Ensuring Safety and Reliability of IP-based System
Design — A Container Approach

Arun Chandrasekharan, Kenneth Schmitz, Ulrich Kiihne and Rolf Drechsler
Institute of Computer Architecture
University of Bremen, Germany
{arun, kenneth, ulrichk, drechsle}@cs.uni-bremen.de

Abstract—The application of built-to-order embedded hard-
ware designs in safety critical systems requires a high design
quality and robustness during operation. Flawless execution of
the involved software can be compromised by malfunctioning
hardware components or by software-induced errors. Further-
more, intellectual property (IP) tends to become unavoidable
in modern hardware designs. Any unexpected behavior of IP
components may cause unrecoverable system errors. In order to
construct correct and safe systems from unverified and potentially
malicious components, we propose a system integration approach
which encapsulates IP blocks in verifiable container modules. The
synthesis of these container modules is driven by a domain specific
language (DSL) augmented with sequential extended regular
expressions (SEREs). The approach is demonstrated by showing
the synthesis of an effective countermeasure against software-
induced memory disturbance errors.

Keywords—Container-Verification, Safe IP Integration, Model-
to-HDL Synthesis, Safety

I. INTRODUCTION

In the last decades, the continuous improvements in semi-
conductor fabrication have made it possible to produce inte-
grated circuits with billions of transistors on a single chip. This
has led to the development of tremendously complex systems
on chip (SoCs). In the wake of these technological advance-
ments, smaller embedded devices have become cheaper and
more energy efficient. At the same time, new and also more
complex features are finding their way into these embedded
devices. Driven by rapidly emerging markets, mobile and
network connectivity, multimedia, and sensory capabilities are
becoming common functionality in such devices.

With this burst of new features, embedded systems have
become a part of our everyday life, but they are also commonly
used in safety critical domains like transportation systems
and medical equipment. For such applications, correctness
and reliability are crucial to prevent system failure, which
could have catastrophic consequences. Testing and verification
already account for more than half of the development costs
of embedded systems. With a growing number of components
in an SoC system, there are also more potential sources of
design bugs. Since the reuse of IP blocks is crucial to keep
time-to-market constraints, it is often impossible to ensure the
correctness of all components in a newly designed system.

Even worse, with increasing connectivity over different
interfaces, there is also a growing potential of external attacks
against a system. The miniaturization of semiconductor fab-
rication processes has lead to various positive effects such as

reduced power consumption, smaller chip-area, lower fabrica-
tion costs and higher operational clock frequencies. However,
these advances have introduced side effects, which can be
exploited by an attacker to compromise the integrity of a
system. As an example, a Rowhammer attack [1] can alter the
content of a memory cell — for example in order to manipulate
access rights or priorities — by a series of seemingly harmless
read operations. By injecting malicious software, attacks can
not only come from the outside, but also from processor
components within a system [2].

Summarizing these developments, we are faced with the
challenge to build correct systems with potentially incorrect,
malicious or vulnerable components. As a consequence, sev-
eral works have tried to address these issues by incorporating
security and protection mechanisms in the architecture of an
SoC, see e.g. [3], [4], [5], [6]. Most of the existing work
requires a complete redesign of the target system, which
contradicts the assumption that we are often dealing with IP
blocks that cannot be changed.

In this paper, we propose an alternative view on the
problem of safe IP integration: By encapsulating the suspected
or vulnerable blocks within a container module, the overall
system is protected against erroneous or malicious behavior.
The container modules are generated automatically based on
a DSL that can be used to describe the expected behavior
and specific protection measures against known attacks. In
this way, a provably correct behavior of the container can
be achieved without touching the contained IP block. This
approach is based on the concept presented in [7], where
container modules have been used in a different context, in
order to create a robust bus interface.

A central component in the proposed approach are reactive
monitors. By decoupling the interface of a contained IP from
the rest of the system, a reactive monitor can take over the
control of the interface signals whenever it detects erroneous or
malicious behavior. The method has been implemented within
the Eclipse integrated development environment, in which
system integration engineer can conveniently select an IP in a
complex design to be protected, specify the protection scheme,
and automatically generate a container. To further automate
and facilitate the design flow, the framework will generate a
simulation model along with the design files and will create
the default templates for the well known and standard threats
and error-prone use cases. We demonstrate the tool flow in a
case study, protecting a memory block against the Rowhammer
attacks.

