Core ISS

RTL Data
Memory

ISS Data
Memory

ISS Instr.
Memory If.

ISS Data
Memory If.

RTL Instr.
Memory If.

RTL Data
Memory If.

RTL Core
Adapter

Test
Controller

Result /
Metrics

Clock
Cycle

SystemC
based
Simulation

RTL
TLM

next
RTL
instr.

next
ISS
instr.

ISS to TLM
interface

execute next instr. /
access ISS data

provide

access RTL Core data / notify instr. completed

process RTL
Core signals

generate
next instr.

read/write
memory

read/write
memory

signal to
interface

RTL and ISS Test Memory behave in the same way

Fig. 2. Overview of our co-simulation testbench for processor verification

A. Co-Simulation Testbench Overview

Fig. 2 shows an overview of our co-simulation testbench
design. It is implemented in SystemC and enables an efficient
co-simulation between the RTL core (left side of Fig. 2) under
test and the ISS (right side of Fig. 2) reference model.

The co-simulation is orchestrated by the test controller (bot-
tom center of Fig. 2). Essentially, it repeats the following steps:
First, the test controller lets the RTL core execute one instruction.
Then, it lets the ISS execute the same instruction. Finally, the
RTL core and ISS execution states (the registers in particular)
are compared. In case of a mismatch in the execution states,
an error is reported. The mismatch has to be analyzed and
fixed accordingly. Otherwise (no mismatch), the co-simulation
continues until the testing time is exhausted. This basic approach
presents considerable challenges that need to be solved, which
we discuss in more detail in Section IV-B. In the following we
present more details on the co-simulation testbench.

The RTL core is driven by a clock signal. It has two separate
memory interfaces to access the instruction and data memory,
respectively. The memory interfaces translate back and forth
between RTL core signals and TLM transactions. We leverage
TLM transactions to have a unified memory abstraction for the
RTL core and the ISS based on a common standard (recall Sec-
tion III-B). The data memory is implemented to work in a lazy
fashion. Initially it is empty. On a write access data is stored in
the data memory. On a read access either the existing data is
returned or new random data is generated (if no access at this
address happened before). To match the RTL core, the ISS is
also using two separate memory interfaces. Please note, the ISS
and RTL data memories both use the same random seed and
thus behave exactly in the same way because RTL core and ISS
perform the same data memory access sequences (i.e. in the same
order). Finally, we provide a core adapter to simplify the access
to the RTL core. We provide more details on the core adapter
in Section IV-B.

Instruction fetching is handled by the instruction memory
interface based on the Program Counter (PC). An instruction
fetch of the RTL core results in the generation of a new in-
struction (always, even if this PC has been fetched already), i.e.

on-the-fly during the simulation. An instruction fetch of the ISS
receives the corresponding fetched instruction of the RTL core.
This matching is handled by the instruction stream (top center
of Fig. 2) which is placed between the instruction generator and
the respective memory interfaces. We provide more details on
instruction matching in Section IV-B. Please note, our approach
generates an endless instruction stream without restrictions on
the generated instructions. Thus, all memory access instructions
(because we wrap the complete address range of the data mem-
ory interface) and jump instructions (including self-loops due to
our on-the-fly instruction generation) as well as special RISC-V
CSR access instructions are supported. This enables a very com-
prehensive testing. Independent of the generated instructions,
ISS and RTL core should behave completely identical on the
observable architectural state (i.e. register updates).

B. Implementation Challenges

There are two main challenges that need to be solved in order
to implement our proposed approach: 1) it can be difficult to
detect when an instruction is completed in the RTL core, and
2) feeding the same instruction stream into the RTL core and
ISS requires special attention. We discuss both points and our
solutions in the following.

1) Detecting Completed Instructions: The (industrial
pipelined) RTL core does not provide a single signal that can
be queried to detect that an instruction has been completed. In
particular, illegal instruction can bypass several stages of the
pipeline (depending where they identified as illegal) and do not
trigger any regular register write back notifications. Furthermore,
it is not possible to directly consider an illegal instruction com-
pleted the moment it is detected in the pipeline, because there
may still be legal instructions pending in the pipeline ahead
which need to be completed first (to preserve the instruction
order). In addition, the pipeline can get flushed (due to jumps and
traps) as well as get stuck at different stages (some operations
such as shifting can take multiple cycles) and thus cause delays
and gaps, which need to be considered as well. Thus, a deep
understanding of the pipeline is required to detect when an
instruction has been completed.