The paper is structured as follows: After discussing related
work in Section II, the methodology is introduced in Sec-
tion III. In Section IV we briefly discuss the implementation
of the proposed flow. The case study is presented in Section V,
before concluding the paper in Section VI.

II. RELATED WORK

In [3] and [4], Porquet et al. propose an enhanced memory
management in a SoC in order to create secure compartments
and allow the co-hosting of multiple applications without
interference. While the idea of compartments is similar to our
containers, their approach requires a specific SoC architecture.
Furthermore, like the security measures presented in [5], [6],
it assumes the functional correctness of the involved modules.

On a lower level of abstraction, robustness or resilience
is the ability of a system to tolerate faults, either permanent
defects or soft errors caused by radiation events [8]. Tech-
niques have been proposed to asses [9] and improve [10],
[11] robustness. However, these methods target only a very
specific and very low level fault model, while we aim for a
more general framework to create correct systems at the design
level.

Methods to create circuits which are correct by construction
are presented e.g. in [12], [13], [14]. Starting with a specifica-
tion in a temporal logic like LTL, an automaton is synthesized
that fulfills the spec. However, the involved algorithms have a
high complexity. While we do not aim to create full systems
from scratch, we plan to investigate the integration of these
techniques with our approach, e.g. to automatically generate
glue logic between different IP blocks. The construction of
monitors or checkers from assertions — as presented e.g. in
[15] — forms a basis of our automatic synthesis flow, that is
further enhanced by allowing the specification of actions in
order to counter attacks.

Recently, there has been a growing interest in techniques to
reverse engineer large gate-level netlists, without any structural
knowledge, see e.g. [16], [17], [18], [19]. This is motivated
by the concern that register transfer level designs could be
tampered with before being manufactured in order to introduce
hardware Trojans. By matching the netlist to the register
transfer level design, changes can be detected. Although the
methods have improved recently, they still cannot be applied to
larger designs. Using our container approach, we circumvent
the complex reverse-engineering task by providing an external
protection mechanism that detects threats at run-time.

III. METHODOLOGY
A. Safe IP Integration

As IP components are widely used for the implementation
of complex systems, the used IP cores need to be correct and
reliable, as these components can influence the entire system
adversely. Especially in the security domain and in safety
critical applications this circumstance is a primary concern [2].
However, the complete verification is near to impractical when
respecting reasonable time-to-market constraints. Since these
modules are usually provided as black boxes for which no
inspectable source files are available, the system designer has
to rely on the proper realization of the desired functionality.

Although a lot of effort is spent on the careful verification of
hardware designs, glitches and flaws may remain undiscovered.
The full verification or simulation in the system design phase
of the project is infeasible. As an alternative paradigm, reused
IP cores may be encapsulated inside a wrapping container,
which provides means to protect the overall system from
erroneous or intentionally malicious behavior. This makes it
possible to integrate components that are a potential threat to
the system stability without compromising the overall reliabil-
ity and with a high level of confidence.

Fig. 1. Integration

Figure 1 shows an example application of the basic method-
ology. Whenever an IP component is inserted into an existing
system, this component is placed inside a container, which
implements the required protection mechanisms. The internals
of the container are transparent to the remaining system
modules. Thus, the surrounding system needs no modification
and the integration overhead is kept at the lowest possible level.
Depending on the complexity of protective countermeasures of
the wrapping container module, the size of the container logic
may vary significantly. It needs to contain the necessary logic
to implement the desired protection. In the proposed design
flow, the logic is synthesized automatically from a dedicated
specification language, allowing a rapid integration of new
components.

The complexity of the container logic — and of its automatic
synthesis — depends on the threat model and the properties that
one wants to enforce on the contained IP block. As introduced
in [7], we can distinguish between three general use cases with
increasing complexity:

1) Monitoring the incoming or outgoing communication
in order to recognize erroneous or malicious behavior.