Therefore, we provide a core adapter to hide the implementa-
tion details of the core and provide a clean testing interface. The
core adapter observes the internal signal changes of the core (in
particular the pipeline) and notifies the test controller each time
the RTL core completed one instruction (and also preserves the
correct order in case of illegal instructions). In addition, the core
adapter provides access to the register values of the RTL core to
compare them with the ISS.

2) Instruction Stream Matching: The primary goal of our
testing approach is to generate an endless and unrestricted in-
struction stream. However, this makes it more difficult to feed
the same instructions to the RTL core and ISS. The reason is that
the RTL core pre-fetches several instructions due to the pipeline.
However, those pre-fetched instructions may not be executed in
case of a jump or trap. In this case, the ISS will fetch a different
sequence of PCs than the RTL core. Furthermore, short jumps
(which can also be caused by traps) can cause a new instruction
fetch in the RTL core before the ISS had the opportunity to fetch

1 function InstrStream::next RTL instr(PC)
2 // always generate a new instruction

3 i ← InstrGenerator::next()
4 pending instrs queue::push((PC, i))
5 return i // return this new instruction

6 function InstrStream::next ISS instr(PC, expected instr)
7 // search for a matching instruction

8 while not pending instrs queue::empty() do
9 (iPC, i) ← pending instrs queue::pop()

10 if iPC = PC and i == expected instr then
11 return i // match found, return it

12 report mismatch() // no match, something wrong

Fig. 3. Instruction fetch matching between the RTL core and ISS

the previous instruction (for the same PC). Thus, a direct match-
ing based on the PC does not work. For example consider a one
instruction backward jump J from address 8 to address 4. Thus,
the RTL core executes J and starts pre-fetching from address
4, before J is fully completed. Therefore, a new instruction is
fetched (and thus generated on-the-fly) for address 8 before the
ISS would had the opportunity to fetch and execute J .

Fig. 3 shows our algorithm to solve the above instruction
matching problem. In the instruction stream, we keep a queue
of pending instructions (in fetch order) that have been fetched
by the RTL core but not yet picked up by the ISS (Line 4).
Please note, beside the generated instruction (Line 3) we also
store the PC in the queue in Line 4. In addition, we leverage
the core adapter to extract the last completed instruction from
the RTL core (by carefully analyzing the pipeline signals). We
pass this last completed RTL core instruction alongside the ISS
PC to fetch the next ISS instruction (Line 6). Based on this
arguments we perform a matching with the queue of pending
instructions (Line 10). In case of a match the instruction is
returned (Line 11). Otherwise, a mismatch is reported between
RTL core and ISS (because the ISS tried fetching an instruction
which was not delivered to the RTL core) in Line 12. Please note,
we do not directly feed the completed instruction sequence from
the core adapter to the ISS, because this would compromise the
testing approach since we would then rely that the instruction
propagation in the RTL core works correctly (and the RTL core
is under test).

C. Instruction Stream Generator
Our carefully designed co-simulation setup enables endless

generation of unrestricted instructions. Thus, the baseline gen-
eration algorithm simply fully randomizes the generated instruc-
tions. It forms the foundation of the testing process. In addition,
we consider several modifications to guide the test generation
towards interesting cases.

The first modification is to inject a random instruction op-
code to create a valid instruction but keep the instruction fields
randomized. This modification is very simple but at the same
time very generic and effective. It is also extremely important
to ensure that a large set of legal instructions is considered

Fig. 4. Injection and mutation rule example for illustration

(because pure randomization tends to generate illegal instruction
due to the significantly larger state space of illegal instructions).
Fig. 4 shows an example. Starting with the fully randomized 32
bit instruction (A), the ADDI opcode is injected resulting in a
randomized ADDI instruction (B), by operation (1).

The second modification is to mutate the instruction fields
based on a pre-defined rule. We provide a set of rules that reason
about the structure and values of the instructions. The rules are
derived based on the RISC-V instruction format. We provide
rules to inject special values, such as {MIN, -1, 0, 1, MAX},
into the respective immediate field. Other rules reason about the
register structure, e.g. mutate RD to zero (since the zero register
is hardwired in RISC-V and thus a special case), mutate RD to
be equal to RS1 and/or RS2, and mutate RS1 to match RS2.
And we provide a rule to mutate the CSR selector field to a
supported CSR. Fig. 4 again shows an example. Starting with
the randomized ADDI instruction (B) the RD field is mutated to
match the RS1 field (C), by mutation (2). Both register fields are
still randomized but equal (denoted as Y in Fig. 4).