2) Filtering & altering incoming or outgoing data in
order to block attacks or to fix minor bugs and
glitches.

3) Actively manipulating the behavior of the contained
module in order to bring it back to a safe state. This
increases the difficulty of exploiting the module.

While the application in [7] was restricted to the monitoring
and fixing of bus protocols glitches, in this work we are aiming
to extend the container approach to more complex and more
general use cases. The central concept for more generic and
more powerful applications is the use of reactive monitors,
which will be described in the following.

B. Reactive Monitors

The detection of erroneous or malicious behavior requires
observation of the involved interface signals. Large and highly

integrated systems strongly rely on high-speed and high-
bandwidth bus or point-to-point communication mechanisms.
Whenever a single component carries out illegal commands to
a shared bus, the entire system may be compromised. Thus, the
container approach keeps track of the communication of the
contained instance in order to guarantee error-free operation.

Run-time monitoring is a common technique applied in
hardware-design. A monitor (or checker) is a component that
is able to detect the violation of some kind of property. The
synthesis of such monitors is well-understood (see e.g. [15]).
Starting from a temporal logic specification such as linear
temporal logic (LTL) or property specification language (PSL),
the formula of interest is translated to an automaton that
recognizes violating prefixes of the formula. By synthesizing
the automaton and wiring it up with the interface signals of
the target design, it is possible to create a monitor circuit in
hardware that observes the design at run-time. In case of a
property violation, the checker circuit may rise a signal to
indicate the faulty behavior. This technique is very useful for
the analysis and diagnosis of failure scenarios.

However, since our goal is to guarantee error-free operation
and a seamless integration of the contained modules into their
system environment, passive monitoring is not enough. Rather,
we empower the monitors to intervene in case of a property
violation and fix the occurring error if possible, making them
reactive monitors. Instead of relying on a separate trusted mas-
ter component that takes over control in case of an error, the
actions to be taken can be described in a single specification.
For this purpose, we make use of sequential extended regular
expressions (SEREs), augmented with assignment and storage
statements. The synthesized reactive monitors are placed at the
interface of the contained module. In this way, in case of an
error, they can block the communication, isolate the module or
change the value of specific signals to prevent system failure.

In the following, the specification language will be intro-
duced, before we discuss the synthesis of the reactive monitors.

C. Domain Specific Specification Language

The extension adds the capability to implement active
countermeasures when a given sequence is observed. We
introduce the SERE syntax to our methodology. In safe sys-
tems, many attacks (e.g. [1]) rely on penetration attacks [20].
Without the notion of sequences, it is impractical to anticipate
an upcoming attack to the system.

As aresult we created an operation-skeleton which contains
the necessary keywords to express even complex attack or
protection sequences. As a subset of the PSL, SERE is well-
suited in this field of application. However, at the current
state of development, the supported subset is limited. Store
$ and assignment = operations have been added. Negations,
comparisons and arithmetic operators are implemented. Logic
operators can also be used. Consider the given sequence
{sig_a; sig_a; sig_a}. Tt represents the logical value 1 of
signal sig_a for three consecutive cycles. SERE allows to
simplify this sequence as follows: sig_a;[+3]. From our given
attack-scenario, we extract a snippet from the application
scenario of a detection sequence to point out the advantages.

{(cmd_en && cmd_instr);rd_en; (cmd_en && cmd_instr);
(cmd_byte_addr == (address + 2)) && rd_en; }[x10];
(1

Here, a sequence of three consecutive cycles is shown,
where signals from the design are observed. If this sequence
is repeated ten times, the detection is triggered. To cope with
more complex problems, we added a SERE related syntax,
which also allows the system integration engineer to store and
assign values. This way, it is possible to store a signal’s current
value to a temporary buffer to reuse it later or assign a static
value to a given signal output.