As a third modification, we consider generation of instruction
sequences. A sequence consists of a fixed number of instructions
that are designed to perform a specific task and can be random-
ized. For example, two RISC-V instructions that in combination
can load a large immediate value into a RISC-V register (the
immediate field of a single instruction is not large enough to load
an arbitrary register value). The target register and load value
are randomized. Another example is a compute chain, that feeds
the result of one instruction into the source register of the next
instruction but randomizes the operation (e.g. ADD, SUB, etc)
and operand registers. One more useful sequence is a CSR access
sequence. It performs a randomized CSR access and then writes
the CSR value into a normal register (so it can be compared with
the ISS register).

Fig. 5 shows the algorithm that we use for instruction genera-
tion. If a sequence is active and not yet completed (Line 3), then
the next instruction in the sequence is returned (Line 5). With a
1% probability a new sequence is randomly selected and started
(Line 6-9). Starting a sequence does randomize it’s instructions
and returns the first instruction. Otherwise (no active sequence
and no new sequence started), a single independent instruction is
generated (Line 11-17) and returned (Line 18). We start with a

1 function InstrGenerator::next()
2 // sequence is an InstrGenerator class variable

3 if sequence 6= nil and sequence.has next() then
4 // continue with existing sequence

5 return sequence.next() // return next instr.

6 if Random::probability(1) then // enter with 1%

7 // start a new sequence

8 sequence ← choose random sequence generator()
9 return sequence.start() // return first instr.

10 // generate a random 32 bit word (instruction)

11 x ← Random::instruction()
12 if Random::probability(98) then // enter with 98%

13 // choose any opcode, keep fields random

14 x ← inject random valid opcode(x)

15 if Random::probability(20) then // enter with 20%

16 // apply a mutation rule to the fields

17 x ← apply random field mutation(x)

18 return x // a single independent instruction

Fig. 5. Instruction generation algorithm

fully randomized instruction (Line 11). With a high probability
(98%) a random opcode is injected (Line 12-14). In addition,
with a smaller probability (20%) a random field mutation is
applied (Line 15-17).

V. EXPERIMENTAL EVALUATION

We have implemented our proposed cross-level testing ap-
proach and applied it for the verification of the pipelined 32
bit industrial RISC-V TGF series core. The core has been
implemented in SpinalHDL. It is designed to be highly con-
figurable on the microarchitectural level, such as choosing the
shifter implementation and pipeline levels. For this evaluation
we use the standard configuration that is available to customers.
We obtained the Verilog RTL implementation from SpinalHDL
(an option for this use-case is provided) and then applied the
Verilator tool to obtain the C++ description of the core which
we embedded into our SystemC-based co-simulation testbench.
As ISS reference model, we use the 32 bit RISC-V ISS of the
open source RISC-V VP [23], [24]. We have modified the ISS to
exactly match the capabilities of the RTL core (i.e. the supported
RISC-V instruction set and CSRs). The RTL core supports the
RV32I ISA in combination with the machine mode CSRs. All
experiments have been performed on a Linux system with an
Intel Core i5-7200U processor.

For the verification process, we iteratively switched between
testing and bug fixing until no more bugs were found. In the
following we first present and discuss the bugs that we have
found and then present performance and execution metrics that
we have obtained.

A. Found Bugs

Our testing process revealed that the RTL core already had a
very mature implementation of the RISC-V unprivileged ISA.

Only very few special cases have triggered a mismatch with the
ISS. Most bugs were related to the RISC-V privileged ISA, in
particular the CSR handling. In total we found 10 bugs in the
RTL core, which we discuss in the following:

1) Write access to a read-only CSR does not cause an illegal
instruction trap. In addition, for specific CSRs and options,
a legal write access to a (non read-only) CSR caused an
exception.

2) MEPC is not updated correctly on the lower two bits. This
allows SW to write an unaligned address into MEPC which
can cause an unaligned jump.

3) MISA was not correctly initialized and could be updated
by the SW to unsupported values.

4) MTVAL should be set to zero on an ECALL (instead it has
been set to the ECALL instruction encoding, which is the
default behavior for illegal instructions to help diagnose
them).

5) SW can write a reserved value into the MODE field
of MTVEC, which should not be allowed since MODE
should only be able to hold supported values. This can
cause a serious problem with forward compatibility of
SW, because (due to the modular and extensible design of
RISC-V) SW can query CSRs to obtain their capabilities
(and would be misled in this case).

6) EBREAK instruction sets MCAUSE to illegal instruction
instead of breakpoint.

7) The FENCE and FENCE I instructions cause an illegal
instruction trap for specific options. The problem has been
in the decoder implementation.

8) Writing to the MINSTRET and MCYCLE CSRs erro-
neously caused an illegal instruction trap (though, accord-
ing to the specification, this special counter CSRs are
allowed to be modified by SW).