{$address = cmd_byte_addr;)
cmd_byte_addr = address + 1; wr_en = 1; }[10];

The above sequence contains an assignment statement to a
temporary register for the later use. This way it is possible
to compare data or address values at different cycles of
operation. The following operation stub can be used to express
complex sequences to observe erroneous behavior and engage
appropriate countermeasures.

operation NAME /! operation name

detect: /! detection sequence
correct: // correction sequence
reset: /! reset trigger
sequence : /!l generic subsequences

clock event
reset event

system_clock: //
system_reset: //
end

The semantic of the keywords is explained in the following:

operation NAME indicates the start of an operation. The
operation represents a single cycle of at least detect and reset. It
can contain the following keywords as shown above. A single
operation is finalized by the keyword end.

detect: This keyword is followed by a SERE sequence.
This sequence contains all of the previously mentioned op-
erations except the assignment. For example, address or data
buses can be observed. Equation (2) provides an impression
how this part of the operation-skeleton can be used to store
temporary values for later use.

correct: The correct statement contains the countermea-
sures. In this part of the operation signals can be modified and
the system can be protected. Here it is possible to reassign a
temporarily stored value to a certain signal line.

reset: As a state machine will be the result after synthesiz-
ing these operations (properties), it requires a condition under
which the automaton will be reset to its initial state. Thus,
reset indicates the SERE sequence to trigger this transition. In
case of penetration attacks, it is possible to reset the automaton
after a cool-down period has expired.

sequence: The definition of subsequences can be consid-
ered as syntactical sugar. It provides the option to reduce the
complexity of large verification sequences by encapsulating
inherently complete subsequences by a substituting variable.
An example for this is given below.

sequence op_READ = {
lack_i,
'we_o;

s

PSL is a very rich language, and SERE are an essential part
of it. The full standard includes linear and branching time prop-
erties, allowing the specification of complex safety and liveness
properties. However, in the context of dynamic verification
and run-time monitoring, it is necessary that properties can be
invalidated and sequences matched by a finite prefix, which
poses a natural restriction on the kind of properties that can
be treated. As an example, it is not useful to state unbounded
liveness properties or infinite sequences, since they will never
fire in a finite simulation run. While the PSL standard [21]
defines a simple subset by syntactic restrictions, [22] gives
a semantic characterization. Obviously. these restrictions also
apply for possible extensions of our specification language.

D. Synthesis

We designed the synthesized code as multiple interacting
state machines from the statements which represent the given
sequences functionally. Each statement (defect, correct, etc.)
inside a single operation will yield an additional state machine.

Each SERE statement yields a new state within the cor-
responding state machine. The previously given sequence
{sig_a; sig_a;sig_a} requires three discrete states for the
detection of the given sequence. The occurrence of sig_a will
trigger the connected transition. Consequently it is possible
to create state machines which can detect complex signal
sequences. To demonstrate the overall synthesis, consider the
following example. The Wishbone bus [23] was developed
to interconnect a huge variety of IP-components within a
SoC. The underlying bus protocol must be implemented by
each participant carefully. It is essential that the address
lines remains constant during an entire read operation, since
otherwise an unpredictable result may occur. Therefore we
need to synthesize a stability property which maintains the
stability of the adr_ o signals during the entire read operation.

The utilization of SEREs allows a fine grained definition of
sequences. In the following example, we define a subsequence
op_READ which represents the read operation on the bus.
Consequently all read operations will be detected. Initially
the address is latched internally for later assignment in the
occurrence of the mentioned bug. Combinatorial logic then is
synthesized, which applies the latched value if needed.

operation READ

detect: det = {op_READ, $addr = adr_o;
!(adr_o == addr);};

correct: stabilize = {adr_o = addr};

sequence op_READ = {lack_i, !we_o;};

end

The given property is synthesized as shown in Figure 2.

As a first step in synthesis, each sequence is parsed and an
abstract syntax tree (AST) is built with the parsed information.
For each state and input only one transition is allowed in the
DSL. Hence this is identical to the state diagram shown in
Figure 2 and the required finite state machines (FSMs) are

detect
adr_.o = addr

correct

op_.READ
I(adr_o == addr)

$addr = adr_o
detect = 1

detect

Fig. 2. Resulting synthesized state machine

synthesized directly from the state transition information. Each
FSM provides an output once all the states are traversed and
it is internally used to synchronize the various FSMs it is
related to. The detect state machine is merely an observer
whose output is one only, when all the states are traversed.
The correct state machine is triggered when the detect is fired.
It provides an implicit output to signal when the correction
action is completed. Other sequences are also translated in
a similar way. A bypass FSM is also synthesized as part of
the container logic. The bypass FSM is triggered once the
detect FSM is fired and maintains its output high until the
correct FSM is fired. This bypass signal is used to effectively
multiplex the various output signals when the correction action
is in place. Every storage element used is made globally
visible to all the FSMs. Apart from the sequence grammar, the
design information is also needed to effectively synthesize the
FSMs. We use ZamiaCAD [24] - a static HDL analysis plug-in
for Eclipse to get this information. The exact implementation
details and how each plug-in is integrated is explained in the
next section.

IV. IMPLEMENTATION

We implemented the container module generator as a
plug-in for Eclipse. Eclipse provides an easy to use plug-
in development mechanism for creating customized add-ons
which can utilize the existing framework from Eclipse itself.
Additionally, the ZamiaCAD plug-in provides the capability of
reading HDL code into its AST, where interface-descriptions
in terms of ports and their direction can be extracted easily.
This design information forms the input to the plug-in for the
generation of the container module.

In [7], an operation skeleton which was able to keep
track of the Wishbone bus protocol was modeled. For the
proposed approach the underlying grammar needs several
modifications. The parser for this extended grammar is created
within Xtext [25]. Xtext is a framework within Eclipse which
allows the rapid development of domain specific languages.
This combination of add-ons provides the basic infrastructure.

The proposed architecture for the tool flow is shown in
Figure 3. The initial HDL design is fed to the ZamiaCAD
framework. The internal parser and data structures create the
representation for the design. Interface methods provide a
convenient way to access the necessary information. From the
DSL-grammar file, a parser is derived. This derived parser
accesses the HDL-port information from its attached methods
for the container-generation methodology. In the next step,

— | HDL-
Design

— | bSL-

Grammar
(SERE)

| Property-
— | File

)
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1

HDL printer ’—‘ —\ HDL

,,,,,,,,,,,,,,,,,,,,,,) + Container

Fig. 3. Design flow

a property file is fed to the DSL-parser. Within the HDL-
printer, the new code is generated. As a first step the container
interfaces are created to maintain the communication with
the surrounding system. Within the container the original IP
module is instantiated and the additional container logic is
generated. The resulting design will finally be written to the
HDL output file.

V. APPLICATION
A. Rowhammer Attack

In this section we present the application example for our
new approach. Recently a lot of effort has been put into the
investigation on the so called Rowhammer effect. This effect
can cause memory disturbance errors induced by interleaving
read or write access to certain memory cells. This effect was
fostered due to decreasing fabrication size of memory cells. In
[1], the authors demonstrated that this parasitic effect within
modern state of the art DDR3 memory technology can cause
bit errors which then can be maliciously exploited. It has been
recently demonstrated that an escalation of privileges or the
escape from a sandbox environment can be caused as described
in [26]. Given this circumstance, the system security can be
compromised on the one hand, on the other hand mission-
critical data could also be manipulated due to this known issue.

SR 3

Aggressor Row
Aggressor Row

F Tt
1 1

Data|Lines

|
|
1
1

Address Lines
Fig. 4. Parasitic Effects

Different parasitic effects within the DRAM cell [27], [28]
are known to facilitate this disturbance effect. Figure 4 shows
a simplified version of the setup which can be found inside
a DRAM chip. Typically, a large amount of consecutive read
operations from a specific memory location would easily be

caught by the computers memory hierarchy. However, the
clflush () operation will cause the central processing unit
(CPU) to directly access the main memory, regarding the cache
content as invalid (simplified).

Intel 64 and IA-32 Architectures Software Develop-
ers Manual: Invalidates the cache line that contains
the linear address specified with the source operand
from all levels of the processor cache hierarchy
(data and instruction). The invalidation is broadcast
throughout the cache coherence domain [29].

Due to the internal architecture, read operations may induce
crosstalk on signal lines within the DRAM cell grid or leak
charge from the capacitors which contain the data value. The
effect could be observed with an augmented HDL simulation
model. The following wave-trace illustrates the basic idea of
the attack.