9) MINSTRET (which counts the number of retired instruc-
tions) is not correctly updated on a write access. In this
case it should avoid the increment for the instruction that
performs the write access.

10) MRET continues at the wrong instruction for some special
instruction sequences that involve multiple MRET and
illegal instructions. MRET is a special RISC-V instruction
to return from the trap handler. Thus, it is used in a very
regular way by SW. In contrast, our approach allows to
comprehensively stress test the MRET instruction (and
others) and hence is very effective in finding errors.

In contrast to the existing testing frameworks for RISC-V,
which impose several restrictions on the generated instructions
(and thus simply cannot generate specific instruction sequences)
our approach avoids these restrictions by evolving the instruction
stream on-the-fly during simulation. This is a very important
advantage, because many corner-case bugs will only be revealed
by very specific instruction sequences with highly unregular
control-flow, including tight loops and traps (as for example bug
10 demonstrates).

Beside the 10 bugs in the RTL core, our testing process also
revealed 1 bug in the reference ISS, where MTVAL was set
incorrectly. The bug is triggered by executing a compressed
instruction (which is considered an illegal instruction because

the C extension is deactivated) and then reading MTVAL. The
reason is that the ISS still expanded the fetched compressed
instruction (16 bit) into an uncompressed instruction (32 bit),
even though the C extension was deactivated. Thus, instead
of the original fetched instruction, the expanded instruction is
erroneously written into MTVAL on the illegal instruction trap.

All of the described bugs have been found in less than 5
minutes each. Thus, our approach has been very effective in
finding bugs. In the following we present more details on the
performance characteristic and other execution metrics.

B. Performance and Execution Metrics
The lightweight test-generation process and tight co-

simulation between the ISS and RTL core enable our approach to
achieve a very high performance. In one hour it generated and co-
simulated a total number of 226 million (M) instructions. These
total instructions are separated into 12M illegal and 214M legal
instructions. From the legal instructions 156M completed nor-
mally and 58M caused an exception (i.e. trap). For illustration,
Fig. 6 shows how the legal instructions are distributed. It can
be observed that they are mostly uniformly distributed, ranging
from 6.0M for ADDI and 3.6M for MRET (please note, the y-
axis scale starts at 3.0M). The distribution difference are due to
the randomness of the generation process and the inclusion of
special instruction sequences. For example loading a RISC-V
register with an arbitrary number requires two instructions, an
ADDI and a LUI which is also reflected in Fig. 6. On average
63K (K = thousand) instructions and 229K (RTL core) cycles
are processed per second. This high performance enables a very
efficient testing process.

Looking more closely at the instructions we observed between
11M to 22M accesses per register with an average of 12M. Due to
the special semantic of the hardwired x0 register in RISC-V, we
used generation rules that favor the x0 register (thus it is accessed
more often compared to other registers). We observed between
1 (because register x0 is hardwired to zero) and 870K different
values per register with an average of 747K. On the immediate
fields we observed 5M to 51M accesses with an average of
22M. The amount of observed values in the immediate fields
varies largely from 32 to 1M due to the different value ranges
of the immediates. In total we observed 99.6% of the possi-
ble immediate values (across all instructions in combination).
Thus, beside the high performance, our approach also enables
a broad coverage. In combination with support for unrestricted
instruction sequences (to cover highly irregular control flows)
our approach is very suitable for extensive stress testing.

Finally, please note that our on-the-fly instruction stream
generation approach is very generic and thus not limited to a
specific RISC-V ISA configuration. We expect that only minimal
extensions are necessary to provide efficient support for addi-
tional RISC-V ISA extensions (covering the privileged as well
as unprivileged ISA).

VI. CONCLUSION AND FUTURE WORK

We proposed an efficient cross-level testing approach for
processor verification targeting the RISC-V ISA. It works by
generating and feeding an endless instruction stream into the
RTL core under test and a reference ISS in a tightly coupled

Fig. 6. Distribution on the executed legal instructions for a 1 hour testing process. The X-axis shows the instructions and the Y-axis the count (M = Millions).

co-simulation setting. The instruction stream evolves on-the-fly
during simulation and thus avoids restrictions on the generated
instructions. Our approach has been very effective in finding
several serious bugs in the pipelined industrial RISC-V TGF
series core and worked very efficiently with more than 200
million processed instructions per hour. For future work we plan
to:

• Investigate parallelized test sessions (using different ran-
dom seeds) and utilizing FPGAs to further boost the testing
process.

• Consider testing the interrupt interface of the RTL core
which is quite challenging as it needs to be synchronized
with the instruction stream co-simulation (to avoid spurious
mismatches between ISS and RTL core).

• Extend and evaluate our approach on additional RISC-V
ISA extensions. As already mentioned, we believe that our
approach is very well prepared for this task due to the
generic on-the-fly instruction stream generation.

• Investigate new coverage metrics that also consider RTL
specific coverage and develop execution feedback mecha-
nisms to further guide the test generation process.

REFERENCES

[1] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov,
and A. Ziv, “Genesys-pro: innovations in test program generation for
functional processor verification,” D&T, pp. 84–93, 2004.

[2] B. Campbell and I. Stark, “Randomised testing of a microprocessor
model using SMT-solver state generation,” in Formal Methods for
Industrial Critical Systems, F. Lang and F. Flammini, Eds., 2014, pp.
185–199.

[3] Y. Katz, M. Rimon, and A. Ziv, “Generating instruction streams using
abstract CSP,” in DATE, 2012, pp. 15–20.

[4] M. Chupilko, A. Kamkin, A. Kotsynyak, and A. Tatarnikov, “Mi-
croTESK: specification-based tool for constructing test program gen-
erators,” in HVC, 2017.

[5] S. Fine and A. Ziv, “Coverage directed test generation for functional
verification using bayesian networks,” in DAC, 2003, pp. 286–291.

[6] C. Ioannides, G. Barrett, and K. Eder, “Feedback-based coverage
directed test generation: An industrial evaluation,” in Hardware and
Software: Verification and Testing, S. Barner, I. Harris, D. Kroening,
and O. Raz, Eds., 2011.

[7] L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi, “Testing CPU
emulators,” in ISSTA, 2009, pp. 261–272.

[8] “RISC-V ISA tests,” https://github.com/riscv/riscv-tests.
[9] “RISC-V compliance task group,” https://github.com/riscv/

riscv-compliance.
[10] “RISC-V torture test generator,” https://github.com/ucb-bar/

riscv-torture.
[11] V. Herdt, D. Große, and R. Drechsler, “Towards specification and testing

of RISC-V ISA compliance,” in DATE, 2020.
[12] V. Herdt, D. Große, H. M. Le, and R. Drechsler, “Verifying instruction

set simulators using coverage-guided fuzzing,” in DATE, 2019, pp. 360–
365.

[13] V. Herdt, D. Große, and R. Drechsler, “Closing the RISC-V compliance
gap: Looking from the negative testing side,” in DAC, 2020.

[14] “RISCV-DV,” https://github.com/google/riscv-dv.
[15] “RISC-V formal verification framework,” https://github.com/

SymbioticEDA/riscv-formal.
[16] “OneSpin 360 DV RISC-V Verification App,” https://www.onespin.com/

solutions/risc-v.
[17] “Formal specification of RISC-V ISA in kami,” https://github.com/sifive/

RiscvSpecFormal.
[18] “Riscv sail model,” https://github.com/rems-project/sail-riscv.
[19] IEEE Standard SystemC Language Reference Manual, IEEE Std. 1666,

2011.
[20] D. Große and R. Drechsler, Quality-Driven SystemC Design. Springer,

2010.
[21] A. Waterman and K. Asanović, The RISC-V Instruction Set Manual;

Volume I: Unprivileged ISA, SiFive Inc. and CS Division, EECS De-
partment, University of California, Berkeley, 2019.

[22] ——, The RISC-V Instruction Set Manual; Volume II: Privileged Archi-
tecture, SiFive Inc. and CS Division, EECS Department, University of
California, Berkeley, 2019.

[23] V. Herdt, D. Große, H. M. Le, and R. Drechsler, “Extensible and
configurable RISC-V based virtual prototype,” in FDL, 2018, pp. 5–16.

[24] V. Herdt, D. Große, P. Pieper, and R. Drechsler, “RISC-V based virtual
prototype: An extensible and configurable platform for the system-level,”
JSA, 2020.

https://github.com/riscv/riscv-tests
https://github.com/riscv/riscv-compliance
https://github.com/riscv/riscv-compliance
https://github.com/ucb-bar/riscv-torture
https://github.com/ucb-bar/riscv-torture
https://github.com/google/riscv-dv
https://github.com/SymbioticEDA/riscv-formal
https://github.com/SymbioticEDA/riscv-formal
https://www.onespin.com/solutions/risc-v
https://www.onespin.com/solutions/risc-v
https://github.com/sifive/RiscvSpecFormal
https://github.com/sifive/RiscvSpecFormal
https://github.com/rems-project/sail-riscv