S\

adr 7 0x00X7)0x02 X777} 7 0x00 ¥/ oxoe

Attack scheme

rd_en

Fig. 5.

Figure 5 shows the interleaving access to the two aggressor
rows (at address 0x00 and 0x02), which then can introduce
the disturbance errors in the victim row (at address 0x01).
This wave-trace correlates with Figure 4 as two adjacent
memory rows induce parasitic effects on the row in between.
Hence it is possible that the alternating read operation on the
aggressor rows will yield a bit-flip in the victim row’s data.

B. Countermeasures

We propose a wrapping container module which effectively
can prevent the attack. As a result of the c1flush () com-
mand, the cache-hierarchy is bypassed and the retention time
of the memory cells can actively be reduced. The following
wave-trace will show a simple and yet effective way to prevent
the error from occurring.

rd_en / \ / \ / \ / \

wr_en
adr 0x00 X770x02X7//X0x01X///X0x00% /X 0x00

Fig. 6. Countermeasures

In Figure 6 a single write operation on the victim-row
within the consecutive read commands on the aggressor-rows
is dispatched. It would also suffice to read from the cell once,
as it will also refreshes the cell’s content, too. Consequently,
the charge of the retention capacitor will be refreshed. De-
pending on several ambient parameters, the retention time can
strongly differ. In the data sheet for the MT41J256M4 DDR3
SDRAM module by Micron Technology, Inc. [30] a refresh
cycle is required as follows:

64ms, 8192 cycle refresh at 0°C to 85°C
32ms, 8192 cycle refresh at 85°C to 95°C

Thus the observation period and the interval of countermea-
sures needs to be evaluated, which finally can be expressed at
the end of a given sequence in terms of the repetition.

Every counteraction will require a short stall of the con-
nected system, as it is necessary to execute the access to the
victim-row. The results are two conflicting objectives: The
execution speed of the system might be compromised when
the attack is detected. As a result, the validity of the stored
data will not be compromised. This drawback has to be taken
into account. After the generation process of the encapsulating
container, the overall setup is shown in Figure 7.

OnBoard DDR3 Memory

i
3 ip_mem_ctrl
i

7]

Fig. 7. Application

C. Evaluation

We demonstrate the effectiveness of our approach by
simulation, using the memory controller IP from Xilinx [31].
The memory controller IP is interfaced to a Micron DDR3
SDRAM memory [30] and the framework is used for Rowham-
mer protection. Since the original Micron DDR3 simulation
memory models is ignorant of Rowhammer attacks, possible
attack scenarios are augmented as a SystemC model to the
DDR3 memory models. The SystemC Rowhammering module
will modify the data to and from the memory such that
it will introduce arbitrary bit-flips when the two aggressor-
rows adjacent to a victim-row are accessed, as explained
previously. Figure 7 shows the complete system after container
generation. The memory controller IP is instantiated inside the
container wrapper module alongside with the container logic.
The original signal lines are partially intersected by this logic
to observe the command sequences. Finally, when a suspicious
read/write sequence is detected, the container logic will stall
the IP for the duration of a single read or write command to
refresh the cells’ data retention time.

A simplified DSL snippet for the Rowhammer attack is
given below.

operation scenario_1

detect:attack =
attack_seq; //attack case—1
// complete atomic—operations
rd_finish || wr_finish;

+s

correct:correct = {
// read & write data at the victim addr
(read_sequence , addr_line = addrl + 1);
$victim_datal = data_line;
addr_line = addrl + 1;

(write_sequence ,
data_line = victim_datal);

+s

/l repeat 200 times to detect as an attack
sequence: attack_seq = {
(read_sequence , $addrl = addr_line);
read_sequence , addr_line = addrl + 2;
} [¥200];
end

Simulation is carried out using Mentor QuestaSim software
with mixed language support to incorporate the SystemC
model. The final verification flow is generated by the frame-
work automatically.

We synthesized the system with prevention schemes for
two possible Rowhammer attack scenarios. Xilinx ISE soft-
ware was used targeting the Spartan-6 FPGA [32]. The over-
head for the container logic is found to be an extra 100 flip
flops and 304 extra look-up tables (LUTs). It is important to
note that this container overhead is unrelated to the complexity
and size of the underlying IP, rather it depends only on the
interface signals and the protection scheme. Like for any
known protection mechanism, there is a trade-off between the
overhead in terms of area and delay on the one hand side,
and the objectives of the protection scheme, such as safety,
security, and reliability. By reusing the encapsulated IP as is,
we keep the design overhead small.

VI. CONCLUSION

In modern SoC design, IP reuse is inevitable in order to
match time-to-market constraints. Often, [P components can-
not be verified, since there is no source code available. In order
to create correct and reliable systems from untrusted com-
ponents, this paper introduces an approach to encapsulate IP
blocks in safe container modules. The method relies on reactive
monitors, which are located at the interfaces of the contained
module. Based on a convenient specification language, the
container logic is synthesized automatically, enabling a rapid
system integration. The method has been demonstrated in a
case study, where a memory block is encapsulated in order to
counter a memory disturbance attack.

In the future, we would like to explore approaches for
property-based synthesis in order to raise the level of automa-
tion, reduce the design effort even more and generalize our
approach for application in wider fields. In terms of concrete
scenarios, we will investigate in the area of vulnerable and
errata instruction replacement using the container approach for
modern microprocessor architectures.

ACKNOWLEDGMENT

This work was supported by the Graduate School SyDe
(funded by the German Excellence Initiative within the Uni-
versity of Bremen’s institutional strategy), by the German
Research Foundation (DFG) within the Reinhart Koselleck
project under grant no. DR 287/23-1, and by the German
Academic Exchange Service (DAAD).

[1]

[2]

[3]

[5]

[6]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” in Computer
Architecture (ISCA), 2014 ACM/IEEE 41st International Symposium on,
June 2014, pp. 361-372.

S. Bhasin, J.-L. Danger, S. Guilley, X. Ngo, and L. Sauvage, “Hardware
trojan horses in cryptographic IP cores,” in Fault Diagnosis and
Tolerance in Cryptography (FDTC), 2013 Workshop on, Aug 2013, pp.
15-29.

J. Porquet, C. Schwarz, and A. Greiner, “Multi-compartment: a new
architecture for secure co-hosting on SoC,” in International Symposium
on System-on-Chip (SOC), 2009, pp. 124-127.

J. Porquet, A. Greiner, and C. Schwarz, “NoC-MPU: a secure archi-
tecture for flexible co-hosting on shared memory MPSoCs,” in Design,
Automation & Test in Europe (DATE), 2011, pp. 1-4.

J. Sepulveda, G. Gogniat, R. Pires, W. J. Chau, and M. J. Strum, “Dy-
namic NoC-based architecture for MPSoC security implementation,” in
Symposium on Integrated Circuits and Systems Design (SBCCI), 2011,
pp. 197-202.

J. Sepulveda, G. Gogniat, R. Pires, W. Chau, and M. Strum, “Security-
enhanced 3D communication structure for dynamic 3D-MPSoCs pro-
tection,” in Symposium on Integrated Circuits and Systems Design
(SBCCI), 2013, pp. 1-6.

R. Drechsler and U. Kiihne, “Safe IP integration using container
modules,” in International Symposium on Electronic System Design
(ISED), Dec 2014, pp. 1-4.

S. Borkar, “Designing reliable systems from unreliable components:
The challenges of transistor variability and degradation,” Micro, IEEE,
vol. 25, no. 6, pp. 10-16, Nov 2005.

S. Frehse, G. Fey, E. Arbel, K. Yorav, and R. Drechsler, “Complete
and effective robustness checking by means of interpolation,” in Formal
Methods in Computer-Aided Design (FMCAD), 2012, pp. 82-90.

S. A. Seshia, W. Li, and S. Mitra, “Verification-guided soft error
resilience,” in Design, Automation & Test in Europe (DATE), 2007,
pp. 1442-1447.

S. Krishnaswamy, S. Plaza, I. L. Markov, and J. P. Hayes, “Enhancing
design robustness with reliability-aware resynthesis and logic simula-
tion,” in International Conference on Computer-Aided Design (ICCAD),
2007, pp. 149-154.

N. Piterman, A. Pnueli, and Y. Saar, “Synthesis of reactive(1) designs,”
in Verification, Model Checking, and Abstract Interpretation, ser. LNCS.
Springer, 2006, vol. 3855, pp. 364-380.

R. Ehlers, R. Konighofer, and G. Hofferek, “Symbolically synthesizing
small circuits,” in Formal Methods in Computer-Aided Design (FM-
CAD), 2012, pp. 91-100.

K. Morin-Allory, F. N. Javaheri, and D. Borrione, “Fast prototyping
from assertions: A pragmatic approach,” in Formal Methods and Models
for Codesign (MEMOCODE), 2013, pp. 23-32.

R. Drechsler, “Synthesizing checkers for on-line verification of system-
on-chip designs,” in Circuits and Systems, 2003. ISCAS ’03. Proceed-
ings of the 2003 International Symposium on, vol. 4, May 2003, pp.
IV=748-1V-751 vol 4.

W. Li, Z. Wasson, and S. A. Seshia, “Reverse engineering circuits using
behavioral pattern mining,” in International Symposium on Hardware-
Oriented Security and Trust (HOST), 2012, pp. 83-88.

W. Li, A. Gascon, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Malik,
N. Shankar, and S. A. Seshia, “WordRev: Finding word-level structures
in a sea of bit-level gates,” in International Symposium on Hardware-
Oriented Security and Trust (HOST), 2013, pp. 67-74.

P. Subramanyan, N. Tsiskaridze, W. Li, A. Gascon, W. Y. Tan, A. Ti-
wari, N. Shankar, S. Seshia, and S. Malik, “Reverse engineering digital
circuits using structural and functional analyses,” IEEE Transactions on
Emerging Topics in Computing, 2014.

B. Sterin, M. Soeken, R. Drechsler, and R. K. Brayton, “Simulation
graphs for reverse engineering,” in Formal Methods in Computer Aided
Design (FMCAD), 2015.

D. Geer and J. Harthorne, “Penetration testing: A duet,” in Computer
Security Applications Conference, 2002, pp. 185-195.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]
[31]
[32]

Accellera, “Property specification language reference manual version
1.1,” 2004. [Online]. Available: http://www.eda.org/vfv/docs/PSL-v1.1.
pdf

S. Ben-David, D. Fisman, and S. Ruah, “The safety simple subset,” in
Hardware and Software, Verification and Testing. Springer, 2006, pp.
14-29.

OpenCores, “WISHBONE system-on-chip (SoC) interconnection archi-
tecture for portable IP cores (rev. B4),” 2010.

A. Tsepurov, G. Bartsch, R. Dorsch, M. Jenihhin, J. Raik, and V. Tih-
homirov, “A scalable model based RTL framework ZamiaCAD for static
analysis,” in International Conference on Very Large Scale Integration
(VLSI-SoC), 2012, pp. 171-176.

M. Eysholdt and H. Behrens, “Xtext: Implement your language faster
than the quick and dirty way,” in International Conference on Object
Oriented Programming Systems Languages and Applications, 2010, pp.
307-309.

D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote
software-induced fault attack in javascript,” CoRR, vol. abs/1507.06955,
2015. [Online]. Available: http://arxiv.org/abs/1507.06955

M. Redeker, B. Cockburn, and D. Elliott, “An investigation into
crosstalk noise in dram structures,” in International Workshop on
Memory Technology, Design and Testing, 2002, pp. 123-129.

D.-S. Min, D.-I. Seo, J. You, S. Cho, D. Chin, and Y. Park, “Wordline
coupling noise reduction techniques for scaled DRAMs,” in Symposium
on VLSI Circuits, 1990, pp. 81-82.

Intel Corporation, “Intel 64 and ia-32 architectures software developers
manual,” 2011. [Online]. Available: http://www.intel.com/Assets/en_
US/PDF/manual/253666.pdf

Micron Technology, Inc, “Micron 1Gb: x16 DDR3 SDRAM datasheet.”
Xilinx Inc, “Spartan-6 FPGA memory controller user guide,” 2009.
——, “Spartan SP695 FPGA product brief,” 2009.

